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Abstract

We are interested in the tail behavior of the randomly weighted sum
∑n

i=1 θiXi,
in which the primary random variables X1, . . . , Xn are real valued, independent and
subexponentially distributed, while the random weights θ1, . . . , θn are nonnegative
and arbitrarily dependent, but independent of X1, . . . , Xn. For various important
cases, we prove that the tail probability of

∑n
i=1 θiXi is asymptotically equivalent to

the sum of the tail probabilities of θ1X1, . . . , θnXn, which complies with the principle
of a single big jump. An application to capital allocation is proposed.
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1 Introduction

Throughout the paper, all random variables are defined on the probability space (Ω,F ,P)

unless otherwise stated. Let X1, . . . , Xn be n real-valued independent random variables,

called primary random variables, and let θ1, . . . , θn be n nonnegative random variables,

called random weights, independent of the primary random variables. The target of this

study is the randomly weighted sum

Sθn =
n∑
i=1

θiXi. (1.1)

∗Corresponding author: Zhongyi Yuan; Tel.: 1-814-865-6211.
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It is a central theme crossing various applied areas of probability and statistics to model

the dependence structure of multiple random variables of interest, say, Z1, . . . , Zn. This

has become especially imperative in insurance, finance and risk management due to the

increasing complexity of insurance and financial products. In lieu of the prevailing copula

approach, we propose the stochastic representation

Zi = θiXi, i = 1, . . . , n, (1.2)

with the primary random variables X1, . . . , Xn and the random weights θ1, . . . , θn described

above.

Our study will proceed in a general setting in which the random weights θ1, . . . , θn are

arbitrarily dependent and not necessarily bounded. In the mechanism through (1.1)–(1.2),

we intend to use the primary random variables X1, . . . , Xn to depict the magnitude of Z1,

. . . , Zn while using the random weights θ1, . . . , θn to capture the dependence. The indepen-

dence between the two sequences {X1, . . . , Xn} and {θ1, . . . , θn} separates the magnitude

and dependence, bringing us great convenience in both modeling and computation.

In addition to an application to capital allocation to be given in Section 4, we list here

three examples in insurance, finance and risk management in which a randomly weighted

sum appears naturally as a key quantity of interest.

In the first example, consider a portfolio consisting of n obligors that are subject to

possible default over a given period. Denote by Xi the loss given default of obligor i, equal

to the percentage loss given default multiplied by the exposure, and denote by θi the default

indicator for obligor i, which is a Bernoulli random variable with θi = 1 corresponding to

the default of obligor i. Then the randomly weighted sum (1.1) represents the aggregate

amount of losses. An important feature of credit risk is that the default indicators are

strongly dependent due to both common macroeconomic factors and credit contagion. For

detailed discussions, we refer the reader to McNeil et al. (2005), Das et al. (2007) and

Hatchett and Kühn (2009), among many others.

In the second example, consider an insurer who makes both risk-free and risky invest-

ments. Over each period i, the net loss is denoted by a real-valued random variable Xi,

equal to total claims minus total premiums, and the overall accumulation factor is denoted

by a positive random variable Ai. With θi =
∏i

j=1A
−1
j , the randomly weighted sum (1.1)

then represents the stochastic present value of the net losses over the first n periods. See,

for example, Nyrhinen (2001) and Tang and Tsitsiashvili (2003a) for related discussions.

Obviously, the random variables θ1, . . . , θn should be strongly dependent.

The third example gives another interpretation of (1.1) in terms of an investment port-

folio consisting of n risky assets over one period. Each asset i incurs a potential loss variable

Xi at the terminal time while the corresponding stochastic discount factor over the period
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is θi. Then the randomly weighted sum (1.1) represents the total amount of discounted

losses potentially incurred from the investment portfolio. See, for example, Björk (2009) for

discussions on stochastic discount factors. The stochastic discount factors θ1, . . . , θn should

be dependent as they result from financial evolvements over the same time period.

We study the tail behavior of the randomly weighted sum (1.1) under the assumptions

that the primary random variables are heavy tailed and that the random weights are de-

pendent. These assumptions are highly relevant in the motivating examples above. Since

many risk measures, such as Value at Risk (VaR) and Conditional Tail Expectation (CTE),

focus on the tail area of a risk variable, the study of the tail behavior of randomly weighted

sums has an immediate application to the computation of such risk measures.

Recently, randomly weighted sums have been an attractive research topic in the literature

of applied probability. See Shen et al. (2009), Zhang et al. (2009), Gao and Wang (2010),

Chen et al. (2011), Yi et al. (2011), Fougères and Mercadier (2012), Hazra and Maulik

(2012) and Olvera-Cravioto (2012), to name a few very recent ones. See also Hashorva et al.

(2010), who interpreted the stochastic representation (1.2) in terms of random contraction.

Tang and Tsitsiashvili (2003b) proved that, if the primary random variables X1, . . . ,

Xn are independent and identically distributed by a subexponential distribution and the

random weights θ1, . . . , θn take values in the interval [a, b] for some constants a and b,

0 < a ≤ b <∞, then

P

(
n∨
i=1

Sθi > x

)
∼ P

(
Sθn > x

)
∼ P

(
n∨
i=1

θiXi > x

)
∼

n∑
i=1

P (θiXi > x) . (1.3)

This suggests that the heavy tails of the primary random variables dissolve the dependence

of the two-sided bounded random weights. This complies with the principle of a single

big jump in the presence of random weights. It can facilitate the computation of the tail

probabilities, especially when there is tangled dependence among θ1, . . . , θn. However, the

two-sided bound restriction on the random weights severely limits the merit of the result.

Our study is a revisit to the work of Tang and Tsitsiashvili (2003b). We devote ourselves

to relaxing the two-sided bound restriction. The lower-bound restriction is removed in

Theorem 3.1 while the upper-bound restriction is further removed in Theorems 3.2 and 3.3

under some additional conditions. A feature of our work is that the random weights are

allowed to be arbitrarily dependent on each other.

The rest of the paper consists of five sections. In Section 2 we prepare some preliminaries

on heavy-tailed distributions, in Section 3 we present our main results, in Section 4 we

propose an application to capital allocation, and in Sections 5 and 6 we show the proofs.
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2 Preliminaries

2.1 Heavy-tailed distributions

Throughout this paper, all limit relationships are according to x → ∞ unless otherwise

stated. For two positive functions f(·) and g(·), write f(x) . g(x) or g(x) & f(x) if

lim sup f(x)/g(x) ≤ 1, write f(x) ∼ g(x) if lim f(x)/g(x) = 1, and write f(x) � g(x) if f(·)
and g(·) are weakly equivalent, that is, 0 < lim inf f(x)/g(x) ≤ lim sup f(x)/g(x) <∞. For

real numbers x, x1, . . . , xn, write x+ = x ∨ 0, x− = −(x ∧ 0) and x(n) = x1 ∨ · · · ∨ xn.

We shall assume that the primary random variables X1, . . . , Xn are heavy tailed, that

is, their moment generating functions are infinite on (0,∞). One of the most important

classes of heavy-tailed distribution functions is the subexponential distribution class. A

distribution function F on R+ = [0,∞) is said to be subexponential, written as F ∈ S, if it

has an ultimate tail (that is, F (x) > 0 for all x ≥ 0) and

F 2∗(x) ∼ 2F (x),

where F 2∗ denotes the two-fold convolution of F . More generally, a distribution function

F on R is still said to be subexponential if the distribution function F+(x) = F (x)1(x≥0) is

subexponential, where 1E is the indicator function of a set E. The class S contains a lot of

important distributions such as Pareto, lognormal and heavy-tailed Weibull distributions.

The reader is referred to the monographs Embrechts et al. (1997), Asmussen and Albrecher

(2010) and Foss et al. (2011) for reviews of the class S.

Among many distribution classes that are closely related to the class S, we list a few

here for our reference later. A distribution function F on R is said to be long tailed, written

as F ∈ L, if its (ultimate) right tail satisfies

F (x+ y) ∼ F (x) for all y ∈ R. (2.1)

Automatically, relation (2.1) holds uniformly on every compact set of y. Hence, it is easy to

see that there is some positive function l(·), with l(x) ≤ x/2 and l(x) ↑ ∞, such that relation

(2.1) holds uniformly for −l(x) ≤ y ≤ l(x). It is well known that every subexponential dis-

tribution is long tailed; see Lemma 2 of Chistyakov (1964) or Lemma 1.3.5(a) of Embrechts

et al. (1997). By Theorem 2.1(a) of Klüppelberg (1988), a long-tailed distribution with a

right tail weakly equivalent to a subexponential tail is subexponential.

A distribution function F on R is said to be dominatedly-varying tailed, written as F ∈
D, if its right tail satisfies F (xy) = O

(
F (x)

)
for all 0 < y < 1. The intersection L∩D forms

a useful subclass of S; see, for example, Theorem 1 of Goldie (1978) or Proposition 1.4.4(a)

of Embrechts et al. (1997). In particular, it covers the famous class R of distributions
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with a regularly-varying tail. By definition, for a distribution function F on R, we write

F ∈ R−α for some 0 < α < ∞ if its right tail is regularly varying with index −α, that is,

F (xy) ∼ y−αF (x) for all y > 0. In summary,

R ⊂ L ∩D ⊂ S ⊂ L.

In this paper, we need two more distribution classes. A distribution function F on R is

said to belong to the class A if it is subexponential and its right tail satisfies

lim sup
x→∞

F (xy)

F (x)
< 1 for some y > 1. (2.2)

Note that (2.2) is really a mild condition fulfilled by almost all useful distributions with an

ultimate right tail. From this point of view, the class A almost takes up the entire class

S. Moreover, a distribution function F on R is said to be rapidly-varying tailed, written

as F ∈ R−∞, if F (xy) = o
(
F (x)

)
for all y > 1. Note that R−∞ is a very broad class

containing both heavy-tailed and light-tailed distributions.

2.2 Matuszewska indices

The Matuszewska indices can provide useful information on the tail behavior of a distribu-

tion function. For a distribution function F with an ultimate right tail, define

M∗(F ) = inf

{
− logF ∗(y)

log y
: y > 1

}
and M∗(F ) = sup

{
− logF

∗
(y)

log y
: y > 1

}
,

where F ∗(y) = lim inf F (xy)/F (x) and F
∗
(y) = lim supF (xy)/F (x). From Corollary 2.1.6

and Theorem 2.1.5 of Bingham et al. (1987), we see that M∗(F ) and M∗(F ) are the

upper and lower Matuszewska indices of the function f = 1/F , respectively. Without any

confusion we simply call them the upper and lower Matuszewska indices of F .

Let us recollect some simple and useful results related to the Matuszewska indices.

Clearly, two distributions with weakly equivalent tails have the same Matuszewska indices.

It is easy to see that F ∈ D if and only if 0 ≤M∗(F ) <∞, or, equivalently, the function F

has bounded decrease. Note also that inequality (2.2) holds if and only if 0 < M∗(F ) ≤ ∞,

or, equivalently, the function F has positive decrease. Thus, F ∈ A can be characterized

as F ∈ S with a tail possessing positive decrease. See page 71 of Bingham et al. (1987) for

the definitions of bounded decrease and positive decrease.

For a distribution function F , with some simple adjustments on Proposition 2.2.1 of

Bingham et at. (1987), we see the following: if 0 ≤M∗(F ) <∞, then for every β > M∗(F ),

there are some positive constants C1 and x1 such that the inequality

F (x)

F (xy)
≤ C1y

β (2.3)
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holds for all xy ≥ x ≥ x1; while if 0 < M∗(F ) ≤ ∞, then for every 0 < γ < M∗(F ), there

are some positive constants C2 and x2 such that the inequality

F (xy)

F (x)
≤ C2y

−γ (2.4)

holds for all xy ≥ x ≥ x2.

From (2.3) and (2.4), it is easy to see that the relations

x−β = o
(
F (x)

)
and F (x) = o

(
x−γ
)

(2.5)

hold for every β > M∗(F ) and γ < M∗(F ). Therefore, for a random variable X distributed

by F , if M∗(F ) > 1 then E [X+] <∞, while if E [X+] <∞ then M∗(F ) ≥ 1.

3 Main Results

Recall the randomly weighted sum (1.1), in which the primary random variables X1, . . . , Xn

are real valued, independent and distributed by F1, . . . , Fn, respectively, while the random

weights θ1, . . . , θn are nonnegative, not degenerate at 0, and arbitrarily dependent on each

other, but independent of the primary random variables.

Here comes our first main result, which extends Theorem 3.1 of Tang and Tsitsiashvili

(2003b) by squarely removing the lower-bound restriction on the random weights:

Theorem 3.1 If Fi ∈ L and Fi(x) � F (x) for some F ∈ S and all i = 1, . . . , n, and if θ1,

. . . , θn are bounded above, then the relations in (1.3) hold.

Then we aim to further remove the upper-bound restriction on the random weights.

In doing so, we need to confine the primary distributions to the class A, which is slightly

smaller than the class S, as mentioned before.

Theorem 3.2 If Fi ∈ L and Fi(x) � F (x) for some F ∈ A and all i = 1, . . . , n, and if the

relation

P (θi > ux) = o(1)P (θiXi > x) , u > 0, (3.1)

holds for all i = 1, . . . , n, then the relations in (1.3) hold.

Lemma 3.2 of Tang (2006) shows that (3.1) is equivalent to the existence of a positive

auxiliary function a(·), with a(x) ↑ ∞ and a(x) = o(x), such that

P (θi > a(x)) = o(1)P (θiXi > x) . (3.2)

As shown in Corollary 2.1 of Tang (2006), either one of the following is sufficient for (3.1)

to hold:
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• P (θi > xy) = o
(
Fi(x)

)
for some y > 0;

• P (θi > xy) = o(1)P (θi > x) for some y > 1;

• 0 < M∗ (Gi) ≤ ∞ and E
[(
X+
i

)βi] = ∞ for some 0 < βi < M∗ (Gi), where Gi is the

distribution function of θi.

In the following theorem, we confine the primary distributions to the class L∩D but do

not assume weak equivalence for their tails. It slightly extends Theorem 2.1 of Wang and

Tang (2006).

Theorem 3.3 If Fi ∈ L ∩ D and E
[
θβii

]
<∞ for some βi > M∗(Fi) and all i = 1, . . . , n,

then the relations in (1.3) hold.

We postpone the proofs of Theorems 3.1–3.3 to Section 5.

4 Application to Capital Allocation

Consider an investor who invests in n lines of business. Each line i generates a potential net

loss variable Zi in loss-profit form. These loss variables must depend on each other since

the n lines operate in similar macroeconomic environments. We model them by (1.2) in

which, as before, the primary random variables X1, . . . , Xn are real valued, independent and

distributed by F1, . . . , Fn, respectively, while the random weights θ1, . . . , θn are nonnegative,

not degenerate at 0, and arbitrarily dependent on each other, but independent of the primary

random variables. Then the randomly weighted sum

Sθn =
n∑
i=1

θiXi (1.1)

represents the total loss.

For some regulated investors, such as banks or insurance companies, a risk capital is

usually held as a cushion to protect them from large losses. Our interest is in allocating the

risk capital to the individual lines. We refer the reader to Bauer and Zanjani (2014) for an

overview of various allocation principles, many of which boil down to Euler’s principle, also

referred to as gradient allocation principle. Euler’s principle allocates risk capital according

to the risk contribution of each line and is known to provide right signals for performance

measurement; see also Tasche (1999) for related discussions. Moreover, it is coherent if

the underlying risk measure is coherent; see Denault (2001) for an introduction of coherent

allocation principles. For more details and economic justifications of Euler’s principle, we

refer the reader to Myers and Read (2001), McNeil et al. (2005) and Dhaene et al. (2012),
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among others. See also Asimit et al. (2011) for an asymptotic analysis of capital allocation

in the presence of extreme risks, to which our study in this section is similar in spirit.

Assume that each random variable in (1.1) has a finite mean and let CTE be the under-

lying risk measure. According to Euler’s principle, the amount of capital allocated to line i

is

ACi = E
[
θiXi|Sθn > x

]
=

E
[
θiXi1(Sθn>x)

]
P (Sθn > x)

, i = 1, . . . , n, (4.1)

where x is the VaR of Sθn, that is,

x = VaRq

[
Sθn
]

= inf
{
y ∈ R : P

(
Sθn ≤ y

)
≥ q
}
, 0 < q < 1.

See Section 6.3.2 of McNeil et al. (2005) for this assertion. Note that ACi given by (4.1)

could be nonpositive, namely, no capital or even a negative amount of capital is allocated

to line i in this case, meaning that such a line should be rewarded for risk capital. See Erel

et al. (2013) for related discussions.

Typically, the expression given by (4.1) is difficult to evaluate. We aim at an asymptotic

formula as q ↑ 1. Under the corresponding conditions of each of Theorems 3.1–3.3, the

asymptotics for the denominator in (4.1) has been given by (1.3), which consequently leads

to

VaRq

[
Sθn
]
≈ inf

{
x ∈ R :

n∑
i=1

P (θiXi > x) ≤ 1− q

}
, q ↑ 1.

Thus, only asymptotics for the numerator in (4.1) needs to be derived. We show the results

for i = 1 only.

Theorem 4.1 In addition to the conditions of Theorem 3.1, Theorem 3.2, or Theorem 3.3,

assume that

P (θiXi > x) = O(1)P (θ1X1 > x) , i = 2, . . . , n. (4.2)

Then we have

E
[
θ1X11(Sθn>x)

]
∼ E

[
θ1X11(θ1X1>x)

]
. (4.3)

Within the scope of Theorem 3.1 or Theorem 3.2, a sufficient condition for (4.2) is that

P (θi > t) = O (P (θ1 > t)) as t ↑ t̂1 for all i = 2, . . . , n, where 0 < t̂1 ≤ ∞ is the essential

upper bound of θ1; while within the scope of Theorem 3.3, a sufficient condition for (4.2) is

that F2(x) + · · ·+ Fn(x) = O
(
F1(x)

)
.

In the next theorem for the L ∩ D case, we do not require condition (4.2) but slightly

strengthen the moment conditions on the random weights.
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Theorem 4.2 If Fi ∈ L ∩ D and E
[
θβ11 + θ1θ

βi
i

]
< ∞ for some βi > M∗(Fi) and all

i = 2, . . . , n, then

E
[
θ1X

+
1 1(Sθn>x)

]
∼

n∑
i=1

E
[
θ1X

+
1 1(θiXi>x)

]
and E

[
θ1X

−
1 1(Sθn>x)

]
∼

n∑
i=1

E
[
θ1X

−
1 1(θiXi>x)

]
,

where the second relation bears a meaning only when X1 has a nontrivial negative part X−1 .

The two asymptotic relations in Theorem 4.2 readily give that E
[
θ1X11(Sθn>x)

]
∼∑n

i=1 E
[
θ1X11(θiXi>x)

]
under a mild technical requirement that

lim inf
x→∞

∑n
i=1 E

[
θ1X

+
1 1(θiXi>x)

]∑n
i=1 E

[
θ1X

−
1 1(θiXi>x)

] > 1 or lim sup
x→∞

∑n
i=1 E

[
θ1X

+
1 1(θiXi>x)

]∑n
i=1 E

[
θ1X

−
1 1(θiXi>x)

] < 1.

We make the right-hand side of (4.3) explicit in the next corollary by imposing some

more conditions. In order to state the corollary below, we introduce two nonnegative random

variables X and θ, which are independent of each other and independent of all other sources

of randomness. Let X be distributed by F and denote by t̂ the essential upper bound of

θ. We show some cases below in which the asymptotics for the capital allocation becomes

transparent:

Corollary 4.1 Assume that, for each i = 1, . . . , n, Fi(x) ∼ ciF (x) for some constant

ci > 0.

(a) For F ∈ S ∩ R−∞ and 0 < t̂ < ∞, assume that limt↑t̂ P (θi > t) /P (θ > t) = di for

some d1 > 0, d2 ≥ 0, . . . , dn ≥ 0. Then, as q ↑ 1,

AC1 ∼
c1d1∑n
i=1 cidi

VaRq̃ [θX] with q̃ = 1− 1− q∑n
i=1 cidi

. (4.4)

(b) For F ∈ S ∩ R−∞ and t̂ = ∞, assume that limt↑t̂ P (θi > t) /P (θ > t) = di for some

d1 > 0, d2 ≥ 0, . . . , dn ≥ 0 and that relation (3.1) holds for all u > 0 and all

i = 1, . . . , n. Then relation (4.4) still holds.

(c) For F ∈ R−α with α > 1, assume that E
[
θβi

]
< ∞ for some β > α and all i =

1, . . . , n. Then

AC1 ∼
α

α− 1

c1E [θα1 ]

(
∑n

i=1 ciE [θαi ])
1−1/α

VaRq [X] , q ↑ 1.

We postpone the proofs of Theorems 4.1–4.2 and Corollary 4.1 to Section 6.
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5 Proofs of Theorems 3.1–3.3

For each of Theorems 3.1–3.3, the last relation in (1.3) can be easily proven by verifying

∑
1≤j 6=k≤n

P (θjXj > x, θkXk > x) = o(1)
n∑
i=1

P (θiXi > x) . (5.1)

For Theorem 3.1, relation (5.1) is trivial because the random weights are bounded. For

Theorem 3.2, relation (5.1) can be verified by conditioning on θj and θk for each term on

the left-hand side and utilizing relation (3.2). For Theorem 3.3, relation (5.1) follows from

Lemma 5.7 below.

The rest of (1.3) amounts to the conjunction of

P
(
Sθn > x

)
&

n∑
i=1

P (θiXi > x) (5.2)

and

P

(
n∑
i=1

θiX
+
i > x

)
.

n∑
i=1

P (θiXi > x) . (5.3)

For this reason, we shall focus on (5.2) and (5.3) only in the proofs of Theorems 3.1–3.3.

5.1 Proof of Theorem 3.1

Following the proof of Proposition 5.1 of Tang and Tsitsiashvili (2003b) with some obvious

changes, we obtain

Lemma 5.1 Let X1, . . . , Xn be n real-valued independent random variables, each dis-

tributed by Fi satisfying Fi ∈ L and Fi(x) � F (x) for some F ∈ S and all i = 1, . . . , n.

Then for every fixed 0 < a ≤ b <∞, it holds uniformly for all (c1, . . . , cn) ∈ [a, b]n that

P

(
n∑
i=1

ciXi > x

)
∼

n∑
i=1

P (ciXi > x) . (5.4)

The following lemma can be easily verified by conditioning on θ and utilizing relation

(3.2); see also Theorem 2.2(iii) of Cline and Samorodnitsky (1994):

Lemma 5.2 Let X and θ be two nonnegative independent random variables. If X is long

tailed, θ is not degenerate at 0, and P (θ > ux) = o(1)P (θX > x) for all u > 0, then the

product θX is long tailed.
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Proof of Theorem 3.1. Without loss of generality, we assume that the random weights

θ1, . . . , θn are bounded above by 1.

To prove (5.2), first assume that the random variables X1, . . . , Xn are nonnegative.

For this case, relation (5.2) follows from the inequality Sθn ≥
∨n
i=1 θiXi and relation (5.1).

Now consider the general case where X1, . . . , Xn may be negative. For an arbitrary subset

I ⊂ {1, . . . , n}, write Ic = {1, . . . , n}\I and

ΩI(X) = {ω : Xi ≥ 0 for i ∈ I and Xj < 0 for j ∈ Ic} .

Since each random weight is bounded above by 1, it follows that

P
(
Sθn > x

)
≥

∑
∅6=I⊂{1,...,n}

P

(∑
i∈I

θiXi +
∑
j∈Ic

Xj > x,ΩI(X)

)
, (5.5)

where a sum over an empty set is equal to 0 by convention. Conditioning on Xj for j ∈ Ic

and applying relation (5.2) for the nonnegative case, we see that each probability on the

right-hand side of (5.5) is asymptotically not smaller than

∑
i∈I

P

(
θiXi +

∑
j∈Ic

Xj > x,ΩI(X)

)
∼
∑
i∈I

P (θiXi > x,ΩI(X)) ,

where we further applied the dominated convergence theorem and the fact that θiXi is long

tailed due to Lemma 5.2. Substituting this into (5.5) and interchanging the order of the

summations yield relation (5.2).

Then we turn to establishing (5.3). First we assume that the random weights are positive.

Let I and Ic be as before and write

Ωε
I(θ) = {ω : θi > ε for i ∈ I and θj ≤ ε for j ∈ Ic} , 0 < ε < 1.

Clearly,

P

(
n∑
i=1

θiX
+
i > x

)
≤

∑
I⊂{1,...,n}

P

(∑
i∈I

θiX
+
i +

∑
j∈Ic

εX+
j > x,Ωε

I(θ)

)
. (5.6)

By Lemma 5.1, each term on the right-hand side of (5.6) is asymptotically equivalent to∑
i∈I

P (θiXi > x,Ωε
I(θ)) +

∑
j∈Ic

P (εXj > x) P (Ωε
I(θ))

=
∑
i∈I

P (θiXi > x,Ωε
I(θ)) +

∑
j∈Ic

P (εXj > x, θj > ε)
P (Ωε

I(θ))

P (θj > ε)
.
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Substituting this into (5.6) and interchanging the order of the summations, we obtain

P

(
n∑
i=1

θiX
+
i > x

)

.
n∑
i=1

∑
I:i∈I⊂{1,...,n}

P (θiXi > x,Ωε
I(θ)) +

n∑
j=1

∑
I:j /∈I⊂{1,...,n}

P (θjXj > x)
P (Ωε

I(θ))

P (θj > ε)

=
n∑
i=1

P (θiXi > x, θi > ε) +
n∑
j=1

P (θjXj > x)
P (θj ≤ ε)

P (θj > ε)

≤
(

1 + max
1≤j≤n

P (θj ≤ ε)

P (θj > ε)

) n∑
i=1

P (θiXi > x) .

Since each θj is strictly positive, letting ε ↓ 0 yields (5.3).

Finally, consider the general case where the random weights may take value 0 with a

positive probability. Let I and Ic be as before and write

Ω0
I(θ) = {ω : θi > 0 for i ∈ I and θj = 0 for j ∈ Ic} .

Then, by what we have just proven for (5.3),

P

(
n∑
i=1

θiX
+
i > x

)
=

∑
φ 6=I⊂{1,...,n}

P

(∑
i∈I

θiX
+
i > x,Ω0

I(θ)

)
.

∑
φ 6=I⊂{1,...,n}

∑
i∈I

P
(
θiXi > x,Ω0

I(θ)
)

=
n∑
i=1

P (θiXi > x) . (5.7)

This ends the proof of Theorem 3.1.

5.2 Proof of Theorem 3.2

The following is an extension of Lemma 3.1 of Tang (2006):

Lemma 5.3 In addition to the conditions of Lemma 5.1, assume that M∗(F ) > 0. Then it

holds uniformly for all (c1, . . . , cn) ∈ (0, 1]n that

P

(
n∑
i=1

ciXi > x

)
.

n∑
i=1

P (ciXi > x) .

Proof. If we rewrite P (
∑n

i=1 ciXi > x) = P (
∑n

i=1 c̃iXi > x̃) with c̃i = ci/c(n) and x̃ =

x/c(n), then each c̃i lies in (0, 1], at least one of them equals 1, and x̃→∞. Thus, without

loss of generality, we may assume c1 = 1.
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For every 0 < ε < 1 and I ⊂ {2, . . . , n}, write Ic = {2, . . . , n}\I and

AI = {(c2, . . . , cn) : 0 < ci ≤ ε for i ∈ I and ε < cj ≤ 1 for j ∈ Ic} .

By Lemma 5.1 and inequality (2.4), uniformly over each AI it holds for arbitrarily fixed

0 < γ < M∗(F ) and some C > 0 that

P (
∑n

i=1 ciXi > x)∑n
i=1 P (ciXi > x)

.
P
(
X+

1 +
∑

i∈I εX
+
i +

∑
j∈Ic cjX

+
j > x

)
P (X1 > x) +

∑
j∈Ic P (cjXj > x)

∼
P (X1 > x) +

∑
i∈I P (εXi > x) +

∑
j∈Ic P (cjXj > x)

P (X1 > x) +
∑

j∈Ic P (cjXj > x)

≤ 1 +
∑
i∈I

P (εXi > x)

P (X1 > x)

. 1 + Cεγn.

Since {AI : I ⊂ {2, . . . , n}} forms a finite partition of (0, 1]n−1 and ε can be arbitrarily close

to 0, the result follows.

The following lemma complements Lemma 5.3 with the opposite inequality:

Lemma 5.4 Let X1, . . . , Xn be n nonnegative independent random variables, each with an

ultimate right tail. Then it holds uniformly for all (c1, . . . , cn) ∈ (0, 1]n that

P

(
n∑
i=1

ciXi > x

)
&

n∑
i=1

P (ciXi > x) .

Proof. Note that P (
∑n

i=1 ciXi > x) ≥ P (
∨n
i=1 ciXi > x). A simple application of Bonfer-

roni’s inequality completes the proof.

A combination of Lemmas 5.3 and 5.4 extends Lemma 5.1 as follows:

Lemma 5.5 Let X1, . . . , Xn be n nonnegative independent random variables, each dis-

tributed by Fi satisfying Fi ∈ L and Fi(x) � F (x) for some F ∈ A and all i = 1, . . . , n.

Then relation (5.4) holds uniformly for all (c1, . . . , cn) ∈ (0, 1]n.

The following lemma plays a crucial role in proving relation (5.2) for Theorem 3.2:

Lemma 5.6 Let X, {Y1, . . . , Yn} and {θ0, θ1, . . . , θn} be three independent groups of non-

negative random variables. If X is distributed by F ∈ L with M∗(F ) > 0, and P (θi > ux) =

o(1)P (θiX > x) for all u > 0 and i = 0, 1, . . . , n, then

P

(
θ0X −

n∑
i=1

θiYi > x

)
= P (θ0X > x)− o(1)

n∑
i=1

P (θiX > x) .
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Proof. Since the inequality P (θ0X −
∑n

i=1 θiYi > x) ≤ P (θ0X > x) is trivial, we only need

to prove the opposite inequality. As remarked after Theorem 3.2, there is some positive aux-

iliary function a(·), with a(x) ↑ ∞ and a(x) = o(x), such that P(θi > a(x)) = o(1)P(θiX >

x) holds for all i = 0, 1, . . . , n. Let θ(n) =
∨n
i=1 θi. For arbitrarily fixed 0 < ε < 1, we derive

P

(
θ0X −

n∑
i=1

θiYi > x

)
≥ P

(
θ0X −

n∑
i=1

θiYi > x, εθ(n) < θ0 ≤ a(x)

)

≥ P

(
θ0X −

θ0

ε

n∑
i=1

Yi > x, εθ(n) < θ0 ≤ a(x)

)
∼ P

(
θ0X > x, εθ(n) < θ0 ≤ a(x)

)
≥ P (θ0X > x)− P

(
θ0X > x, εθ(n) ≥ θ0

)
− P (θ0 > a(x)) , (5.8)

where in the third step we conditioned on θ0 and applied the dominated convergence theorem

and F ∈ L. It holds for every 0 < γ < M∗(F ), some C > 0 and all large x that

P
(
θ0X > x, εθ(n) ≥ θ0

)
≤ P

(
εθ(n)X > x

)
≤ P

(
εθ(n)X > x, θ(n) ≤ a(x)

)
+ P

(
θ(n) > a(x)

)
≤ CεγP

(
θ(n)X > x

)
+

n∑
i=1

P (θi > a(x))

. Cεγ
n∑
i=1

P (θiX > x) ,

where the third step is due to relation (2.4). Substituting this into (5.8), by the arbitrariness

of ε we conclude the proof.

Proof of Theorem 3.2. Temporarily assume that the random weights are positive.

First we prove (5.2). For an arbitrary subset I ⊂ {1, . . . , n}, write Ic = {1, . . . , n}\I
and

ΩI(X) = {ω : Xi ≥ 0 for i ∈ I, Xj < 0 for j ∈ Ic} .

Recall the equivalence between (3.1) and (3.2). With the positive auxiliary function a(·)
specified in relation (3.2) for all i = 1, . . . , n, it holds that

P
(
Sθn > x

)
≥

∑
∅6=I⊂{1,...,n}

P

(∑
i∈I

θi
θ(n)

Xi +
∑
j∈Ic

θj
θ(n)

Xj >
x

θ(n)

, θ(n) ≤ a(x),ΩI(X)

)
.
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By conditioning on θ1, . . . , θn and Xj for j ∈ Ic and applying Lemma 5.4, we obtain

P
(
Sθn > x

)
&

∑
∅6=I⊂{1,...,n}

∑
i∈I

P

(
θi
θ(n)

Xi +
∑
j∈Ic

θj
θ(n)

Xj >
x

θ(n)

, θ(n) ≤ a(x),ΩI(X)

)

≥
∑

∅6=I⊂{1,...,n}

∑
i∈I

P

(
θiXi +

∑
j∈Ic

θjXj > x,ΩI(X)

)
− P

(
θ(n) > a(x)

)
.

Note that P (θjXi > x) � P (θiXi > x) holds for all 1 ≤ i, j ≤ n. Applying Lemma 5.6 and

interchanging the order of the summations yield

P
(
Sθn > x

)
&

∑
∅6=I⊂{1,...,n}

∑
i∈I

(
P (θiXi > x,ΩI(X))− o(1)

∑
j∈Ic

P (θjXi > x)

)
−

n∑
i=1

P (θi > a(x))

=
n∑
i=1

P (θiXi > x)− o(1)
∑

∅6=I⊂{1,...,n}

∑
i∈I, j∈Ic

P (θjXi > x)− o(1)
n∑
i=1

P (θiXi > x)

∼
n∑
i=1

P (θiXi > x) .

Next we prove (5.3). Clearly,

P

(
n∑
i=1

θiX
+
i > x

)
≤ P

(
n∑
i=1

θi
θ(n)

X+
i >

x

θ(n)

, θ(n) ≤ a(x)

)
+ P

(
θ(n) > a(x)

)
.

n∑
i=1

P

(
θi
θ(n)

Xi >
x

θ(n)

, θ(n) ≤ a(x)

)
+

n∑
i=1

P (θi > a(x))

∼
n∑
i=1

P (θiXi > x) ,

where in the second step we applied Lemma 5.5.

So far we have proven Theorem 3.2 for the case with positive random weights. The

extension to the case with nonnegative random weights can be done by copying (5.7).

5.3 Proof of Theorem 3.3

The following lemma is a slight extension of Lemma 6.2 of Tang and Yuan (2012) and is at

the core of the proof of Theorem 3.3:

Lemma 5.7 Let X be a random variable with a dominatedly-varying right tail and upper

Matuszewska index M∗, let θ be a nonnegative random variable with E
[
θβ
]
< ∞ for some
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β > M∗, let {∆t, t ∈ T } be a set of random events satisfying limt→t0 P(∆t) = 0 for some t0

in the closure of the index set T , and let {θ, {∆t, t ∈ T }} be independent of X. Then

lim
t→t0

lim sup
x→∞

P (θX > x,∆t)

P (θX > x)
= lim

t→t0
lim sup
x→∞

P (θX > x,∆t)

P (X > x)
= 0.

Proof. Since P (θX > x) � P (X > x) by Theorem 3.3(iv) of Cline and Samorodnitsky

(1994), we only need to prove the second relation. Choose some c such that M∗ < cβ < β

and do the split

P (θX > x,∆t) = P (θX > x,∆t, θ ≤ xc) + P (θX > x,∆t, θ > xc) .

By inequality (2.3), there is some constant C > 0 such that, for all large x,

P (θX > x,∆t, θ ≤ xc) ≤ CP (X > x) E
[
(θ ∨ 1)β1∆t

]
.

Moreover, by Markov’s inequality and the second relation in (2.5),

P (θX > x,∆t, θ > xc) ≤ P (θ > xc) ≤ x−cβE
[
θβ
]

= o(1)P (X > x) .

By these upper bounds we conclude the proof.

Proof of Theorem 3.3. We first prove (5.2). Since each θiXi is long tailed by Lemma

5.2, we can choose some positive function l(·), with l(x) ↑ ∞ and l(x) ≤ x/2, such that

the relation P (θiXi > x+ y) ∼ P (θiXi > x) holds uniformly for −l(x) ≤ y ≤ l(x) and

i = 1, . . . , n. By Bonferroni’s inequality, we have

P
(
Sθn > x

)
≥ P

(
Sθn > x,

n∨
i=1

θiXi > x+ l(x)

)

≥
n∑
i=1

P
(
Sθn > x, θiXi > x+ l(x)

)
−

∑
1≤j<k≤n

P (θjXj > x+ l(x), θkXk > x+ l(x))

= (1 + o(1))
n∑
i=1

P (θiXi > x+ l(x))−
n∑
i=1

P
(
Sθn ≤ x, θiXi > x+ l(x)

)
& (1 + o(1))

n∑
i=1

P (θiXi > x)−
n∑
i=1

P

(
θiXi > x+ l(x),

n∑
j=1,j 6=i

θjXj < −l(x)

)

∼
n∑
i=1

P (θiXi > x) ,

where in the third and last steps we applied Lemma 5.7.
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To show relation (5.3), we observe that

P

(
n∑
i=1

θiX
+
i > x

)

≤ P

(
n∨
i=1

θiXi > x− l(x)

)
+ P

(
n∑
i=1

θiX
+
i > x,

n∨
j=1

θjXj ≤ x− l(x),
n∨
k=1

θkXk >
x

n

)

≤
n∑
i=1

P (θiXi > x− l(x)) +
n∑
k=1

P

(
θkXk >

x

n
,

n∑
i=1,i 6=k

θiX
+
i > l(x)

)

∼
n∑
i=1

P (θiXi > x) ,

where in the last step we applied Lemma 5.7 again. The proof is complete.

6 Proofs of Theorems 4.1–4.2 and Corollary 4.1

In the proofs of Theorems 4.1–4.2, we define a new probability measure Q on (Ω,F) by

dQ

dP
=

θ1X
+
1

E [θ1] E
[
X+

1

] , (6.1)

where, and throughout this section, the symbol E without a superscript means the expec-

tation still under P. Under Q, it is easy to verify the following facts:

• the two sequences {X1, . . . , Xn} and {θ1, . . . , θn} are still independent;

• the primary random variables X1, . . ., Xn are still independent with the distribution

functions of X2, . . ., Xn remaining intact;

• the tail probabilities of X1 and θ1X1 are given by

Q (X1 > x) =
xF1(x) +

∫∞
x
F1(y)dy

E [X1]
, x > 0,

and

Q (θ1X1 > x) =
xP(θ1X1 > y) +

∫∞
x

P(θ1X1 > y)dy

E [θ1] E [X1]
, x > 0,

respectively, implying that the distribution functions of X1 and θ1X1 are both long

tailed.

In the proofs below, we shall often apply these facts tacitly.

17



6.1 Proof of Theorem 4.1

Clearly, it suffices to prove that

E
[
θ1X11(Sθn>x)

]
& E

[
θ1X11(θ1X1>x)

]
(6.2)

and that

E
[
θ1X

+
1 1(

∑n
i=1 θiX

+
i >x)

]
∼ E

[
θ1X11(θ1X1>x)

]
. (6.3)

To prove relation (6.2), note that

E
[
θ1X11(Sθn>x)

]
= E

[
θ1X

+
1 1(Sθn>x)

]
− E

[
θ1X

−
1 1(Sθn>x)

]
≥ E

[
θ1X

+
1 1(θ1X1−

∑n
i=2 θiX

−
i >x)

]
− E

[
θ1X

−
1 1(

∑n
i=2 θiXi>x)

]
= E [θ1] E

[
X+

1

]
Q

(
θ1X1 −

n∑
i=2

θiX
−
i > x

)
− E

[
X−1
]

E
[
θ11(

∑n
i=2 θiXi>x)

]
,

while to prove relation (6.3), note that, for x > 0,

E
[
θ1X

+
1 1(

∑n
i=1 θiX

+
i >x)

]
= E

[
θ1X11(θ1X1>x)

]
+ E

[
θ1X

+
1 1(θ1X+

1 ≤x,
∑n
i=1 θiX

+
i >x)

]
.

Thus, it suffices to prove the following:

Q

(
θ1X1 −

n∑
i=2

θiX
−
i > x

)
& Q (θ1X1 > x) ; (6.4)

E
[
θ11(

∑n
i=2 θiXi>x)

]
= o(1)E

[
θ1X11(θ1X1>x)

]
; (6.5)

E
[
θ1X

+
1 1(θ1X+

1 ≤x,
∑n
i=1 θiX

+
i >x)

]
= o(1)E

[
θ1X11(θ1X1>x)

]
. (6.6)

Assuming that relation (4.2) is satisfied, we shall prove relations (6.4)–(6.6) under the

conditions of Theorem 3.1, Theorem 3.2, or Theorem 3.3.

(a) Assume that the conditions of Theorem 3.1 hold, and assume without loss of gener-

ality that the random weights θ1, . . . , θn are bounded above by 1. Relations (6.4) and (6.5)

hold straightforwardly since

Q

(
θ1X1 −

n∑
i=2

θiX
−
i > x

)
≥ Q

(
θ1X1 −

n∑
i=2

X−i > x

)
∼ Q (θ1X1 > x) ,

and

E
[
θ11(

∑n
i=2 θiXi>x)

]
≤ P

(
n∑
i=2

θiXi > x

)
= o(1)E

[
θ1X11(θ1X1>x)

]
,
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where in the last step we applied Theorem 3.1, relation (4.2), and the fact that xP (θ1X1 > x) ≤
E
[
θ1X11(θ1X1>x)

]
. To prove relation (6.6), note that, for x > 0,

E
[
θ1X

+
1 1(θ1X+

1 ≤x,
∑n
i=1 θiX

+
i >x)

]
≤
√
xP

(
n∑
i=1

θiX
+
i > x

)
+ xP

(
√
x < θ1X1 ≤ x,

n∑
i=1

θiX
+
i > x

)
. (6.7)

By Theorem 3.1 and relation (4.2), we have

P

(
n∑
i=1

θiX
+
i > x

)
∼

n∑
i=1

P (θiXi > x) = O(1)P (θ1X1 > x) . (6.8)

Moreover, it holds that

P

(
√
x < θ1X1 ≤ x,

n∑
i=1

θiX
+
i > x

)

≤ P

(
n∑
i=1

θiX
+
i > x

)
− P (θ1X1 > x)− P

(
X1 ≤

√
x
)

P

(
n∑
i=2

θiX
+
i > x

)
= o(1)P (θ1X1 > x) , (6.9)

where we applied Theorem 3.1 again in the last step. A combination of relations (6.7)–(6.9)

yields relation (6.6).

(b) Assume that the conditions of Theorem 3.2 hold. First, to prove relation (6.4),

observe that, for every u > 0,

Q (θ1 > ux) =

∫ ∞
0

P (θ1 > (ux) ∨ s) ds

= u

∫ ∞
0

P (θ1 > u (x ∨ s)) ds

= o(1)

∫ ∞
0

P (θ1X1 > (x ∨ s)) ds

= o(1)Q (θ1X1 > x) .

Consequently, there is some positive auxiliary function ã(·), with ã(x) ↑ ∞ and ã(x) = o(x),

such that

Q (θ1 > ã(x)) = o(1)Q (θ1X1 > x) . (6.10)

Similarly to the derivation of relation (5.8), we have, for θ(n) =
∨n
i=2 θi and arbitrarily fixed

0 < ε < 1,

Q

(
θ1X1 −

n∑
i=2

θiX
−
i > x

)
& Q (θ1X1 > x)−Q

(
θ1X1 > x, εθ(n) ≥ θ1

)
−Q (θ1 > ã(x)) . (6.11)

19



By relation (4.2), there is some C > 0 such that, for x > 0,

Q
(
θ1X1 > x, εθ(n) ≥ θ1

)
=

1

E
[
θ1X

+
1

]E [θ1X11(θ1X1>x, εθ(n)≥θ1)

]
≤ 1

E
[
θ1X

+
1

]E [εθ(n)X11(θ(n)X1>x)

]
=

ε

E
[
θ1X

+
1

] ∫ ∞
0

P
(
θ(n)X1 > (x ∨ s)

)
ds

≤ Cε

E
[
θ1X

+
1

] ∫ ∞
0

P (θ1X1 > (x ∨ s)) ds

= CεQ (θ1X1 > x) .

Substituting this and (6.10) into (6.11) and noticing the arbitrariness of ε, we obtain (6.4).

Next, to prove relation (6.5), we derive

E
[
θ11(

∑n
i=2 θiXi>x)

]
= E

[
θ11(θ1≤ã(x),

∑n
i=2 θiXi>x)

]
+ E

[
θ11(θ1>ã(x),

∑n
i=2 θiXi>x)

]
≤ ã(x)P

(
n∑
i=2

θiXi > x

)
+ E

[
θ11(θ1>ã(x))

]
∼ ã(x)

n∑
i=2

P (θiXi > x) + E [θ1] Q (θ1 > ã(x))

= o(1)E
[
θ1X11(θ1X1>x)

]
,

where we applied Theorem 3.2 in the third step and relation (6.10) in the last step.

Finally, we prove relation (6.6). For every 0 < ε < 1, it holds for x > 0 that

E
[
θ1X

+
1 1(θ1X1≤x,

∑n
i=1 θiX

+
i >x)

]
≤ εxP

(
n∑
i=1

θiX
+
i > x

)
+ xP

(
εx < θ1X1 ≤ x,

n∑
i=1

θiX
+
i > x

)
.

By Theorem 3.2 and relation (4.2), we have

P

(
n∑
i=1

θiX
+
i > x

)
∼

n∑
i=1

P (θiXi > x) = O(1)P (θ1X1 > x) .

With the auxiliary function a(·) given in (3.2), we have

P

(
εx < θ1X1 ≤ x,

n∑
i=1

θiX
+
i > x

)

≤ P

(
n∑
i=1

θiX
+
i > x

)
− P (θ1X1 > x)− P

(
X1 ≤ ε

x

a(x)

)
P

(
θ1 ≤ a(x),

n∑
i=2

θiX
+
i > x

)
= o(1)P (θ1X1 > x) ,
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where in the last step we applied Theorem 3.2 twice. By the arbitrariness of ε, we conclude

that

E
[
θ1X

+
1 1(θ1X1≤x,

∑n
i=1 θiX

+
i >x)

]
= o(x)P (θ1X1 > x) = o(1)E

[
θ1X11(θ1X1>x)

]
.

(c) Assume that the conditions of Theorem 3.3 hold. First, to prove relation (6.4),

observe that there is some positive function l(·), with l(x) ≤ x/2 and l(x) ↑ ∞, such that

Q (θ1X1 > x+ l(x)) ∼ Q (θ1X1 > x). Also observe that the distribution function of X1

under Q has an upper Matuszewska index not greater than M∗(F1) − 1 ∈ [0,∞) and that

EQ
[
θβ1−1

1

]
= E

[
θβ11

]
/E [θ1] <∞. We have

Q

(
θ1X1 −

n∑
i=2

θiX
−
i > x

)

≥ Q

(
θ1X1 > x+ l(x),

n∑
i=2

θiX
−
i ≤ l(x)

)

= Q (θ1X1 > x+ l(x))−Q

(
θ1X1 > x+ l(x),

n∑
i=2

θiX
−
i > l(x)

)
∼ Q (θ1X1 > x) ,

where in the last step we applied Lemma 5.7.

Next, to prove relation (6.5), choose some c such that M∗(F1) < cβ1 < β1. For every

ε > 0, it holds for x > 0 that

E
[
θ11(

∑n
i=2 θiXi>x)

]
= E

[
θ11(θ1≤xc,

∑n
i=2 θiXi>x)

]
+ E

[
θ11(θ1>xc,

∑n
i=2 θiXi>x)

]
≤ xcP

(
n∑
i=2

θiXi > x

)
+ E

[
θ11(θ1>xc)

]
≤ o(x)

n∑
i=2

P (θiXi > x) +
(

E
[
θβ11

])1/β1
(P (θ1 > xc))(β1−1)/β1

≤ o(x)P (θ1X1 > x) +
(

E
[
θβ11

])1/β1+1

x−c(β1−1),

where we applied Theorem 3.3 and Hölder’s inequality in the third step and Markov’s

inequality in the last step. Since c(β1 − 1) + 1 > M∗(F1) and P (θ1X1 > x) � P (X1 > x),

we have x−c(β1−1) = o(x)P (θ1X1 > x). Therefore, relation (6.5) holds.

Finally, to prove relation (6.6), let c1 and c2 be arbitrarily fixed constants satisfying

0 < c2 < c1 < 1 and M∗(F1) < c2β1. We have

E
[
θ1X

+
1 1(θ1X1≤x,

∑n
i=1 θiX

+
i >x)

]
≤ xc1P

(
n∑
i=1

θiX
+
i > x

)
+ xP

(
xc1 < θ1X1 ≤ x,

n∑
i=1

θiX
+
i > x

)
.
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By Theorem 3.3 and relation (4.2), we have

P

(
n∑
i=1

θiX
+
i > x

)
∼

n∑
i=1

P (θiXi > x) = O(1)P (θ1X1 > x) .

Furthermore, it holds that

P

(
xc1 < θ1X1 ≤ x,

n∑
i=1

θiX
+
i > x

)

≤ P

(
n∑
i=1

θiX
+
i > x

)
− P (θ1X1 > x)− P

(
X1 ≤ xc1−c2

)
P

(
θ1 ≤ xc2 ,

n∑
i=2

θiX
+
i > x

)
= o(1)P (θ1X1 > x) ,

where in the last step we applied Theorem 3.3 again and the fact that P (θ1 > xc2) =

o(1)P(θ1X1 > x). It follows that

E
[
θ1X

+
1 1(θ1X1≤x,

∑n
i=1 θiX

+
i >x)

]
= o(x)P (θ1X1 > x) = o(1)E

[
θ1X11(θ1X1>x)

]
.

The proof is complete.

6.2 Proof of Theorem 4.2

It is easy to verify that, under Q defined by (6.1), the distribution function of X1 still belongs

to the class L∩D with an upper Matuszewska index not greater than M∗(F1)− 1 ∈ [0,∞).

Moreover, it holds for every i = 2, . . . , n that

EQ
[
θβ1−1

1

]
=

E
[
θβ11

]
E [θ1]

<∞ and EQ
[
θβii

]
=

E
[
θ1θ

βi
i

]
E [θ1]

<∞. (6.12)

Therefore, an application of Theorem 3.3 immediately gives

E
[
θ1X

+
1 1(Sθn>x)

]
= E [θ1] E

[
X+

1

]
Q
(
Sθn > x

)
∼ E [θ1] E

[
X+

1

] n∑
i=1

Q (θiXi > x)

=
n∑
i=1

E
[
θ1X

+
1 1(θiXi>x)

]
.

When X1 has a nontrivial negative part X−1 , define another probability measure Q− on

(Ω,F) by
dQ−

dP
=

θ1X
−
1

E [θ1] E
[
X−1
] .
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Note that under Q− all distributional results of {X2, . . . , Xn; θ1, . . . , θn} remain the same as

under Q. Thus, by the moment conditions in (6.12) and Theorem 3.3, we have

Q−

(
n∑
i=2

θiXi > x

)
∼

n∑
i=2

Q− (θiXi > x) . (6.13)

On the one hand, it follows from relation (6.13) that

E
[
θ1X

−
1 1(Sθn>x)

]
≤ E

[
θ1X

−
1 1(

∑n
i=2 θiXi>x)

]
= E [θ1] E

[
X−1
]

Q−

(
n∑
i=2

θiXi > x

)

∼ E [θ1] E
[
X−1
] n∑
i=2

Q− (θiXi > x) . (6.14)

On the other hand, to derive an asymptotic lower bound for E
[
θ1X

−
1 1(Sθn>x)

]
, observe that

by Lemma 5.2 the distribution function of each product θiXi under Q− belongs to L ∩ D.

Hence, there is some positive function l(·), with l(x) ↑ ∞ and l(x) ≤ x/2, such that

Q− (θiXi > x+ l(x)) ∼ Q− (θiXi > x) , i = 2, . . . , n. (6.15)

Moreover,

E
[
θ1X

−
1 1(Sθn>x)

]
≥ E

[
θ1X

−
1 1(

∑n
i=2 θiXi>x+l(x),θ1X

−
1 ≤l(x))

]
= E

[
θ1X

−
1 1(

∑n
i=2 θiXi>x+l(x))

]
− E

[
θ1X

−
1 1(

∑n
i=2 θiXi>x+l(x),θ1X

−
1 >l(x))

]
.

By relations (6.13) and (6.15),

E
[
θ1X

−
1 1(

∑n
i=2 θiXi>x+l(x))

]
= E [θ1] E

[
X−1
]

Q−

(
n∑
i=2

θiXi > x+ l(x)

)

∼ E [θ1] E
[
X−1
] n∑
i=2

Q− (θiXi > x) .

Also, note that

E
[
θ1X

−
1 1(

∑n
i=2 θiXi>x+l(x),θ1X

−
1 >l(x))

]
≤

n∑
i=2

E
[
θ1X

−
1 1(θiXi> x

n−1
,θ1X

−
1 >l(x))

]
=

n∑
i=2

E [θ1] E
[
X−1
]

Q−
(
θiXi >

x

n− 1
, θ1X

−
1 > l(x)

)
= o(1)

n∑
i=2

Q− (θiXi > x) ,
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where the last step is due to Lemma 5.7. We then have

E
[
θ1X

−
1 1(Sθn>x)

]
& E [θ1] E

[
X−1
] n∑
i=2

Q− (θiXi > x) ,

which together with relation (6.14) gives

E
[
θ1X

−
1 1(Sθn>x)

]
∼

n∑
i=2

E
[
θ1X

−
1 1(θiXi>x)

]
=

n∑
i=1

E
[
θ1X

−
1 1(θiXi>x)

]
.

This completes the proof.

6.3 Proof of Corollary 4.1

(a) For each i = 1, . . . , n, by conditioning on θi we obtain P (θiXi > x) ∼ ciP (θiX > x).

For every ε > 0, there is some small 0 < δ < t̂ such that

P (θi > t) ≤ (di + ε) P (θ > t)

holds for all t̂− δ < t ≤ t̂. Since X is rapidly-varying tailed, we have

P (θiXi > x)

P (θX > x)
∼ ci

P (θiX > x)

P (θX > x)
∼ ci

P
(
θiX > x, θi > t̂− δ

)
P
(
θX > x, θ > t̂− δ

) ≤ ci(di + ε),

where the last step is obtained by conditioning on X in both the numerator and the de-

nominator. The opposite asymptotic inequality can be established similarly. Thus, by the

arbitrariness of ε we obtain

lim
x→∞

P (θiXi > x)

P (θX > x)
= cidi, i = 1, . . . , n. (6.16)

It follows from Theorem 3.1 and relation (6.16) that

P
(
Sθn > x

)
∼ P (θX > x)

n∑
i=1

cidi (6.17)

and, hence, that

x = VaRq

[
Sθn
]
∼ VaRq̃ [θX] , q ↑ 1. (6.18)

Moreover, since the product θX is rapidly-varying tailed, by (2.4), for arbitrarily fixed γ > 1,

there is some C > 0 such that
P (θX > xy)

P (θX > x)
≤ Cy−γ
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holds for all large x and all y ≥ 1. Therefore, by the dominated convergence theorem and

relation (6.16),

E
[
θ1X11(θ1X1>x)

]
= xP (θ1X1 > x)

(
1 +

∫ ∞
1

P (θ1X1 > xy)

P (θ1X1 > x)
dy

)
∼ c1d1xP (θX > x)

(
1 +

∫ ∞
1

P (θX > xy)

P (θX > x)
dy

)
∼ c1d1xP (θX > x) . (6.19)

Starting from relation (4.1) and applying Theorem 4.1(a) and relations (6.17)–(6.19), we

obtain

AC1 ∼
E
[
θ1X11(θ1X1>x)

]
P (θX > x)

∑n
i=1 cidi

∼ c1d1∑n
i=1 cidi

VaRq̃ [θX] , q ↑ 1.

(b) The proof is similar to that of (a) and, hence, is omitted.

(c) By Theorem 3.3 and Breiman’s theorem (see Breiman (1965) and Cline and Samorod-

nitsky (1994)), we have

P
(
Sθn > x

)
∼ F (x)

n∑
i=1

ciE [θαi ] . (6.20)

By Proposition 0.8(v) of Resnick (1987), F←(1− 1/x) is regularly varying with index 1/α.

Therefore, as q ↑ 1,

x = VaRq

[
Sθn
]
∼ F←

(
1− 1− q∑n

i=1 ciE [θαi ]

)
∼

(
n∑
i=1

ciE [θαi ]

)1/α

VaRq[X]. (6.21)

Starting from relation (4.1) and applying Theorem 4.1(c), Breiman’s theorem, the domi-

nated convergence theorem and relations (6.20)–(6.21), we obtain

AC1 ∼
E
[
θ1X11(θ1X1>x)

]
F (x)

∑n
i=1 ciE [θαi ]

=
1∑n

i=1 ciE [θαi ]

xP (θ1X1 > x) +
∫∞
x

P (θ1X1 > y) dy

F (x)

∼ c1E [θα1 ]∑n
i=1 ciE [θαi ]

x

(
1 +

∫ ∞
1

y−αdy

)
∼ α

α− 1

c1E [θα1 ]

(
∑n

i=1 ciE [θαi ])
1−1/α

VaRq [X] , q ↑ 1.

This concludes the proof.
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