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Abstract

For a risk variable X and a normalized Young function ϕ(·), the Haezendonck–
Goovaerts risk measure for X at level q ∈ (0, 1) is defined as Hq[X] = infx∈R (x + h),
where h solves the equation E [ϕ ((X − x)+/h)] = 1 − q if Pr(X > x) > 0 or is 0
otherwise. In a recent work, we implemented an asymptotic analysis for Hq[X] with
a power Young function for the Fréchet, Weibull and Gumbel cases separately. A key
point of the implementation was that h can be explicitly solved for fixed x and q,
which gave rise to the possibility to express Hq[X] in terms of x and q. For a general
Young function, however, this does not work anymore and the problem becomes a
lot harder. In the present paper, we extend the asymptotic analysis for Hq[X] to the
case with a general Young function and we establish a unified approach for the three
extreme value cases. In doing so, we overcome several technical difficulties mainly due
to the intricate relationship between the working variables x, h and q.
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1 Introduction

Let X be a real-valued random variable, representing a risk variable in loss-profit style,

with a distribution function F = 1− F on R = (−∞,∞). Let ϕ(·) be a normalized Young
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function; that is, ϕ(·) is a nonnegative and convex function on R+ = [0,∞) with ϕ(0) = 0,

ϕ(1) = 1 and ϕ(∞) = ∞. Due to its convexity, the Young function ϕ(·) is continuous and

strictly increasing on {t ∈ R+ : ϕ(t) > 0}. See Krasnosel’skĭı and Rutickĭı (1961) and Neveu

(1975) for related discussions of Young functions. Recall that the Orlicz heart associated

with ϕ(·) is defined as

Lϕ0 = {X : E [ϕ(c |X|)] <∞ for all c > 0} ;

see, e.g. page 77 of Rao and Ren (1991). By the convexity of ϕ(·) we know that Lϕ0 is

a convex set. Thus, for X ∈ Lϕ0 , the expectation E
[
ϕ
(
(X − x)+ /h

)]
, which frequently

appears in the sequel, is finite for every x ∈ R and h > 0. Here, and throughout the

paper, for a real number x we write x+ = x1(x≥0) for its positive part, with 1A denoting the

indicator of an event A.

For a Young function ϕ(·) and a risk variable X ∈ Lϕ0 , let h = h(x, q) be the unique

solution to the equation

E

[
ϕ

(
(X − x)+

h

)]
= 1− q, q ∈ (0, 1), (1.1)

if F (x) > 0 and let h(x, q) = 0 if F (x) = 0. For q ∈ (0, 1), the Haezendonck–Goovaerts

(HG) risk measure for X is defined as

Hq[X] = inf
x∈R

(x+ h(x, q)) = x∗ + h∗, (1.2)

where (x∗, h∗) denotes the minimizer. By Proposition 3(b,d) of Bellini and Rosazza Gianin

(2012), the minimizer (x∗, h∗) always exists for all q ∈ (0, 1), and it is unique if ϕ(·) is

strictly convex. In particular, the minimizer x∗ is called the Orlicz quantile of X by them.

This risk measure was first introduced by Haezendonck and Goovaerts (1982) based

on the Swiss premium calculation principle induced by the Orlicz norm and was revisited

by Goovaerts et al. (2004). Since recently, it has attracted increasing attention from

researchers; see Bellini and Rosazza Gianin (2008a, 2008b, 2012), Krätschmer and Zähle

(2011), Nam et al. (2011), Goovaerts et al. (2012), Mao and Hu (2012), Tang and Yang

(2012), Cheung and Lo (2013) and Ahn and Shyamalkumar (2014), among others. As

pointed out by Bellini and Rosazza Gianin (2012), the HG risk measure is a law invariant

and coherent risk measure for a convex Young function ϕ(·). The simplest case is when

ϕ(s) = s+, reducing the HG risk measure to the well-known Tail Value-at-Risk.

In the recent work of Tang and Yang (2012), we implemented an asymptotic analysis for

Hq[X] with a power Young function for the Fréchet, Weibull and Gumbel cases separately.

The assumption of a power Young function essentially simplified the problem. Precisely

speaking, through equation (1.1) the variable h can be expressed in terms of x and q.

Plugging this expression into (1.2), the computation of the HG risk measure reduced to a

one-variable minimization problem.
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The aim of this paper is to extend the asymptotic study of the HG risk measure to a

general Young function. The aimed extension leads to a lot of technical difficulties. For a

general Young function, an explicit formula for h in terms of x and q cannot be deduced

from (1.1) anymore, and subsequently the approach of Tang and Yang (2012) fails. In

the present paper, we apply extreme value theory to derive asymptotics for the HG risk

measure at a high confidence level for the risk variable X following a distribution function

from the max-domain of attraction of the generalized extreme value distribution, namely

F ∈ MDA(Gγ). Besides a general Young function, we chase a unified treatment for the

Fréchet, Gumbel and Weibull cases.

Throughout this paper, denote by x̂ ≤ ∞ the upper endpoint of the risk variable X. As

discussed in Section 1 of Tang and Yang (2012), we only need to consider the non-trivial case

that Pr (X = x̂) = 0. Coincidently, this is implied by our assumption that F ∈ MDA(Gγ).

Recalling (1.2), for the power Young function case the equivalence between the limits x∗ → x̂

and q ↑ 1 easily follows from Lemma 2.2 of Tang and Yang (2012). In the present general

Young function case, we shall prove that x∗ → x̂ still holds as q ↑ 1, which is a key step for

later derivations. Another key step of the present work is to prove that, for a distribution

function F ∈ MDA(Gγ) with an auxiliary function a(·), the ratio of a(1/F (x∗)) and h∗
converges to a positive constant as q ↑ 1. This limit of the ratio eventually reduces the

asymptotic analysis of the HG risk measure to a one-variable minimization problem again.

The rest of the paper consists of six sections. Section 2 prepares some preliminaries

on regular variation, extended regular variation, and the max-domain of attraction of the

generalized extreme value distribution. In Section 3 we establish a general result for the

HG risk measure with a general Young function. This result is the starting point of the

later asymptotic analysis. Sections 4–5 focus on the relationships between the three working

variables x, h and q through the auxiliary function a(·), which are key steps in the proof

of the main result. Section 6 shows the main result, which represents a unified asymptotic

solution of the HG risk measure with a general Young function for the Fréchet, Gumbel

and Weibull cases. Finally, Section 7 numerically examines the accuracy of the asymptotic

formulas obtained in the paper.

2 Preliminaries

2.1 Notational conventions

For two positive functions f(·) and g(·), we write f(·) ∼ g(·) if the ratio of the left-hand

side (LHS) and right-hand side (RHS) converges to 1; that is, lim f(·)/g(·) = 1. We also

write f(·) . g(·) if lim sup f(·)/g(·) ≤ 1 and write f(·) � g(·) if 0 < lim inf f(·)/g(·) ≤
lim sup f(·)/g(·) <∞.

By saying that ε is a small positive number we mean that ε is an arbitrarily small but
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fixed positive number. For example, with this understanding, if a < b then the inequality

a+ ε < b will be used without explanation.

We often use the letter C to denote an absolute positive constant, which does not depend

on the working variables such as x, h and q, but which may vary from place to place so that

relations such as C + 1 = C, 2C = C and C/C = C make sense.

The càglàd inverse function of a non-decreasing function f(·) on R is denoted by f←(y) =

inf{x ∈ R : f(x) ≥ y} for y ∈ R, where we follow the convention that inf ∅ = +∞. As

usual, the left and right derivatives of a function f(·) on R, which exist if f(·) is convex,

are denoted by f ′−(·) and f ′+(·), respectively.

2.2 Regular variation

A positive measurable function f(·) is said to be regularly varying at t0 = 0+ or ∞ with

index α ∈ R, denoted by f(·) ∈ RVα(t0), if

lim
t→t0

f(st)

f(t)
= sα, s > 0.

The class RV0(t0) consists of functions slowly varying at t0. Moreover, a positive measurable

function f(·) is said to be rapidly varying at t0 = 0+ or ∞, denoted by f(·) ∈ RV∞(t0) or

1/f(·) ∈ RV−∞(t0), if

lim
t→t0

f(st)

f(t)
=∞, s > 1.

The following Potter’s bounds for regularly varying functions are well known; see The-

orem 1.5.6 of Bingham et al. (1987):

Lemma 2.1 Let f(·) ∈ RVα(t0) with t0 = 0+ or ∞ and α ∈ R. Then for arbitrarily small

0 < ε < 1 and all s, t such that both t and st are sufficiently close to t0, it holds that

(1− ε)
(
sα+ε ∧ sα−ε

)
≤ f(st)

f(t)
≤ (1 + ε)

(
sα+ε ∨ sα−ε

)
.

Fixing t to some constant in the above yields the following: for arbitrarily fixed δ > 0,

there is some large constant C > 0 such that the inequalities

1

C

(
sα+ε ∧ sα−ε

)
≤ f(s) ≤ C

(
sα+ε ∨ sα−ε

)
(2.1)

hold uniformly for all 0 < s ≤ 1/δ provided t0 = 0+ or for all s > δ provided t0 =∞.

The following lemma is a restatement of Proposition 0.8(V) of Resnick (1987):

Lemma 2.2 Let f(·) be a non-decreasing function on R+ with f(∞) = ∞. Then f(·) ∈
RVα(∞) with α ∈ [0,∞] if and only if f←(·) ∈ RV1/α(∞), where we follow the conventions

1/0 =∞ and 1/∞ = 0.
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2.3 Extended regular variation

The concept of extended regular variation is useful for our unified derivation. By definition,

a positive measurable function f(·) is said to be extended regularly varying at∞ with index

γ ∈ R, denoted by f(·) ∈ ERVγ, if there is an auxiliary function a(·) > 0 such that, for all

s > 0,

lim
t→∞

f(st)− f(t)

a(t)
=
sγ − 1

γ
, (2.2)

where the RHS is interpreted as log s when γ = 0. The auxiliary function a(·) is often

chosen to be

a(t) =


γf(t), γ > 0,

f(t)− t−1
∫ t
0
f(u)du, γ = 0,

−γ(f(∞)− f(t)), γ < 0.

(2.3)

Note that, for γ = 0, as t → ∞, we have a(t) = o(f(t)) provided f(∞) = ∞ while

a(t) = o(f(∞) − f(t)) provided f(∞) < ∞. See Appendix B of de Haan and Ferreira

(2006) for more discussions on extended regular variation.

The following lemma is a restatement of Theorem B.2.18 of de Haan and Ferreira (2006),

originally attributed to Drees (1998):

Lemma 2.3 Let f(·) ∈ ERVγ for γ ∈ R, namely, relation (2.2) holds for all s > 0 and

for an auxiliary function a(·) given in (2.3). It holds for every small ε, δ > 0, some t0 =

t0(ε, δ) > 0 and all s, t with t > t0, st > t0 that∣∣∣∣f(st)− f(t)

a(t)
− sγ − 1

γ

∣∣∣∣ ≤ ε
(
sγ+δ ∨ sγ−δ

)
. (2.4)

Taking supremum of both sides of inequality (2.4) with respect to s over a small open

interval containing 1, and then letting the interval boil down to the point 1, we can easily

prove that

lim
t→∞

f(t± 0)− f(t)

a(t)
= 0.

It follows from this and (2.2) that, for all s > 0,

lim
t→∞

f(st)− f(t± 0)

a(t)
=
sγ − 1

γ
. (2.5)

2.4 Max-domain of attraction

A distribution function F is said to belong to the max-domain of attraction of a non-

degenerate distribution function G, denoted by F ∈ MDA(G), if for a simple sample of

size n from F , its normalized maximum has a distribution weakly converging to G. The

classical Fisher–Tippett theorem, attributed to Fisher and Tippett (1928) and Gnedenko
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(1943), states that G has to be the generalized extreme value distribution whose standard

version is given by

Gγ(t) = exp
{
− (1 + γt)−1/γ

}
, γ ∈ R, 1 + γt > 0,

where the RHS is interpreted as exp {−e−t} when γ = 0. The regions γ > 0, γ = 0 and

γ < 0 correspond to the Fréchet, Gumbel and Weibull cases, respectively.

It is well known that F ∈ MDA(Gγ) with γ > 0 if and only if F (·) ∈ RV−1/γ(∞), while

F ∈ MDA(Gγ) with γ < 0 if and only if x̂ < ∞ and F (x̂ − ·) ∈ RV−1/γ(0+). Moreover,

for F ∈ MDA(G0), we have F (·) ∈ RV−∞(∞) provided x̂ = ∞ or F (x̂ − ·) ∈ RV∞(0+)

provided x̂ < ∞. Hence, if γ ≤ 0 then E[Xp
+] < ∞ for all p > 0, while if γ > 0 then

E[Xp
+] < ∞ for all 0 < p < 1/γ. See, e.g. Chapter 3 of Embrechts et al. (1997) for these

statements.

The MDA of the generalized extreme value distribution is related to extended regular

variation through the function

U(t) =

(
1

F

)←
(t) = F←

(
1− 1

t

)
, t > 1. (2.6)

We have F ∈ MDA(Gγ) if and only if U(·) ∈ ERVγ with the auxiliary function a(·) given

in (2.3) in terms of U(·); see Theorem 1.1.6 of de Haan and Ferreira (2006).

3 A General Treatment

Recall that h = h(x, q) is the unique solution to equation (1.1) if x < x̂. In what follows,

we often write h(x) = h(x, q) if q is fixed or write h(q) = h(x, q) if x is fixed, as long as

doing so causes no confusion. As usual, we say that ϕ(·) is differentiable over R+ if ϕ(·) is

differentiable over (0,∞) and ϕ′+(0) exists.

Theorem 3.1 Let ϕ(·) be strictly convex and continuously differentiable over R+ with

ϕ′+(0) = 0, and let X ∈ Lϕ0 . Then the HG risk measure at level q ∈ (0, 1) is equal to

Hq[X] = x∗ + h∗, where the minimizer (x∗, h∗) solves (1.1), that is,

E

[
ϕ

(
(X − x)+

h

)]
= 1− q, (1.1)

and

E

[
ϕ′
(

(X − x)+
h

)]
= E

[
ϕ′
(

(X − x)+
h

)
(X − x)+

h

]
. (3.1)

To prove Theorem 3.1, we first prepare several lemmas, some of which are interesting in

their own right. The first lemma below can easily be retrieved from the proofs of Proposition

1(c) and Corollary 3 of Bellini et al. (2014); a special case is found in Lemma 2.1(a) of Tang

and Yang (2012).
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Lemma 3.1 Let X ∈ Lϕ0 and define g(x) = E [ϕ ((X − x)+)]. Then, for every x ∈ R,

g′+(x) = −E
[
ϕ′−(X − x)1(X>x)

]
and g′−(x) = −E

[
ϕ′+(X − x)1(X≥x)

]
.

In particular, if ϕ(·) is continuously differentiable over R+, and either ϕ′+(0) = 0 or F is

continuous at x, then g′(x) = −E
[
ϕ′(X − x)1(X>x)

]
.

The next lemma has a similar flavor and can be proved similarly. We show its proof

here for completeness.

Lemma 3.2 Let X ∈ Lϕ0 and define g(s) = E [ϕ (sX+)]. Then, for every s > 0,

g′+(s) = E
[
ϕ′+ (sX+)X+

]
and g′−(s) = E

[
ϕ′− (sX+)X+

]
.

Proof. If Pr(X ≤ 0) = 1, then both results are trivial. Therefore, we assume that X has a

non-trivial positive part. In this case, denote by X̃ the part of X restricted to X > 0; that

is, X̃ = X|X > 0. We have

g(s) = E
[
ϕ (sX) 1(X>0)

]
= F (0)E

[
ϕ
(
sX̃
)]
.

By the convexity of ϕ(·) over R+, it holds for both 0 < ∆s ≤ 1 and −s < ∆s < 0 that

0 ≤ g(s+ ∆s)− g(s)

∆s
≤ F (0)

(
E
[
ϕ
(

(s+ 1)X̃
)]
− E

[
ϕ
(
sX̃
)])

<∞.

Thus, when taking ∆s ↓ 0 or ∆s ↑ 0 to the relation

g(s+ ∆s)− g(s)

∆s
= F (0)E

ϕ
(

(s+ ∆s)X̃
)
− ϕ

(
sX̃
)

∆s

 ,
we can apply the dominated convergence theorem to interchange the order of the limit and

expectation on the right. Hence, we obtain the two expressions for g′+(s) and g′−(s). This

proof also shows their finiteness.

Lemma 3.3 Let ϕ(·) be strictly convex and continuously differentiable over R+, and let

X ∈ Lϕ0 . Denote by h = h(x) the implicit function of x ∈ (−∞, x̂) determined by equation

(1.1) with q ∈ (0, 1) fixed. Then h(x) is continuously differentiable over (−∞, x̂) if either

ϕ′+(0) = 0 or F is continuous.

Proof. We apply the well-known implicit function theorem. Denote by g(x, h) the LHS of

(1.1); that is,

g(x, h) = E

[
ϕ

(
(X − x)+

h

)]
.
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It suffices to check that, over (−∞, x̂)×(0,∞), the bivariate function g(x, h) is continuously

differentiable with respect to both x and h and that ∂g/∂h 6= 0. By Lemmas 3.1 and 3.2,

for (x, h) ∈ (−∞, x̂)× (0,∞) we have

∂

∂x
g(x, h) = −1

h
E

[
ϕ′
(
X − x
h

)
1(X>x)

]
(3.2)

and
∂

∂h
g(x, h) = −E

[
ϕ′
(
X − x
h

)
X − x
h2

1(X>x)

]
. (3.3)

Since ϕ′(·) is continuous and positive over (0,∞), it is easy to see that both ∂g/∂x and

∂g/∂h obtained above are continuous in both x and h and that ∂g/∂h is negative over

(−∞, x̂)× (0,∞).

Proof of Theorem 3.1. By Lemma 3.3, h(x) is continuously differentiable over (−∞, x̂).

Thus, for the solution (x, h) to the minimization problem (1.2) subject to (1.1), we have

h′(x) = −1. (3.4)

Differentiating both sides of (1.1) with respect to x, applying (3.2), (3.3) and (3.4), and

noticing that 1− q on the RHS of (1.1) is independent of x, we obtain

−1

h
E

[
ϕ′
(
X − x
h

)
1(X>x)

]
+ E

[
ϕ′
(
X − x
h

)
X − x
h2

1(X>x)

]
= 0.

This gives (3.1) since ϕ′+(0) = 0.

Theorem 3.1 is the starting point of our derivations. Slightly different versions of this

result can be found in Remark 7 of Bellini and Rosazza Gianin (2012) and the proof of

Corollary 1 of Ahn and Shyamalkumar (2014). By the way, the finiteness of the expectations

appearing in Theorem 3.1 is implied by the proofs of Lemmas 3.1 and 3.2.

4 The Limit of the Orlicz Quantile

Through the system of equations (1.1) and (3.1), both minimizers x∗ and h∗ appearing in

(1.2) are implicit functions of q. The next lemma reveals a general limit behavior for the

pair (x∗, h∗) as q ↑ 1:

Lemma 4.1 Let ϕ(·) be convex over R+ and let X ∈ Lϕ0 . Then, as q ↑ 1, it holds for every

δ > 0 that x∗ + δh∗ → x̂.
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Proof. Let 0 < δ < 1 be arbitrarily fixed (hence, 0 < ϕ(δ) < 1). Define ϕ̃(s) = ϕ(δs)/ϕ(δ),

which is still a normalized Young function. Since (x∗, h∗) solves (1.1), we have

E

[
ϕ̃

(
(X − x∗)+

δh∗

)]
=

1− q
ϕ(δ)

.

Let q be close to 1 such that 0 < (1− q)/ϕ(δ) < 1. Therefore, by Lemma 3.1 and Theorem

3.1 of Goovaerts et al. (2004), we have

F←
(

1− 1− q
ϕ(δ)

)
≤ x∗ + δh∗ ≤ x∗ + h∗ ≤ x̂.

The conclusion follows immediately.

An implication of Lemma 4.1 is that, when x̂ <∞, as q ↑ 1 we have x∗ → x̂ and h∗ ↓ 0.

Therefore, in the theorem below we consider x̂ =∞ only.

Theorem 4.1 In addition to the conditions of Theorem 3.1, assume that ϕ(·) ∈ RVα(0+)∩
RVβ(∞) for some 1 < α, β < ∞ and that X with x̂ = ∞ satisfies E [Xp

+] < ∞ for some

p > α ∨ β. Then x∗ →∞ as q ↑ 1.

Proof. We prove by contradiction that x∗ does not diverge to ∞ as q ↑ 1. Then there is a

sequence {qn, n = 1, 2, . . .} increasing to 1 along which x∗ → x0 ∈ [−∞,∞). In this case,

by Lemma 4.1 we have h∗ →∞ as qn ↑ 1. Our proof is based on equation (3.1).

First consider the case that x∗ → x0 ∈ (−∞,∞) as qn ↑ 1. Since ϕ(·) ∈ RVα(0+) ∩
RVβ(∞) is continuously differentiable, by Theorems 1.7.2 and 1.7.2b of Bingham et al.

(1987) we have ϕ′(·) ∈ RVα−1(0+) ∩ RVβ−1(∞). Therefore by Lemma 2.1, for arbitrarily

small ε > 0, there is some δ > 0 such that, for all 0 < t, st < δ,

(1− ε)
(
sα−1+ε ∧ sα−1−ε

)
≤ ϕ′(st)

ϕ′(t)
≤ (1 + ε)

(
sα−1+ε ∨ sα−1−ε

)
. (4.1)

Let the inequalities in (4.1) and Lemma 4.1 share the same δ. Split the LHS of (3.1) into

two parts as

LHS of (3.1) = E

[
ϕ′
(

(X − x∗)+
h∗

)(
1(

(X−x∗)+
h∗

≤δ
) + 1(

(X−x∗)+
h∗

>δ
))]

= I1(x∗, h∗) + I2(x∗, h∗). (4.2)

By the second inequality in (4.1), it holds for all qn close to 1 that

I1(x∗, h∗)

ϕ′
(

1
h∗

) ≤ (1 + ε)E
[
(X − x∗)α−1+ε+ ∨ (X − x∗)α−1−ε+ 1(X≤x∗+δh∗)

]
.
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Thus, by the dominated convergence theorem and Lemma 4.1, we have

lim
qn↑1

I1(x∗, h∗)

ϕ′
(

1
h∗

) = E

lim
qn↑1

ϕ′
(

(X−x∗)+
h∗

)
ϕ′
(

1
h∗

) 1(
(X−x∗)+

h∗
≤δ

)
 = E

[
(X − x0)α−1+

]
.

Now we turn to I2(x∗, h∗). By inequalities (2.1) we have{
ϕ′(s) ≥ Csα−1+ε, for 0 < s ≤ δ,
ϕ′(s) ≤ Csβ−1+ε ≤ Cs(α∨β)−1+ε, for δ ≤ s <∞. (4.3)

As qn ↑ 1, since x∗ is bounded, h∗ ↑ ∞ and E [Xp
+] < ∞, by both inequalities in (4.3) and

Lemma 4.1 we have

I2(x∗, h∗) ≤ CE

[(
(X − x∗)+

h∗

)(α∨β)−1+ε

1(X>x∗+δh∗)

]

=
o(1)

h
(α∨β)−1+ε
∗

= o

(
ϕ′
(

1

h∗

))
= o (I1(x∗, h∗)) .

It follows from the decomposition in (4.2) that

LHS of (3.1) ∼ ϕ′
(

1

h∗

)
E
[
(X − x0)α−1+

]
.

Since the function sϕ′(s) for s ≥ 0 belongs to RVα(0+)∩RVβ(∞), analogously to the above

we can obtain that

RHS of (3.1) ∼ 1

h∗
ϕ′
(

1

h∗

)
E
[
(X − x0)α+

]
.

A combination of these estimates for both sides of (3.1) yields a contradiction.

Next consider the case that x∗ → −∞ as qn ↑ 1. By Lemma 4.1, we have x∗ = o(h∗) as

qn ↑ 1. For the LHS of (3.1), we still use the decomposition in (4.2). For arbitrarily small

ε > 0, we have

I1(x∗, h∗) ≥ CE

[(
(X − x∗)+

h∗

)α−1+ε
1(

(X−x∗)+
h∗

≤δ
)
]

= C
|x∗|α−1+ε

hα−1+ε∗
E

[
(X − x∗)α−1+ε+

|x∗|α−1+ε
1(X≤x∗+δh∗)

]
∼ C

|x∗|α−1+ε

hα−1+ε∗
,

where in the first step we applied the first inequality in (4.3), while in the last step we

applied the dominated convergence theorem to prove that the expectation converges to 1 as

x∗ → −∞. A similar asymptotic upper bound for I1(x∗, h∗) can also be established. Thus,

C
|x∗|α−1+ε

hα−1+ε∗
. I1(x∗, h∗) . C

|x∗|α−1−ε

hα−1−ε∗
.
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Now we turn to I2(x∗, h∗). Applying (4.3), cr-inequality and Markov’s inequality, in turn,

we have

I2(x∗, h∗) ≤ CE

[(
(X − x∗)+

h∗

)β−1+ε
1(X>x∗+δh∗)

]
≤ C

hβ−1+ε∗
E
[(
Xβ−1+ε

+ + |x∗|β−1+ε
)

1(X>x∗+δh∗)

]
≤ C

hβ−1+ε∗
E

[
Xβ−1+ε

+

X
(α∨β)−β+1
+

(x∗ + δh∗)
(α∨β)−β+1

+ |x∗|β−1+ε
X

(α∨β)+ε
+

(x∗ + δh∗)
(α∨β)+ε

]

=
C

hβ−1+ε∗

(
1

(x∗ + δh∗)
(α∨β)−β+1

+
|x∗|β−1+ε

(x∗ + δh∗)
(α∨β)+ε

)
E
[
X

(α∨β)+ε
+

]
=

C

h
(α∨β)+ε
∗

,

where the last step is due to the fact that x∗ = o(h∗) as qn ↑ 1. Since x∗ → −∞ and

h∗ →∞, we have I2(x∗, h∗) = o (I1(x∗, h∗)). It follows from the decomposition in (4.2) that

C
|x∗|α−1+ε

hα−1+ε∗
. LHS of (3.1) . C

|x∗|α−1−ε

hα−1−ε∗
.

Analogously,

C
|x∗|α+ε

hα+ε∗
. RHS of (3.1) . C

|x∗|α−ε

hα−ε∗
.

Since x∗ = o(h∗), a combination of these estimates for both sides of (3.1) yields a contra-

diction.

5 A Deeper Description for the Orlicz Quantile

We restrict our attention to F ∈ MDA(Gγ) for γ ∈ R. Recall the function U(·) defined in

(2.6) and let V be a random variable uniformly distributed over (0, 1). By setting

t∗ =
1

F (x∗)
,

we have

U(t∗) ≤ x∗ ≤ U(t∗ + 0). (5.1)

It is easy to verify that X conditional on X > x∗ is equal in distribution to U (t∗/V );

namely,

X| (X > x∗)
d
= U (t∗/V ) .

Hence, the LHS of equation (3.1) for the minimizer (x∗, h∗) can be rewritten as

E

[
ϕ′
(

(X − x)+
h

)]
=

1

t∗
E

[
ϕ′
(
X − x∗
h∗

)∣∣∣∣X > x∗

]
=

1

t∗
E

[
ϕ′
(
U (t∗/V )− x∗

h∗

)]
.
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We do the same treatment on the RHS of equation (3.1), so that we obtain an equivalent

form of (3.1) as∫ 1

0

ϕ′
(
U (t∗/v)− x∗

h∗

)
dv =

∫ 1

0

ϕ′
(
U (t∗/v)− x∗

h∗

)
U (t∗/v)− x∗

h∗
dv. (5.2)

This relation will be the basis for the proof of the following lemma:

Lemma 5.1 In addition to the conditions of Theorem 3.1, assume that ϕ(·) ∈ RVα(0+) ∩
RVβ(∞) for some 1 < α, β <∞ and F ∈ MDA(Gγ) with −∞ < γ < α−1 ∧ β−1. Then the

auxiliary function a(·) given by (2.3) with f(·) replaced by U(·) satisfies a(t∗) � h∗ as q ↑ 1.

Proof. We prove this lemma by contradiction based on equation (5.2). First assume that

there is a sequence {qn, n = 1, 2, . . .} increasing to 1 along which a(t∗)/h∗ diverges to ∞.

Note that F ∈ MDA(Gγ) if and only if U(·) ∈ ERVγ. For the LHS of (5.2), by the first

inequality in (5.1) and Lemma 2.3, it holds for every small ε, δ > 0 and all large t∗ and all

0 < v < 1 that

U (t∗/v)− x∗
a(t∗)

≤ U (t∗/v)− U(t∗)

a(t∗)

≤
∣∣∣∣U (t∗/v)− U(t∗)

a(t∗)
− v−γ − 1

γ

∣∣∣∣+
v−γ − 1

γ

≤ εv−γ−δ +
v−γ − 1

γ
.

Since ϕ′(·) ∈ RVβ−1(∞) and a(t∗)/h∗ →∞, by Lemma 2.1, as qn ↑ 1 we have

LHS of (5.2)

ϕ′
(
a(t∗)
h∗

) ≤
∫ 1

0

ϕ′
(
U(t∗/v)−U(t∗)

a(t∗)
a(t∗)
h∗

)
ϕ′
(
a(t∗)
h∗

) dv

≤
∫ 1

0

ϕ′
((
εv−γ−δ + v−γ−1

γ

)
a(t∗)
h∗

)
ϕ′
(
a(t∗)
h∗

) dv

. (1 + ε)

∫ 1

0

(
εv−γ−δ +

v−γ − 1

γ

)β−1+ε
dv

< ∞,

where the first step is due to (5.1) and the last step due to the condition γ < α−1 ∧ β−1.
An application of dominated convergence theorem yields that, as qn ↑ 1,

lim
qn↑1

LHS of (5.2)

ϕ′
(
a(t∗)
h∗

) = lim
qn↑1

∫ 1

0
ϕ′
(
U(t∗/v)−x∗

a(t∗)
a(t∗)
h∗

)
dv

ϕ′
(
a(t∗)
h∗

) =

∫ 1

0

(
v−γ − 1

γ

)β−1
dv, (5.3)
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where in the second step we used the two-sided inequality (5.1) and relation (2.5). Analo-

gously, as qn ↑ 1,

lim
qn↑1

RHS of (5.2)

ϕ′
(
a(t∗)
h∗

)
a(t∗)
h∗

=

∫ 1

0

(
v−γ − 1

γ

)β
dv.

Due to the assumption that a(t∗)/h∗ → ∞ as qn ↑ 1, a combination of these two relations

contradicts (5.2).

Next assume that there is a sequence {qn, n = 1, 2, . . .} increasing to 1 along which

a(t∗)/h∗ converges to 0. We still apply the dominated convergence theorem to obtain a

similar limit relation as in (5.3), but we need to verify the requirement for the dominated

convergence theorem. Similarly to the above, by Lemma 2.3 we have

LHS of (5.2) ≤
∫ 1

0

ϕ′
((

εv−γ−δ +
v−γ − 1

γ

)
a(t∗)

h∗

)
dv.

By Lemma 2.1 and ϕ′(·) ∈ RVα−1(0+), for arbitrarily fixed small 0 < ε < 1, there is some

small δ1 > 0 such that the inequalities in (4.1) hold for 0 < t, st < δ1. Then define

A =

{
v ∈ (0, 1] :

(
εv−γ−δ +

v−γ − 1

γ

)
a(t∗)

h∗
≥ δ1

}
, Ac = (0, 1]− A

and do the split

LHS of (5.2) ≤
(∫

A

+

∫
Ac

)
ϕ′
((

εv−γ−δ +
v−γ − 1

γ

)
a(t∗)

h∗

)
dv = I1 + I2.

By the second inequality in (4.3), we have

I1 ≤ C

∫
A

((
εv−γ−δ +

v−γ − 1

γ

)
a(t∗)

h∗

)(α∨β)−1+ε

dv

= o(1)ϕ′
(
a(t∗)

h∗

)∫ v0

0

(
εv−γ−δ +

v−γ − 1

γ

)(α∨β)−1+ε

dv.

By the second inequality in (4.1), we have

I2 ≤ (1 + ε)ϕ′
(
a(t∗)

h∗

)∫
Ac

(
εv−γ−δ +

v−γ − 1

γ

)α−1+ε
∨
(
εv−γ−δ +

v−γ − 1

γ

)α−1−ε
dv.

Note that both integrals in the bounds for I1 and I2 above are finite since γ < α−1 ∧ β−1.
This validates the application of the dominated convergence theorem in

lim
qn↑1

LHS of (5.2)

ϕ′
(
a(t∗)
h∗

)
a(t∗)
h∗

=

∫ 1

0

(
v−γ − 1

γ

)α−1
dv.

Analogously,

lim
qn↑1

RHS of (5.2)

ϕ′
(
a(t∗)
h∗

)
a(t∗)
h∗

=

∫ 1

0

(
v−γ − 1

γ

)α
dv.
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A combination of these two relations contradicts (5.2).

By Theorem 1.1.6 of de Haan and Ferreira (2006), F ∈ MDA(Gγ) if and only if the

relation

lim
x↑x̂

F (x+ ya(1/F (x)))

F (x)
= (1 + γy)−1/γ (5.4)

holds for all y ∈ R such that 1 + γy > 0, where the RHS is understood as e−y when γ = 0.

Define a positive random variable Y distributed by

Pr(Y ≤ y) = 1− (1 + γy)−1/γ (5.5)

for all y > 0 such that 1 + γy > 0. Thus, relation (5.4) implies that

X − x
a(1/F (x))

∣∣∣∣ (X > x) converges in distribution to Y, x ↑ x̂. (5.6)

In the lemma below, the condition Y ∈ Lϕ
′′

0 can easily be verified to hold if ϕ′′(·) ∈
RVα−2(0+):

Lemma 5.2 In addition to the conditions of Theorem 3.1, assume that ϕ(·) ∈ RVα(0+) ∩
RVβ(∞) for some 1 < α, β < ∞. In case γ ≤ −1, further assume that ϕ(·) is twice

differentiable over R+ and that Y defined by (5.5) belongs to Lϕ
′′

0 . Then the equation

E [ϕ′ (λY )] = E [ϕ′ (λY )λY ] , λ > 0, (5.7)

has a unique solution.

Proof. To prove the existence of the solution, denote by g(λ) the ratio of both sides of

(5.7),

g(λ) =
E [ϕ′ (λY )λY ]

E [ϕ′ (λY )]
, λ > 0.

For arbitrarily small ε > 0, by the second inequality in (4.1) and both inequalities in (4.3),

there is some small δ > 0 such that, for all 0 < λ < δ,

ϕ′ (λY )

ϕ′(λ)
=

ϕ′ (λY )

ϕ′(λ)

(
1(λY≤δ) + 1(λY >δ)

)
≤ (1 + ε)

(
Y α−1+ε ∨ Y α−1−ε)+ C

(λY )(α∨β)−1+ε

λα−1+ε

≤ (1 + ε)
(
Y α−1+ε ∨ Y α−1−ε)+ CY (α∨β)−1+ε,

which is integrable since γ < α−1 ∧ β−1. An application of the dominated convergence

theorem gives that E [ϕ′ (λY )] ∼ ϕ′(λ)E [Y α−1] as λ ↓ 0. Since the function λϕ′(λ) for λ ≥ 0
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belongs to RVα(0+) ∩ RVβ(∞), we can also obtain E [ϕ′ (λY )λY ] ∼ λϕ′(λ)E [Y α] as λ ↓ 0.

It follows that

g(λ) ∼ λ
E [Y α]

E [Y α−1]
, λ ↓ 0.

Hence, limλ↓0 g(λ) = 0. Similarly, limλ↑∞ g(λ) = ∞. Since g(λ) is continuous over λ > 0,

we prove the existence of a solution to equation (5.7).

To prove the uniqueness of the solution, it suffices to show that g′(λ) > 0. Denote by ŷ

the upper endpoint of Y , so ŷ =∞ if γ ≥ 0 while ŷ = −1/γ if γ < 0. First assume γ > −1.

Note that

E [ϕ′ (λY )] = −
∫ ŷ

0

ϕ′ (λy) d (1 + γy)−1/γ =

∫ λŷ

0

(
1 +

γ

λ
w
)−1/γ−1

dϕ (w) ,

Similarly,

E [ϕ′ (λY )λY ] =

∫ λŷ

0

w
(

1 +
γ

λ
w
)−1/γ−1

dϕ (w) .

Then we have

g′(λ) =
(1 + γ)λ−2

(E [ϕ′ (λY )])2

[∫ λŷ

0

w2
(

1 +
γ

λ
w
)−1/γ−2

dϕ (w)

∫ λŷ

0

(
1 +

γ

λ
w
)−1/γ−1

dϕ (w)

−
∫ λŷ

0

w
(

1 +
γ

λ
w
)−1/γ−1

dϕ (w)

∫ λŷ

0

w
(

1 +
γ

λ
w
)−1/γ−2

dϕ (w)

]
.

Every integral in the above is finite for γ > −1. It remains to verify that the part in the

square brackets is positive. Introduce a random variable W with distribution

Pr (W ∈ dw) =

(
1 + γ

λ
w
)−1/γ−1

dϕ(w)∫ λŷ
0

(
1 + γ

λ
w
)−1/γ−1

dϕ(w)
, 0 ≤ w ≤ λŷ.

What we need to verify becomes

E

[
W 2

1 + γ
λ
W

]
> E [W ] E

[
W

1 + γ
λ
W

]
,

or, equivalently,

Cov

(
W,

W

1 + γ
λ
W

)
> 0. (5.8)

By Höffding’s formula for covariance, inequality (5.8) holds true since the two random

variables are comonotonic and not degenerate. See Dhaene et al. (2002) for the concept of

comonotonicity.

Next assume γ ≤ −1. We derive an alternative expression for the derivative of g(λ) as

g′(λ) =
E [ϕ′ (λY )] (E [ϕ′′ (λY )λY 2] + E [ϕ′ (λY )Y ])− E [ϕ′ (λY )λY ] E [ϕ′′ (λY )Y ]

(E [ϕ′ (λY )])2
.
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It is easy to verify that every expectation in the above is well defined and finite. We need

to verify the positivity of the numerator on the RHS. Introduce two random variables W1

and W2 with distributions{
Pr (W1 ∈ dw) = ϕ′(λw)

E[ϕ′(λY )]
Pr (Y ∈ dw) ,

Pr (W2 ∈ dw) = ϕ′′(λw)
E[ϕ′′(λY )]

Pr (Y ∈ dw) ,
0 ≤ w ≤ ŷ.

It remains to verify that

λE
[
W 2

2

]
+

E [ϕ′ (λY )Y ]

E [ϕ′′ (λY )]
> λE [W1] E [W2] . (5.9)

Note that

E [ϕ′ (λY )Y ]

E [ϕ′′ (λY )]
=

E [ϕ′ (λY )Y ]

E [ϕ′ (λY )]

E [ϕ′ (λY )]

E [ϕ′′ (λY )]

= E [W1]
λ
∫ ŷ
0
ϕ′′(λy) (1 + γy)−1/γ dy

E [ϕ′′ (λY )]

= λE [W1] E [1 + γW2] .

Plugging this into (5.9) and applying Jensen’s inequality, we obtain

LHS of (5.9) ≥ λ (E [W2])
2 + λE [W1] E [1 + γW2] .

Then inequality (5.9) follows if we can show that

(E [W2])
2 + E [W1] E [1 + γW2] > E[W1]E[W2],

or, equivalently,

E[W1] + γE[W1]E[W2] > E[W2] (E[W1]− E[W2]) . (5.10)

Note that both W1 and W2 are positive random variables bounded by ŷ = −1/γ ≤ 1 and

that the LHS of (5.10) is positive. Thus, if E[W1] − E[W2] ≤ 0, then inequality (5.10)

naturally holds. On the other hand, if E[W1] − E[W2] > 0, we lower γE[W1] to −1 on the

LHS while raise the first E[W2] to 1 on the RHS and then we see that inequality (5.10) still

holds. This completes the proof of Lemma 5.2.

Now we are ready to show the main result of this section:

Theorem 5.1 Under the conditions of Lemmas 5.1 and 5.2, we have limq↑1 a(t∗)/h∗ = λ,

where λ is the unique solution to equation (5.7).

Proof. Let {qn, n = 1, 2, . . .} be a sequence increasing to 1 along which a(t∗)/h∗ → λ for

some λ ∈ (0,∞). As in the proof of Lemma 5.1, for every small ε, δ > 0, as qn ↑ 1 it holds
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that ∫ 1

0

ϕ′
(
U (t∗/v)− x∗

h∗

)
dv ≤

∫ 1

0

ϕ′
(
U (t∗/v)− U(t∗)

a(t∗)

a(t∗)

h∗

)
dv

≤
∫ 1

0

ϕ′
((

εv−γ−δ +
v−γ − 1

γ

)
(λ+ ε)

)
dv <∞,

where the last step is due to the conditions ϕ′(·) ∈ RVβ−1(∞) and γ < α−1 ∧ β−1. Hence,

by the dominated convergence theorem and relation (5.6),

LHS of (3.1) = F (x∗)E

[
ϕ′
(
X − x∗
a(t∗)

a(t∗)

h∗

)∣∣∣∣X > x∗

]
∼ F (x∗)E [ϕ′ (λY )] .

Similarly,

RHS of (3.1) ∼ F (x∗)E [ϕ′ (λY )λY ] .

By Lemma 5.2, λ must be identical to the unique positive solution of equation (5.7).

6 The Main Result

Now we present the main result of this paper:

Theorem 6.1 Let ϕ(·) be strictly convex and continuously differentiable over R+ with

ϕ′+(0) = 0 and ϕ(·) ∈ RVα(0+) ∩ RVβ(∞) for some 1 < α, β < ∞, and let F ∈ MDA(Gγ)

for −∞ < γ < α−1 ∧ β−1. In case γ ≤ −1, further assume that ϕ(·) is twice differentiable

over R+ and that Y defined by (5.5) belongs to the Orlicz heart Lϕ
′′

0 . Then the minimizer

(x∗, h∗) appearing in (1.2) satisfies

F (x∗) ∼
1− q

E [ϕ (λY )]
and h∗ ∼

a(1/F (x∗))

λ
, q ↑ 1,

where λ is the unique positive solution to equation (5.7) and a(·) is given by (2.3) with f(·)
replaced by U(·) =

(
1/F

)←
(·).

Proof. The second relation for h∗ is proved by Theorem 5.1. By relation (5.6) and Theorem

5.1, we have

1− q = E

[
ϕ

(
(X − x∗)+

h∗

)]
= F (x∗)E

[
ϕ

(
X − x∗

a(1/F (x∗))

a(1/F (x∗))

h∗

)∣∣∣∣X > x∗

]
∼ F (x∗)E [ϕ (λY )] ,

where in the last step we applied the dominated convergence theorem, as justified in the

proof of Theorem 5.1. This gives the first relation for F (x∗).
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Corollary 6.1 Under the conditions of Theorem 6.1, as q ↑ 1,

(a) (the Fréchet case) for γ > 0,

Hq[X] ∼
(

1 +
γ

λ

)(∫ ∞
0

(
1 +

γ

λ
z
)−1/γ

dϕ (z)

)γ
F← (q) ;

(b) (the Gumbel case) for γ = 0, if x̂ =∞ then

Hq[X] ∼ F←
(

1− 1− q∫∞
0

e−z/λdϕ (z)

)
,

while if x̂ <∞ then

x̂−Hq[X] ∼ x̂− F←
(

1− 1− q∫∞
0

e−z/λdϕ (z)

)
;

(c) (the Weibull case) for γ < 0,

x̂−Hq[X] ∼
(

1 +
γ

λ

)(∫ −λ/γ
0

(
1 +

γ

λ
z
)−1/γ

dϕ (z)

)γ

(x̂− F← (q)) .

Proof. By Theorem 6.1, it remains to identify the quantities E [ϕ (λY )] and a(1/F (x∗)) for

the three cases, respectively. Set t∗ = 1/F (x∗) for notational convenience.

(a) For γ > 0, we have

E [ϕ (λY )] = −
∫ ∞
0

ϕ (λy) d (1 + γy)−1/γ =

∫ ∞
0

(
1 +

γ

λ
z
)−1/γ

dϕ (z) .

This together with F (·) ∈ RV−1/γ(∞) gives

x∗ ∼ (E [ϕ (λY )])γ F← (q) =

(∫ ∞
0

(
1 +

γ

λ
z
)−1/γ

dϕ (z)

)γ
F← (q) .

In this case, we have a(t∗) = γU(t∗) by (2.3). Hence,

h∗ ∼
γ

λ
U(t∗) =

γ

λ

(
1

F

)←(
1

F (x∗)

)
∼ γ

λ
x∗.

Combining these two asymptotics for x∗ and h∗ yields the desired result for Hq[X].

(b) For γ = 0, we have

E [ϕ (λY )] = −
∫ ∞
0

ϕ (λy) de−y =

∫ ∞
0

e−z/λdϕ (z) .

For x̂ =∞, since a(t∗) = o (U(t∗)) and U(t∗) ∼ x∗, it holds that Hq[X] ∼ x∗. Similarly, for

x̂ < ∞, since a(t∗) = o (U (∞)− U(t∗)), U (∞) = x̂ and U (∞) − U(t∗) ∼ x̂ − x∗, it holds

that x̂−Hq[X] ∼ x̂− x∗.
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(c) For γ < 0, we have

E [ϕ (λY )] = −
∫ −1/γ
0

ϕ (λy) d (1 + γy)−1/γ =

∫ −λ/γ
0

(
1 +

γ

λ
z
)−1/γ

dϕ (z) .

This together with F (x̂− ·) ∈ RV−1/γ(0+) gives

x̂− x∗ ∼ (E [ϕ (λY )])γ (x̂− F← (q)) =

(∫ −λ/γ
0

(
1 +

γ

λ
z
)−1/γ

dϕ (z)

)γ

(x̂− F← (q)) .

In addition, since a(t∗) = −γ (U (∞)− U(t∗)) by (2.3), we have

h∗ ∼
a(t∗)

λ
=
−γ (U (∞)− U(t∗))

λ
∼ −γ

λ
(x̂− x∗) .

Combining these two asymptotics for x∗ and h∗ yields the desired result for Hq[X].

7 Numerical Examples

In this section, we use R to numerically examine the accuracy of the asymptotic formulas

obtained in Corollary 6.1. In order to compare the asymptotic results with the exact value

of Hq[X], we choose the Young function to be

ϕ(s) =
1

2

(
s1.1 + s2.2

)
, s ≥ 0,

so that ϕ(·) ∈ RVα(0+)∩RVβ(∞) with α = 1.1 and β = 2.2. Then equation (1.1) becomes

1

2
E

[(
(X − x)+

h

)2.2

+

(
(X − x)+

h

)1.1
]

= 1− q,

which gives

h(x) =

E
[
(X − x)1.1+

]
+
√

(E [(X − x)1.1+ ])
2

+ 8(1− q)E [(X − x)2.2+ ]

4(1− q)

1/1.1

.

Then the equation h′(x) = −1 gives the Orlicz quantile x∗. Plugging this x∗ into h(x)

gives the value of h∗. Hence, the exact value of Hq[X] = x∗ + h∗ is obtained. For each

of the Fréchet, Gumbel and Weibull cases, we will show a figure in which we compare the

asymptotic value of Hq[X] with its exact value on the left and draw their ratio on the right.

Example 7.1 (the Fréchet case) Assume that F is a Pareto distribution given by

F (x) = 1−
(

θ

x+ θ

)α
, x, α, θ > 0.

Thus, F ∈ MDA(Gγ) with γ = 1/α and U(t) = θ(tγ − 1). In Figure 7.1, we set α = 2.4, 2.7

and θ = 1. It shows that the ratio converges to 1 as q ↑ 1 but the accuracy is not as good

as in the power Young function case, so the second-order asymptotics becomes desirable.
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Figure 7.1 about here.

Example 7.2 (the Gumbel case) Assume that F is a lognormal distribution given by

F (x) = Φ

(
lnx− µ

σ

)
, x > 0,−∞ < µ <∞, σ > 0,

where Φ(·) denotes the standard normal distribution function. Thus, F ∈ MDA(Gγ) with

γ = 0 and the auxiliary function a(·) given by

a(x) =
Φ(σ−1(lnx− µ))σx

Φ′(σ−1(lnx− µ))
;

see, e.g. page 150 of Embrechts et al. (1997). In Figure 7.2, we set µ = 2 and σ = 0.5.

Overall, the accuracy is very good.

Figure 7.2 about here.

Example 7.3 (the Weibull case) Assume that F is a beta distribution with probability

density function given by

f(x) =
xa−1(1− x)b−1

B(a, b)
, 0 < x < 1, a, b > 0.

Thus, F ∈ MDA(Gγ) with γ = −1/b. In Figure 7.3, we set a = 2 and b = 6, 8. It shows

that the ratio converges to 1 as q ↑ 1 and the accuracy is very good.

Figure 7.3 about here.
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Graph 7.1 Pareto distribution
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Graph 7.2 Lognormal distribution
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Graph 7.3 Beta distribution
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