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Abstract

This paper employs a multivariate extreme value theory (EVT) approach to study
the limit distribution of the loss of a general credit portfolio with low default prob-
abilities. A latent variable model is employed to quantify the credit portfolio loss,
where both heavy tails and tail dependence of the latent variables are realized via a
multivariate regular variation (MRV) structure. An approximation formula to imple-
ment our main result numerically is obtained. Intensive simulation experiments are
conducted, showing that this approximation formula is accurate for relatively small
default probabilities, and that our approach is superior to a copula-based approach in
reducing model risk.

JEL classification: G210; G320
Keywords: Credit portfolio loss; Extreme risk; Limit distribution; Loss given de-

fault; Model risk; Multivariate regular variation; Tail dependence

1 Introduction

Credit risk management, although long residing in the finance literature, has attracted much

research attention in the insurance/actuarial community; some recent papers include Van-

dendorpe et al. (2008), Donnelly and Embrechts (2010), Tang and Yuan (2013), Bernardi et

∗Corresponding author. Phone: 1-814-865-6211; fax: 1-814-865-6284
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al. (2015), Denuit et al. (2015), Hao and Li (2015), Scott and Metzler (2015), Wang et al.

(2015), and Wei and Yuan (2016), among many others. This research area is of particular

relevance to insurers because credit portfolios in the form of government or corporate bonds

take up a large portion of insurers’ balance sheets. According to National Association of

Insurance Commissioners (NAIC), during 2010–2014 the insurance industry allocated at

least 67% of its assets on bonds. Analysis of credit portfolio losses is therefore of enormous

importance for both asset management and risk capital determination in insurance. More-

over, the pricing of related insurance, such as mortgage insurance and bond insurance, also

requires careful investigation of the loss of the underlying credit portfolio.

Nevertheless, measuring credit portfolio losses has been a challenging task, and despite

the progresses made during the past decades, some critical gaps remain. The culprit behind

credit risk is extreme risks, which in general result from individual obligors’ tail risks or

their tail dependence, and both can shift adversely and dramatically in stress times. A

credit portfolio with obligors healthy and little correlated in normal times may still suffer

from concurrent defaults and losses when subject to common shocks in economic downturns.

An increasing amount of evidences demonstrating this phenomena has been presented in

the literature. For example, Pesola (2011) applies a reduced-form model estimated from

pooled data from nine European countries during 1982–2004 to show that macroeconomic

shocks exacerbate the extremely high levels of loan losses in different financial crises. Recent

studies on mortgage loss given default (LGD) also report that the severity of loss during the

subprime mortgage crisis of 2007–2009 was much higher than before; see e.g. Andersson and

Mayock (2014). Clearly, portfolio loss models that neglect extreme risks may significantly

underestimate the loss severity in the presence of common shocks, and this underestimation

could ruin the effectiveness of prudential capital regulations in banking and insurance.

Generally, there are two approaches employed for LGD estimation in the literature. The

first approach is to fit the distribution of LGD to data. This approach finds a number of

regularities of the LGD distribution such as bimodality, concentration at both total loss and

total recovery, and high variability; see e.g. Renault and Scaillet (2004), Schuermann (2004),

and Calabrese and Zenga (2010). These regularities are what motivate our choice of loss

settlement functions in conducting numerical studies in Section 5. The second approach to

LGD estimation seeks to specify the determinants of LGD to capture it structurally. Altman

et al. (2005) examine the recovery rates on corporate bond defaults over the period 1982–

2002 and find that the aggregate recovery rates are a function of supply and demand for the

securities. During their studies of residential mortgages, Qi and Yang (2009) and Park and

Bang (2014) find that the loan-to-value (LTV) is the single most important determinant.

Chava et al. (2011) summarize that contract characteristics, firm-specific variables, and
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macroeconomic variables are important factors that affect the recovery rate, although none

is consistently statistically significant. The determinants found in the literature can serve as

guidance for latent variable specification in our model, although we do not purport, also it

is not possible, that the latent variable can summarize all important default determinants;

see also Duffie et al. (2009) for related discussions.

To address the challenge in the presence of extreme risks, the first distribution fitting

approach is no longer as effective due to the sparsity of data in the tails; after all, the

occurrence of extreme events such as financial crises is rare. Nevertheless, this literature

lends us insights in modeling and simulation, and our experiments closely follow this litera-

ture to feature bimodality, concentration, and variability. Regarding the second approach,

although no determinants are found universally valid, it can lend us a framework to model

and understand the dynamics of shifting correlation of defaults.

The aim of this paper is to provide a methodological framework for modeling credit

portfolio losses with extreme risks taken into account. Specifically, we employ a static

latent variable model recently proposed by Tang and Yuan (2013) for credit portfolio losses,

in which the LGD of an obligor is linked to its severity of default through a loss settlement

function that increases from 0 to 1 as the severity of default increases. Such a loss settlement

function is general in nature, so that the salient features of the LGD distribution found in the

empirical studies can easily be incorporated. Note however that we refrain from empirically

identifying the latent variables or the loss settlement functions.

Then we apply the multivariate extreme value theory (EVT) via the multivariate regular

variation (MRV) framework to model the latent variables driving the obligors’ default.

This structure provides us with a rather flexible modeling framework; see Section 3 for

details. It is well known that Gaussian copula models cannot describe the strong credit

contagion possibly arising from common economic shocks, because of their failure to capture

tail dependence; see e.g. Donnelly and Embrechts (2010) and Packham et al. (2016) for

discussions on Gaussian copulas in modeling correlated defaults and the strong impact of

tail dependence. By contrast, the MRV structure adopted in our paper is flexible enough

to allow for tail dependence.

Our main result gives a limit distribution of the loss of a general credit portfolio with low

default probabilities, which is relevant to a large array of financial institutions, especially

insurance companies. This limit distribution captures the tail dependence information of

the latent variables. An immediate application of the result is to generate stress testing

scenarios for such institutions. Also, this result offers a solution to risk measure calculation

for low default portfolios (LDPs), which is usually a challenging task for both financial

institutions and regulators. In addition, the explicit expression of the limit distribution
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enables us to conduct sensitivity analysis of the portfolio loss with respect to certain risk

characteristics such as the tail dependence of the latent variables.

We run a large volume of numerical simulations to test our main result and find the

following. When the individual default probabilities are reasonably small (say, below 5%),

the limit distribution of the portfolio loss usually gives a good approximation for the true

distribution. In particular, the underestimation of the portfolio loss can be substantial if

tail dependence is not accounted for. Moreover, the limit distribution of the portfolio loss is

not sensitive to the regularities of LGDs, which sheds new light that portfolio losses depend

more on the underlying extreme risks than on other risk characteristics recognized in normal

times.

The rest of this paper is organized as follows. Section 2 introduces our static latent

variable model for credit portfolio losses, Section 3 describes the MRV structure for the

latent variables, Section 4 derives the limit distribution of the loss of a low default portfolio,

Section 5 presents our numerical results, Section 6 concludes the paper with some remarks,

and finally, Section 7 collects related technical discussions, a corollary, and the proof of the

main result.

2 A Static Latent Variable Model

In this section, we follow Tang and Yuan (2013) to use a static structural model to model

credit portfolio losses. We assume that for each obligor there is a latent variable X that

summarizes the determinants governing the process of the obligor’s default. Such a latent

variable model underlies CreditMetrics and KMV, and has been widely used in the litera-

ture. Depending on the portfolio under consideration, the latent variable may or may not

be observable. For example, for corporate bond portfolios, the asset value used by Cred-

itMetrics and KMV is an observable latent variable, and so is the running minimum of

the asset value suggested by Giesecke (2004a). For mortgage portfolios, one may use the

LTV as a latent variable, as justified by Qi and Yang (2009), which is also observable. By

contrast, in a restricted version of CreditMetrics, Gordy (2000) considers the case where the

latent variable is unobservable, equal to a linear combination of other input variables plus

an independent and normally distributed error term. Note that under this framework, since

the input variables themselves are typically observable, statistical inference on the latent

variable is still possible. See also Merton (1974), Frey and McNeil (2003), Giesecke (2004b),

Glasserman and Li (2005), and Duffie et al. (2009) for more discussions on latent variables

in credit risk modeling.

Suppose that an obligor with its default driven by a latent variable X has a default
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probability p ∈ (0, 1). Default occurs when X exceeds the default threshold, which is

specified to be the (1− p)th quantile of the distribution function F of X,

F←(1− p) = inf {x ∈ R : F (x) ≥ 1− p} ,

with inf ∅ = ∞ by convention. In a similar spirit to Merton-type modeling, we define the

severity of default as

S =
X

F←(1− p)
− 1, (2.1)

which is the percentage exceedance of the latent variable over the threshold, indicating how

severe the obligor’s default is. Previous literature in both theoretical and empirical regards

indicates that loss ratio and default risk are linked; see e.g. Altman et al. (2005) and Frye

and Jacobs Jr (2012). Accordingly, we use a settlement function

G(s) : R→ [0, 1], non-decreasing with G(s) = 0 for s ≤ 0 and G(∞) = 1,

to relate the LGD to the default risk through S defined in (2.1). The settlement process after

the obligor’s default determines the amount of the defaulted debt that can be recovered,

which we use 1−G to quantify. The LGD of an obligor with exposure e is then eG(S).

Consequently, the credit portfolio loss of a portfolio of d obligors is modeled by

L(p) =
d∑
i=1

eiGi

(
Xi

F←i (1− pi)
− 1

)
, (2.2)

where, for each obligor i, Xi is its latent variable distributed by Fi, Gi is its settlement

function, ei > 0 is the exposure to the obligor, pi ∈ (0, 1) is a given small probability of

default, and F←i (1− pi) is the corresponding default threshold. Without loss of generality,

the d exposures e1, . . . , ed are scaled so that
∑d

i=1 ei = 1. Note that the LGD extensively

discussed in the literature is essentially the portfolio loss given its positiveness, and therefore

our study of L(p) can be readily used to characterize the LGD.

Several advantages of using model (2.2) for the credit portfolio loss are worth highlight-

ing. First, it departs from the traditional way of using the historical average LGD, which is

a constant, to calculate the expected loss of a credit portfolio. Ours considers the LGD per

se as a randomized parameter that accords with empirical evidence. Second, our modeling

of the portfolio loss incorporates Merton-type structural modeling of default risk in a more

general way, which enables us to easily extend to include an array of default determinants

in a coherent manner. Third, the general expression of loss settlement functions lends us

advantages to incorporate the aforementioned salient features of LGD. The linkage of the

LGD to the default probabilities is explicitly expressed. Departing from the literature where

a mixture of specified distributions is often constructed to model and estimate the LGD,

our expression is quite general.
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3 Multivariate Regular Variation (MRV)

Typically, the multivariate EVT method can be applied in two steps. The first step applies

the univariate EVT to fit the marginal distribution functions, and the second fits a depen-

dence structure (usually through a copula) to join the marginals. Credit risk management

poses at least two challenges to this way of applying EVT. First, credit defaults are rare

events and data are usually sparse, truncated or censored, which cannot guarantee a copula

to be fitted globally. Second, as discussed in the literature, modeling credit portfolio losses

in this way may be subject to substantial model risk. The copula chosen for the depen-

dence structure can be misspecified, and due to the scarcity of credit loss data it is hard to

calibrate. On the other hand, the portfolio loss distribution can be largely affected by even

small changes to the parameters of the copula, and the effect is usually remarkable in the

tail. See e.g. Frey and McNeil (2002, 2003) for related discussions.

The concept of MRV stems from multivariate EVT and has become a promising modeling

framework that models multivariate heavy-tailed risks and their tail dependence structure

in a unified manner. In modeling extreme risks, the MRV method is advantageous over the

usual one that assembles the univariate EVT approach and copula approach, in that the

MRV method offers a nonparametric modeling of the tail dependence, and thus reduces the

model risk. Moreover, since an MRV structure only focuses on the (right) tail area of risks,

it is no longer a concern to have left truncated or censored data. Just like an EVT method

having an advantage in fitting tails over e.g. a least square method, by focusing only on

the tail area fitting an MRV structure also has an advantage in fitting tail dependence over

fitting a copula globally. In summary, the two challenges of credit risk modeling mentioned

above can be avoided to a certain extent by using an MRV model.

To understand MRV, we start with the concept of regular variation. A positive function

h(·) on R+ = [0,∞) is said to be regularly varying at ∞ with regularity index γ ∈ R,

written as h(·) ∈ RVγ, if

lim
x→∞

h(xy)

h(x)
= yγ, y > 0.

We say that h(·) is slowly varying when γ = 0. It is known that h(·) ∈ RVγ if and only if

h(x) = xγl(x) (3.1)

for some slowly varying function l(·). See Bingham et al. (1987) and Resnick (1987) for

textbook treatments of regular variation.

For a random variable X distributed by F on R+ with tail F = 1− F ∈ RV−α, α > 0,

by relation (3.1) F (x) decays roughly at a power rate as x→∞. Hence, the corresponding

random variable X and its distribution function F are said to be of Pareto type. Commonly

6



used distributions such as Pareto, Student’s t, Snedecor’s F , Burr, loggamma, Fréchet, and

inverse gamma distributions are all of Pareto type. Note that a Pareto-type distribution is

heavy tailed in the sense that its right tail is heavier than that of any exponential distribu-

tion. Empirical evidence shows that many economic risk factors are heavy tailed. See e.g.

Embrechts et al. (1997) and Gabaix (2009) for general discussions on the applications of

Pareto-type distributions in modeling economic factors.

The concept of MRV of a random vector is defined through regular variation of its joint

tail. Precisely, a random vector X = (X1, . . . , Xd) on E = [0,∞]d\{0}, or its distribution,

is said to possess a multivariate regularly varying tail if there exists a distribution function

F and a Radon measure ν, not identically 0 over [0,∞)d\{0}, such that

lim
x→∞

1

F (x)
P

(
d⋃
i=1

(Xi > xti)

)
= ν [0, t]c , t > 0. (3.2)

In (3.2) and throughout the paper, for a Borel subset A of E, its measure ν(A) is often

abbreviated as νA as long as no confusion arises, and Ac denotes the complement set E\A.

Note that a measure on E is called Radon if its value is finite on every compact Borel subset

of E. The definition of MRV in (3.2) implies that F ∈ RV−α for some α > 0, and hence,

we write X ∈ MRV−α. The requirement of an MRV structure for a random vector X is

essentially a regular-variation condition for the probability of at least one component of X

being large. This also means that at least one component of X is of Pareto type. Roughly,

any multivariate distribution with regularly varying marginals joined by a practically useful

copula possesses an MRV structure. Although different choices of F may result in different

limit measures, these limit measures can only differ by a constant factor.

The information of tail dependence in the upper-right tail of X is contained in the limit

measure ν. Under (3.2), if ν (1,∞] > 0 then

lim
x→∞

1

F (x)
P

(
d⋂
i=1

(Xi > x)

)
= ν (1,∞] > 0,

which means that X exhibits large joint movements and can thus be used to model the latent

variables subject to common shocks. In the case that the limit measure ν is concentrated on

a straight line {x > 0 : l1x1 = · · · = ldxd} for some l > 0, the components of X are so-called

fully tail dependent, of which comonotonicity is a special case. In contrast, if ν (1,∞] = 0,

then X does not exhibit large joint movements.

Since its introduction by de Haan and Resnick (1981), the concept of MRV has found

applications in many areas of insurance, finance, and risk management that involve extreme

risks. For example, Schmidt (2003) applies MRV in credit risk modeling by making a
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connection between MRV and various copulas, and Böcker and Klüppelberg (2010) find its

application in operational risk management. Additional applications can be found in Mainik

and Rüschendorf (2010), Part IV of Rüschendorf (2013), and Tang and Yuan (2013), among

others. For thorough theoretical discussions on MRV, we refer the reader to Resnick (1987,

2007).

4 A Limit Distribution of the Portfolio Loss

4.1 Modeling assumptions

Consider the credit portfolio loss (2.2) in which the latent vector X has marginal distri-

butions F1, . . . , Fd. Assume that X+ = (max{X1, 0}, . . . ,max{Xd, 0}) follows an MRV

structure, or more precisely, relation (3.2) holds for X+ for some auxiliary distribution

function F with F ∈ RV−α, α > 0, and some limit measure ν. Further assume that, for

each i = 1, . . . , d, the limit measure ν satisfies

ai = ν ([0,∞]× · · · × (1,∞]× · · · × [0,∞]) > 0,

which implies that

lim
x→∞

Fi(x)

F (x)
= ai. (4.1)

Hence, all latent variables X1, . . . , Xd are comparable in the right tail.

Furthermore, we assume that these default probabilities p1, . . . , pd decay to 0 at rates

of the same order, or more precisely, there are positive constants b1, . . . , bd such that

lim
p↓0

pi
p

= bi, i = 1, . . . , d. (4.2)

This is to assume that the assets in the credit portfolio are currently of investment grade,

and hence, the default probabilities of all individual assets are small and the credit portfolio

is an LDP. Note that regulated financial institutions may need such portfolios to meet

capital requirements. According to NAIC, during 2010–2014 at least 94% bond holdings

of the insurance industry are of investment grade (i.e., rated Baa or better under Moody’s

rating tiers). Moreover, according to Moody’s (2015), U.S. municipal bonds with a Moody’s

rating of A or better, Baa, or B have a historical one-year default rate of 0, 0.01%, or 2.92%,

respectively. Global corporate bonds with a Moody’s rating of A, Baa, or Ba have a historical

one-year default rate of 0.06%, 0.17%, or 1.07%, respectively. This motivates us to consider

LDPs with default probabilities p1, . . . , pd close to 0. Note that the portfolio loss of an LDP

is more challenging to estimate than that of a below-investment-grade portfolio, because for

the latter default occurrences are more frequent and hence can be simulated relatively more
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easily. The asymptotic approach used here provides a possible avenue to overcoming the

estimation challenge.

Under the modeling assumptions above, we shall study the limit distribution of L(p) as

p ↓ 0. We conduct the study through the survival function of L(p) to reflect our focus on

the tail risk of the portfolio.

4.2 An exploratory numerical study

For arbitrarily fixed l ∈ [0, 1], we first give a heuristic analysis of the rare-event probability

P (L(p) > l). For L(p) to be larger than l, at least one of the obligors needs to default,

i.e., its latent variable Xi needs to exceed the default threshold F←i (1− pi), which by (4.2)

has a probability of order p. Depending on the value of l, it may require multiple obligors

to default, which under the MRV structure has a probability at most of order p. Thus, we

expect that as p ↓ 0 the probability of L(p) exceeding l decays to 0 at rate p. An exploratory

numerical study is conducted below to back this surmise.

Suppose that the portfolio consists of d = 5 obligors with equal exposures e1 = · · · =

e5 = 20%. The latent variable of each obligor i is distributed by a Pareto distribution with

shape parameter α and scale parameter θi,

Fi(x) = 1−
(

θi
x+ θi

)α
, x > 0. (4.3)

The dependence structure of X is given by a Gumbel copula

C(u) = exp

−
(

d∑
i=1

(− lnui)
r

)1/r
 , u ∈ (0, 1)d, 1 < r <∞ (4.4)

which yields tail dependence in the upper-right tail and tail independence in the lower-left

tail; see Section 7.4 of McNeil et al. (2015). We set the parameters to α = 1, θi = i,

and r = 5, respectively. Meanwhile, the loss settlement functions for the 5 obligors are

assumed to be the same and chosen to be either a mixed beta distribution GI or a uniform

distribution GII , respectively having probability density functions{
gI(x) = s× beta(x; β11, β12) + (1− s)× beta (x; β21, β22) , 0 < s, x < 1,
gII(x) = x

yG
, 0 < x < yG,

(4.5)

where beta(x; β1, β2) denotes the beta probability density function

beta(x; β1, β2) =
Γ (β1 + β2)

Γ (β2) Γ (β2)
xβ1−1(1− x)β2−1, 0 < x < 1,
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with Γ (·) being the gamma function and β1, β2 being two positive shape parameters. The

choice GI is motivated by the bimodal feature of LGD, and the choice GII is provided as a

robustness check. In our simulation, the parameters appearing in (4.5) are set to

s = 0.7, β11 = 2, β12 = 5, β21 = 5, β22 = 2, and yG = 2,

the last specification meaning that the percentage loss will attain its maximum 100% when

the latent variable exceeds three times its (1− p)th quantile.

For p1 = · · · = p5 = p ranging from 0.1% to 5%, l chosen to be 0.1 or 0.3, we estimate

the probability P (L(p) > l) empirically using 106 simulation samples of X. The following

graphs demonstrate the decaying rate of P (L(p) > l) as p approaches 0.

Figure 4.1 is here.

We observe that in each graph the points all appear roughly on a straight line. This

suggests that the probability P (L(p) > l) decays at rate p as p ↓ 0; that is, when p is small,

P (L(p) > l) ≈ c(l)p

for some positive coefficient c(l). In our theoretical contribution below, we make this state-

ment precise.

4.3 The main result

As the main contribution of this paper, below we derive the limit distribution of L(p) (2.2)

as p ↓ 0.

Theorem 4.1 Under the modeling assumptions in Subsection 4.1, it holds for every l ∈
[0, 1] that

lim
p↓0

P (L(p) > l)

p
= ν (Al) , (4.6)

where

Al =

{
x ∈ [0,∞]d :

d∑
i=1

eiGi

(
(ai/bi)

−1/α xi − 1
)
> l

}
.

Pedantically, it is possible that ν (Al) = 0, for which case relation (4.6), while still valid,

can no longer serve as an exact approximation for P (L(p) > l). Nevertheless, this happens

only when X is tail independent and only for relatively large l. For example, in the two-

dimensional case it is easy to see that, for l > max{e1, e2}, the set Al does not contain any

point on the axes, and thus, ν (Al) = 0 if X1 and X2 are tail independent. In conclusion,
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for most practical cases we have ν (Al) > 0 and relation (4.6) gives an exact asymptotic

formula for P (L(p) > l).

A substantial simplification of relation (4.6) can be made in the case that X is fully tail

dependent, i.e., the limit measure ν is concentrated on a straight line; see Corollary 7.1 in

the Appendix.

5 Numerical Studies

This section contains three parts. First, we use numerical examples to show why the use of an

MRV structure can help us arrive at a better estimate for the portfolio loss distribution when

there is uncertainty in tail dependence. Second, we check the accuracy of the asymptotic

formula (4.6) as an approximation for the survival function of L(p). And last, we present

some examples to demonstrate the limit distribution approximated by our theorem.

In all three subsections below, we consider a credit portfolio consisting of d = 5 obligors

with equal exposures. Demonstrations for larger portfolios would require more computation

time but we expect the conclusions to be the same. For the loss settlement function, we

consider the two choices GI and GII in Subsection 4.2, whose probability density functions

are given by (4.5) with parameters

s = 0.7, β11 = 2, β12 = 5, β21 = 5, β22 = 2, and yG = 2.

The individual default probabilities p1, . . ., pd are assumed to be all equal to p. Hence,

b1 = · · · = bd = 1 and L(p) can be rewritten as L(p).

We would like to point out that, although the numerical results are presented under

a simplified setup, according to our extensive tests with more realistic parameters (e.g.,

nonidentical exposures, nonidentical loss settlement functions, and nonidentical individual

default probabilities), the setup here can well represent the general cases for illustrating the

key insights.

5.1 Uncertainty in tail dependence

Using a copula-based approach to describe the tail dependence of a credit portfolio requires

an appropriate choice of the copula, and the possibility of choosing a wrong copula poses

substantial model misspecification risk. In this subsection we consider examples where

the tail dependence structure of the latent vector X is misspecified, and then investigate

the impact of the misspecification on the portfolio loss distribution. Specifically, we use a

Gumbel copula to generate the benchmark tail dependence of a credit portfolio, and use a

11



Gaussian copula and a t copula to fit the generated data to see how the fitted distributions

diverge from the benchmark.

Now that our concern in this subsection is mainly about tail dependence and that uni-

variate distribution functions can be easily estimated by standard statistical approaches, we

simply assume that the marginal distributions of X are known to be the Pareto distribution

(4.3) with α = 1 and θi = i. Moreover, we consider two cases with the default probability

p equal to 0.5% or 1%.

Our study is based on a synthetic dataset containing 106 samples of X, simulated using

a Gumbel copula (4.4) with r = 2 or 5. Suppose that a Gaussian copula or a t copula,

both with an equicorrelation matrix, is (mis)specified for the data. For both copulas, we

use the function fitCopula in the R software to obtain maximum likelihood estimates for

the parameters; see Yan (2007) for details about the function fitCopula. The estimation

results are summarized in Table 5.1.

Table 5.1 is here.

For r = 2 and r = 5, the off-diagonal elements of the correlation matrix of the Gaussian

copula are estimated to be 0.70 and 0.95, respectively, those of the t copula are 0.71 and

0.95, respectively, and the degree of freedom of the t copula is 8.3 and 4.3, respectively.

Next, for each value of l between 10% and 90%, with step-size 2.5%, we estimate the

probability P (L(p) > l) empirically, by generating 106 samples of X, using the (true) Gum-

bel copula with r = 2 or 5, the fitted Gaussian copula, and the fitted t copula. The obtained

portfolio distribution is compared for the three cases to show the impact of misspecifica-

tion. We compare the portfolio loss distribution, again in terms of its survival function

P (L(p) > l), and demonstrate the results in Figures 5.1 and 5.2.

Figures 5.1 and 5.2 are here.

One may observe severe discrepancies among the estimated survival functions for the

three cases, especially in the tail area. For example, the estimation for the probability of the

loss exceeding 90% of the total exposure under the true Gumbel-copula specification can be

25 times as much as under the Gaussian-copula specification, and can be 7 times as much as

under the t-copula specification. Therefore, a misspecified dependence structure may lead

to a substantial over- or under-estimation of the portfolio loss and its risk measures.

We demonstrate in the next subsection that the limit distribution obtained by Theorem

4.1, free of copula specifications, can provide a very accurate approximation for the portfolio

loss distribution.
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5.2 Accuracy of the approximation

In this subsection we check the accuracy of the approximation for the survival probability

P (L(p) > l) provided by relation (4.6). Again, we assume that each latent variable Xi is

distributed by the Pareto distribution (4.3) with α = 1 and θi = i for i = 1, . . . , d, and that

their dependence structure is described by the Gumbel copula (4.4) with r = 5. This leads

to an MRV structure for the vector X; see Tang and Yuan (2013) for related discussions.

For each of p ranging from 0.1% to 5% and each of l equal to 10%, 30%, or 50%, on the

one hand we simulate 106 (and for comparison purpose 107) samples of X and estimate the

probability P (L(p) > l) empirically, and on the other hand we use relation (4.6) in Theorem

4.1 to approximate the probability by ν (Al) p. The value of ν (Al) is estimated according

to the method given by Section 9.2 of Resnick (2007), also with a sample size of N = 106.

Precisely, with a proper choice of k such that both k and N/k are large, we estimate ν(Al)

by

1

k

N∑
i=1

ε Xi
F←1 (1−k/N)

(Al),

where ε is the Dirac measure and the random vectors X1, . . . , XN are a sample from X.

The value of k is usually determined by some exploratory methods; see Stǎricǎ (1999) and

Subsection 9.2.4 of Resnick (2007) for more details, and see Einmahl and Segers (2009) and

Kiriliouk et al. (2015) for more discussions on the estimation of such a limit measure. We

remark that, although it still requires a simulation to estimate ν(Al), such a simulation

usually works more efficiently than using rare event simulation to directly estimate the

survival probability empirically.

The empirical estimates and approximations are compared in Figures 5.3–5.6.

Figures 5.3–5.6 are here.

The left graphs of Figures 5.3 and 5.5 show that the absolute differences between the em-

pirical estimates and approximations are always small for p reasonably close to 0. The right

graphs show that the ratio of the empirical estimates to approximations is close to 1, con-

firming the quality of approximation. The fluctuations of the ratio for p around 0 are due

to the fluctuations of the empirical estimations, which become less stable when the event

of L(p) exceeding l becomes rarer as p gets closer to 0. The asymptotic approximations,

by nature, are not subject to such a limitation. In fact, as is seen from Figures 5.4 and

5.6, increasing the sample size to 107 leads to much improved convergence around 0. This

comparison with different sample sizes is also indicative of the high simulation cost in the
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case of very low default probabilities and the benefit of using the asymptotic method. Al-

though Figures 5.3 and 5.5 show that the convergence of (4.6) is fast under the setup above,

we need to point out that different choices of parameters may lead to different convergence

rates. For example, our tests show that a larger value of α may lead to a slower convergence,

while changes of the value of r generally do not affect the convergence rate.

5.3 Demonstration of the limit distribution

Using the approximation provided by relation (4.6) and the same parameters as in Subsec-

tion 5.2, Figure 5.7 demonstrates the distribution of the portfolio loss L(p) in terms of its

survival function, for p = 1%, 3% and r = 2, 3, and 5.

Figure 5.7 is here.

Obviously, since our approximation for P (L(p) > l) is proportional to p, the survival

probabilities in the right graphs, which are for p = 3%, are just three times of those in the

left graphs, which are for p = 1%. This feature may be useful when there is a need for

comparing different credit portfolios, of the same obligors, consisting of debts with different

seniority.

In addition, notice that a larger value of r leads to a stronger tail dependence. We

can clearly see that, for a value of l that requires multiple defaults for L(p) to exceed l, a

stronger tail dependence leads to a larger tail probability of L(p). For example, for l = 30%,

since each exposure is 20%, it requires at least two obligors to simultaneously default. A

stronger tail dependence leads to a larger probability of simultaneous defaults and, hence,

a larger tail probability of L(p). This also partly explains the intriguing reverse of the

relations observed in Figure 5.7 for values of l that can be exceeded by one single default

(i.e., l < 20%).

6 Concluding Remarks

In this paper, we have studied the distribution of the credit portfolio loss of an LDP in the

presence of extreme risks. Our study is conducted in a static latent variable model in which

the percentage LGD of each obligor is assumed to be random and linked to the severity of

the obligor’s default through a loss settlement function. Such loss settlement functions can

be general enough to accommodate empirical features of LGD distributions. Furthermore,

the obligors’ defaults are driven by corresponding latent variables. The extreme risks are

then represented by the obligors’ latent variables that are heavy tailed and tail dependent,
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modeled by an MRV structure. We demonstrate through numerical examples that the

nonparametric feature of the MRV structure can help reduce model risk.

As our main result, we obtain a limit distribution of the credit portfolio loss as individ-

ual default probabilities tend to 0. For many practical cases, our formula can serve as an

accurate approximation for the portfolio loss distribution for reasonably small default prob-

abilities, say, not greater than 5%; by its nature the asymptotic method works even better

for smaller default probabilities. Our study also reveals that in the presence of extreme

risks, as individual default probabilities decrease to 0 the tail probability of the portfolio

loss with tail dependent latent variables decreases at the same rate.

Note that our limit procedure is taken over p→ 0 with the portfolio size d being fixed.

It would be interesting to also study large credit portfolios where d tends to infinity with p

either fixed or tending to 0 at a similar rate.

7 Appendix

In order to gain a rigorous understanding of the concept of MRV, let us first introduce

the concept of vague convergence of Radon measures. Consider a d-dimensional cone E =

[0,∞]d\{0} equipped with a Borel sigma-field B. Denote the space of nonnegative Radon

measures on E by M+(E). For a sequence of Radon measures {µ, µn, n ∈ N} in M+(E), we

say that µn → µ vaguely if the relation

lim
n→∞

∫
E
h(z)µn(dz) =

∫
E
h(z)µ(dz)

holds for every nonnegative continuous function h(·) with compact support. It is known

that µn → µ vaguely in M+(E) if and only if the convergence

lim
n→∞

µn [0, t]c = µ [0, t]c

holds for every continuity point t ∈ E of the limit µ [0, ·]c. See Lemma 6.1 and Subsection

3.3.5 of Resnick (2007) for this assertion and related discussions.

Note that relation (3.2) essentially means that

1

F (x)
P

(
X

x
∈ ·
)
→ ν(·) vaguely in M+(E).

The very definition of MRV by relation (3.2) implies that the limit measure ν is homoge-

neous; that is,

ν(tB) = t−αν(B) (7.1)
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holds for some α > 0 and all Borel subset B. See Page 178 of Resnick (2007) for related

proofs.

In order to apply vague convergence on a set, one often needs to verify that ν assigns no

mass on the boundary of the set. The following lemma describes an elementary property of

the limit measure ν, which is helpful for such a verification:

Lemma 7.1 Let ν be a Radon measure on E satisfying the homogeneity property (7.1) with

α > 0, and let ∆ be a Borel set bounded away from 0. If t∆ ∩∆ = ∅ for every t > 1, then

ν(∆) = 0.

Proof. Since ∆ is bounded away from 0, so is the union U of t∆ over 1 ≤ t ≤ 2, which

implies that ν (U) <∞. If ν(∆) > 0, then, with Q denoting the set of rational numbers,

ν (U) ≥ ν

 ⋃
t∈Q∩[1,2]

t∆

 =
∑

t∈Q∩[1,2]

t−αν(∆) ≥ 2−α
∑

t∈Q∩[1,2]

ν(∆) =∞,

which is a contradiction. Hence, ν(∆) = 0 must hold.

Corollary 7.1 If in Theorem 4.1 the latent vector X is fully tail dependent, then relation

(4.6) is simplified to relation (7.2) below.

Proof. It is easy to see that the limit measure ν is concentrated on the straight line

a
−1/α
1 x1 = · · · = a

−1/α
d xd, x ∈ [0,∞]d.

On this straight line we have

d∑
i=1

eiGi

(
(ai/bi)

−1/α xi − 1
)

=
d∑
i=1

eiGi

(
b
1/α
i a

−1/α
1 x1 − 1

)
.

Denote by h (x1) the right-hand side above, which is a non-decreasing function in x1. It

follows from Theorem 4.1 that

lim
p↓0

P (L(p) > l)

p
= ν {x : h (x1) > l}

= ν {x : x1 > h→(l)}

= a1 (h→(l))−α , (7.2)

where h→(l) = sup {x ∈ R : h(x) ≤ l} with sup∅ = −∞ by convention, and the second

step holds because ν assigns no mass on the plain {x : x1 = h→(l)} by Lemma 7.1.
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Proof of Theorem 4.1. In this proof, for two positive functions f1(·) and f2(·), as usual

we write f1(·) ∼ f2(·) if lim f1(·)/f2(·) = 1 and write f1(·) . f2(·) if lim sup f1(·)/f2(·) ≤ 1.

It is clear that

P (L(p) > l) = P

((
X1

F←1 (1− p)
, . . . ,

Xd

F←d (1− p)

)
∈ Bl

)
, (7.3)

where Bl =
{
x ∈ [0,∞]d :

∑d
i=1 eiGi (xi − 1) > l

}
. For each i = 1, . . . , d, by Proposition

0.8(V) of Resnick (1987), relations (4.1)–(4.2) imply that, as p ↓ 0,

F←i (1− p) ∼ (ai/bi)
1/αF←(1− p).

Thus, it holds for arbitrarily chosen ε ∈ (0, 1) and all small p > 0 that

(1− ε)(ai/bi)1/αF←(1− p) ≤ F←i (1− p) ≤ (1 + ε)(ai/bi)
1/αF←(1− p).

From this two-sided inequality and identity (7.3), it follows that, for all small p > 0,

P

(
X

F←(1− p)
∈ (1 + ε)Al

)
≤ P (L(p) > l) ≤ P

(
X

F←(1− p)
∈ (1− ε)Al

)
.

Here we tacitly applied a property of the set Bl that, for x1 ≤ x2, if x1 ∈ Bl then x2 ∈ Bl.

Also by this property, it is easy to see that t (∂Bl) ∩ (∂Bl) = ∅ for every t > 1. Hence,

ν (∂Bl) = 0 by Lemma 7.1. Similarly, ν assigns no mass to the boundaries of the sets

(1± ε)Al either. Thus, it follows from relation (3.2) that

(1 + ε)−αν (Al) .
P (L(p) > l)

p
. (1− ε)−αν (Al) .

By the arbitrariness of ε, this concludes the proof of Theorem 4.1.
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Figure 4.1. The simulated probability P (L(p) > l) for small values of p, l = 10% or 30%,
and Gi = GI or GII , i = 1, . . . , d.
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Gaussian copula t copula

off-diagonal elements
of correlation matrix
(standard deviation)

off-diagonal elements
of correlation matrix
(standard deviation)

degree of freedom
(standard deviation)

r = 2
0.70

(4.1× 10−4)
0.71

(4.6× 10−4)
8.3

(0.03)

r = 5
0.95

(7.6× 10−5)
0.95

(9.6× 10−5)
4.3

(0.01)

Table 5.1. Estimation results for the Gaussian copula and t copula.
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Figure 5.1. The empirically estimated survival function of L(p) based on the true copula
(Gumbel), the fitted Gaussian copula, and the fitted t copula, for p = 0.5% or
1%, r = 2 or 5, and Gi = GI , i = 1, . . . , d.
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Figure 5.2. The empirically estimated survival function of L(p) based on the true copula
(Gumbel), the fitted Gaussian copula, and the fitted t copula, for p = 0.5% or
1%, r = 2 or 5, and Gi = GII , i = 1, . . . , d.
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Figure 5.3. Comparison between the asymptotic approximations of P (L(p) > l) and its
empirical estimates (obtained based on a sample size of 106), for l = 10%,
30%, or 50%, and Gi = GI , i = 1, . . . , d.
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Figure 5.4. Ratio of the asymptotic approximations of P (L(p) > l) to its empirical esti-
mates (obtained based on a sample size of 107) for l = 10%, 30%, or 50%, and
Gi = GI , i = 1, . . . , d.
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Figure 5.5. Comparison between the asymptotic approximations of P (L(p) > l) and its
empirical estimates (obtained based on a sample size of 106), for l = 10%,
30%, or 50%, and Gi = GII , i = 1, . . . , d.
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Figure 5.6. Ratio of the asymptotic approximations of P (L(p) > l) to its empirical esti-
mates (obtained based on a sample size of 107) for l = 10%, 30%, or 50%, and
Gi = GII , i = 1, . . . , d.
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Figure 5.7. Approximation of P (L(p) > l) based on relation (4.6), for p = 1% or 3%,
r = 2, 3, or 5, and Gi = GI or GII , i = 1, . . . , d.
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