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Abstract

Sums of randomly weighted subexponential random variables have become an
important research topic, but most works on the topic consider randomly weighted
sums of finitely many terms. To extend the study to the case of infinitely many
terms, we establish a Kesten-type upper bound for the tail probabilities of sums of
randomly weighted subexponential random variables. As an application, we derive
a precise asymptotic formula for the tail probability of the aggregate present value
of subexponential claims, where the present value factor is determined according to
the zero-coupon bond price.
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1 Introduction

Throughout the paper, denote by {X1, X2, . . .} a sequence of independent and identically

distributed (i.i.d.) random variables with common distribution function F , and denote

by {θ1, θ2, . . .} another sequence of nonnegative and uniformly bounded random variables

independent of {X1, X2, . . .}. The target of this study is the randomly weighted sums

Sθn =
n∑
k=1

θkXk, n ∈ N. (1.1)

In this stochastic structure, X1, X2, . . . serve as primary variables while θ1, θ2, . . . as

random weights.

Due to their important applications to various areas including in particular insurance

and finance, randomly weighted sums have become an important research topic. Origi-

nating from Tang and Tsitsiashvili (2003), an active strand of this literature focuses on
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the tail behavior of randomly weighted sums of heavy-tailed random variables. See Chen

et al. (2006), Zhu and Gao (2008), Zhang et al. (2009), Yi et al. (2011), Wang (2011),

Yang et al. (2012, 2016), Hazra and Maulik (2012), Cheng (2014), Tang and Yuan (2014),

Mao et al. (2015), Li (2018), Cheng and Cheng (2018), Geng et al. (2019), and Chen and

Yang (2019), among many others.

A random variable X or its distribution function F with F (x) > 0 for all x is said to

be heavy tailed to the right if EeγX =∞ for all γ > 0. One of the most important classes

of heavy-tailed distributions is the subexponential class. By definition, a distribution F

on [0,∞) is subexponential, denoted by F ∈ S, if

lim
x→∞

F n∗(x)

F (x)
= n (1.2)

holds for all (or, equivalently, for some) n = 2, 3, . . ., where F n∗ denotes the n-fold convo-

lution of F . More generally, a distribution F on (−∞,∞) is still said to be subexponential

to the right if F+(x) = F (x)1(0≤x<∞) is subexponential. The reader is referred to Em-

brechts et al. (1997) and Foss et al. (2011) for textbook treatments of subexponential

distributions with applications to insurance and finance.

Most of the the references cited above consider the tail behavior of the randomly

weighted sums of finitely many terms. In particular, Tang and Yuan (2014) obtained the

following result:

Theorem 1.1 Let X1, . . . , Xn be n i.i.d. random variables with common distribution

function F ∈ S, let θ1, . . . , θn be n nonnegative, bounded, and not-degenerate-at-zero

random variables independent of {X1, . . . , Xn}. Then

P

(
n∑
k=1

θkXk > x

)
∼

n∑
k=1

P (θkXk > x) . (1.3)

Throughout this paper, all limit relationships are for x→∞ unless stated otherwise.

For two positive functions a(·) and b(·), we write a(x) ∼ b(x) if lim a(x)/b(x) = 1.

Moreover, for two positive bivariate functions a(·, y) and b(·, y), we say that a(x, y) ∼
b(x, y) holds uniformly for y ∈ ∆ if

lim
x→∞

sup
y∈∆

∣∣∣∣a(x, y)

b(x, y)
− 1

∣∣∣∣ = 0.

To extend the study to randomly weighted sums of infinitely many terms, a main

difficulty exists in proving that the tail probability of the total sum is dominated by that

of a large partial sum while the contribution of the residual tends to be negligible. This

is especially true for the subexponential case. We overcome this difficulty by establishing

a Kesten-type upper bound for the tail probabilities of randomly weighted sums.
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Theorem 1.2 Let {X1, X2, . . .} be a sequence of i.i.d. and real-valued random variables

with common distribution function F ∈ S, let {θ1, θ2, . . .} be another sequence of non-

negative and uniformly bounded random variables independent of {X1, X2, . . .}. Then for

any ε > 0, there exists a constant Cε > 0 such that

P

(
n∑
k=1

θkXk > x

)
≤ Cε(1 + ε)n

n∑
k=1

P (θkXk > x) (1.4)

holds for all n ∈ N and all x ≥ 0.

In the rest of this paper, we present the proof of Theorem 1.2 after preparing two

lemmas in Section 2, and show an application of Theorem 1.2 to risk theory in Section 3.

2 Proof of Theorem 1.2

2.1 A Kesten-type bound for deterministically weighted sums

Recall Proposition 5.1 of Tang and Tsitsiashvili (2003) regarding a uniform asymptotics

for the sum of deterministically weighted subexponential random variables:

Lemma 2.1 Let X1, . . . , Xn be n i.i.d. random variables with common distribution

function F ∈ S. Then for any fixed 0 < a ≤ b <∞, the relation

P

(
n∑
k=1

ckXk > x

)
∼

n∑
k=1

F (x/ck) (2.1)

holds uniformly for (c1, . . . , cn) ∈ [a, b]n.

Before the proof of Theorem 1.2, we first establish a Kesten-type upper bound for the

tail probabilities of deterministically weighted sums:

Lemma 2.2 Let {X1, X2, . . .} be a sequence of i.i.d. and real-valued random variables

with common distribution function F ∈ S, and let 0 < a ≤ b < ∞ be arbitrarily fixed

constants. Then for any ε > 0, there exists a constant Cε = Cε(a, b) > 0 such that

P

(
n∑
k=1

ckXk > x

)
≤ Cε(1 + ε)n

n∑
k=1

P (ckXk > x) (2.2)

holds for all n ∈ N, all x ≥ 0, and all ck ∈ [a, b] for k = 1, 2, . . ..

Proof. For notational convenience, we write the fact ck ∈ [a, b] for k = 1, . . . , n as cn =

(c1, . . . , cn) ∈ [a, b]n. By the facts that P (
∑n

k=1 ckXk > x) ≤ P
(∑n

k=1 ckX
+
k > x

)
for each

n ∈ N and that P (ckXk > x) = P
(
ckX

+
k > x

)
for each k ∈ N and each x ≥ 0, without
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loss of generality we can assume that {X1, X2, . . .} are nonnegative random variables, so

that their common distribution F is supported on [0,∞). Here and throughout the paper,

v+ = max{v, 0} for a real number v. Write

αn = sup
cn∈[a,b]n

sup
x≥0

P (
∑n

k=1 ckXk > x)∑n
k=1 P (ckXk > x)

.

Consider the tail probability of the weighted sum
∑n+1

k=1 ckXk. We can assume that cn+1 =

min{c1, . . . , cn, cn+1} because otherwise we may rearrange the weights without changing

the tail probability. We derive

P

(
n+1∑
k=1

ckXk > x

)

= P

(
n+1∑
k=1

ckXk > x, cn+1Xn+1 ≤ x

)
+ P (cn+1Xn+1 > x)

≤ αn

n∑
k=1

P (ckXk + cn+1Xn+1 > x, cn+1Xn+1 ≤ x) + P (cn+1Xn+1 > x)

= αn

n∑
k=1

(P (ckXk + cn+1Xn+1 > x)− P (cn+1Xn+1 > x)) + P (cn+1Xn+1 > x) ,

where in the second step we deal with the first probability by conditioning on Xn+1 and

applying the definition of αn. By Lemma 2.1, uniformly for (ck, cn+1) ∈ [a, b]2,

P (ckXk + cn+1Xn+1 > x) ∼ P (ckXk > x) + P (cn+1Xn+1 > x) .

Therefore, for any ε > 0, there is a constant A = A(a, b) > 0 irrespective of n such that

P (ckXk + cn+1Xn+1 > x) ≤
(

1 +
ε

2

)
(P (ckXk > x) + P (cn+1Xn+1 > x))

holds for all x > A and all (ck, cn+1) ∈ [a, b]2. It follows that, uniformly for all x > A and

all cn+1 ∈ [a, b]n+1 but cn+1 = min{c1, . . . , cn, cn+1},

P

(
n+1∑
k=1

ckXk > x

)

≤ αn

n∑
k=1

((
1 +

ε

2

)
P (ckXk > x) +

ε

2
P (cn+1Xn+1 > x)

)
+ P (cn+1Xn+1 > x)

≤ (1 + ε)αn

n∑
k=1

P (ckXk > x) + P (cn+1Xn+1 > x)

≤ ((1 + ε)αn + 1)
n+1∑
k=1

P (ckXk > x) .
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This proves that

sup
cn+1∈[a,b]n+1

sup
x>A

P
(∑n+1

k=1 ckXk > x
)∑n+1

k=1 P (ckXk > x)
≤ (1 + ε)αn + 1.

When x ≤ A, it holds uniformly for cn+1 ∈ [a, b]n+1 that

P
(∑n+1

k=1 ckXk > x
)∑n+1

k=1 P (ckXk > x)
≤ 1

P (aX1 > A)
.

Therefore,

αn+1 =

(
sup

cn+1∈[a,b]n+1

sup
x>A

+ sup
cn+1∈[a,b]n+1

sup
0≤x≤A

)
P
(∑n+1

k=1 ckXk > x
)∑n+1

k=1 P (ckXk > x)

≤ (1 + ε)αn + 1 +
1

P (aX1 > A)
.

By the recursive inequality

αn+1 ≤ (1 + ε)αn + 1 +
1

P (aX1 > A)
,

we can deduce the Kesten-type upper bound (2.2) with a suitably chosen constant Cε.

2.2 Proof of Theorem 1.2

We can assume that θ1 is not degenerate at 0 because otherwise we may simply discard

the trivial term θ1X1. Then we can find a small constant δ > 0 such that P (θ1 > δ) > 0.

For an arbitrary index set I ⊂ {1, . . . , n}, denote

∆I(δ) = {ω : θi(ω) ≤ δ whenever i ∈ I while θj(ω) > δ whenever j /∈ I} .

These sets ∆I(δ) indexed by I are disjoint and form a partition of the whole probability

space:

Ω =
⋃

I:I⊂{1,...,n}

∆I(δ).

We derive

P

(
n∑
k=1

θkXk > x

)

≤ P

(
n∑
k=1

θkX
+
k > x

)

= P

(
n∑
k=1

θkX
+
k > x, θ1 > δ, . . . , θn > δ

)
+

∑
I:I⊂{1,...,n},I6=∅

P

(
n∑
k=1

θkX
+
k > x,∆I(δ)

)
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= I1 + I2. (2.3)

Note that all random weights in I1 are bounded away from both 0 and ∞. Thus by

Lemma 2.2, for arbitrarily given ε > 0, we arbitrarily choose some ε ∈ (0, ε) and infer

that there exists a constant Cε,δ > 0 such that

I1 ≤ Cε,δ(1 + ε)n
n∑
k=1

P
(
θkX

+
k > x, θ1 > δ, . . . , θn > δ

)
≤ Cε,δ(1 + ε)n

n∑
k=1

P (θkXk > x) . (2.4)

We deal with I2 as

I2 ≤
∑

I:I⊂{1,...,n},I6=∅

P (∆I(δ))P

(
δ
∑
k∈I

X+
k +

∑
k/∈I

θkX
+
k > x

∣∣∣∣∣∆I(δ)
)
.

The sum in each tail probability above can be regarded as a randomly weighted sum with

random weights bounded away from both 0 and ∞. Thus, by Lemma 2.2 again, we have

I2 ≤
∑

I:I⊂{1,...,n},I6=∅

P (∆I(δ))Cε,δ(1 + ε)n

(∑
k∈I

P (δXk > x) +
∑
k/∈I

P (θkXk > x|∆I(δ))

)

= Cε,δ(1 + ε)n
∑

I:I⊂{1,...,n},I6=∅

(
P (∆I(δ))

∑
k∈I

P (δXk > x) +
∑
k/∈I

P (θkXk > x,∆I(δ))

)
= Cε,δ(1 + ε)n (I21 + I22) . (2.5)

By changing the order of the two sums in I21, we obtain

I21 =
∑

I:I⊂{1,...,n},I6=∅

P (∆I(δ))
∑
k∈I

P (δXk > x)

=
n∑
k=1

P (δXk > x)
∑

I:k∈I⊂{1,...,n}

P (∆I(δ))

≤
n∑
k=1

P (δXk > x)

= n
P (δX1 > x, θ1 > δ)

P (θ1 > δ)

≤ n
P (θ1X1 > x)

P (θ1 > δ)

≤ n

P (θ1 > δ)

n∑
k=1

P (θkXk > x) , (2.6)

6



where the third step is due to
∑
I:k∈I⊂{1,...,n} P (∆I(δ)) ≤ P (Ω) = 1 since the sets ∆I(δ)

for I ⊂ {1, . . . , n} are disjoint. Similarly,

I22 =
∑

I:I⊂{1,...,n},I6=∅

∑
k/∈I

P (θkXk > x,∆I(δ))

=
n∑
k=1

P (θkXk > x, θk > δ, θi ≤ δ for some i = 1, . . . , n)

≤
n∑
k=1

P (θkXk > x) . (2.7)

A simple combination of (2.3)–(2.7) gives

P

(
n∑
k=1

θkXk > x

)
≤ Cε,δ(1 + ε)n

(
n

P (θ1 > δ)
+ 2

) n∑
k=1

P (θkXk > x) .

Since ε ∈ (0, ε), it is easy to see that there is some absolute constant Cε large enough such

that, uniformly for all n ∈ N,

Cε,δ(1 + ε)n
(

n

P (θ1 > δ)
+ 2

)
≤ Cε(1 + ε)n.

The desired inequality (1.4) follows.

3 An application to risk theory

Consider the renewal risk model in which claims of i.i.d. random sizes X1, X2, . . . suc-

cessively arrive at renewal epochs 0 < τ1 < τ2 < · · · , so that the number of claims up to

time t ≥ 0, namely,

Nt = sup {n ∈ N : τn ≤ t} , (3.1)

is an ordinary renewal counting process. Assume that the two sequences {X1, X2, . . .}
and {τ1, τ2, . . .} are mutually independent, and denote by X a generic random variable of

{X1, X2, . . .}.
As usual, for 0 ≤ u ≤ T <∞, denote by p(u, T ) the price at time u of a zero-coupon

bond paying $1 at maturity date T . Assuming the absence of arbitrage of the bond

market, we have

p(u, T ) = EQ
[
e−

∫ T
u rsds

∣∣∣Fu] ,
where Q is a risk-neutral pricing measure under which the expectation is taken, {rs, s ≥ 0}
is the underlying risk-free interest rate assumed to be nonnegative, and {Fs, s ≥ 0} is the

corresponding filtration. The following properties become obvious:

• p(u, u) = 1 for all u ≥ 0;
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• 0 < p(u, T ) ≤ 1 for all 0 ≤ u ≤ T <∞;

• p(u, T ) is non-increasing in T ≥ u.

In the case of a constant force of interest r > 0, we simply have p(u, T ) = e−r(T−u),

but in this application we allow the price function p(u, T ) to be completely general. For

more details of zero-coupon bonds, see Chapter 1 of Cairns (2004) or Chapter 22 of Björk

(2009).

Thus, the aggregate present value of claim amounts up to time t is

St =
Nt∑
k=1

p(0, τk)Xk, t ≥ 0, (3.2)

where in case Nt = 0 the sum is understood as zero. The idea of using the bond price

function to discount future values is commonly used in the finance literature; see e.g.

Section 2 of Liang and Zariphopoulou (2017).

The following result gives a precise asymptotic formula for the tail probability of St,

which is consistent with, but neither implies nor is implied by, Theorem 2.1 of Li et al.

(2010). The assumption P (τ1 ≤ t) > 0 is merely to avoid triviality; otherwise, E[Nt] = 0.

Theorem 3.1 Consider the aggregate present value (3.2) under the renewal framework

described above. If F ∈ S, then for any t > 0 such that P (τ1 ≤ t) > 0, we have

P (St > x) ∼
∫ t

0

F

(
x

p(0, s)

)
dE[Ns].

Proof. For an arbitrarily fixed positive integerM , we divide the tail probability P (St > x)

into two parts as

P (St > x) =

(
M∑
n=1

+
∞∑

n=M+1

)
P

(
n∑
k=1

p(0, τk)Xk > x,Nt = n

)
= J1 + J2. (3.3)

By the independence between {X1, X2, . . .} and {τ1, τ2, . . .}, we can apply Theorem 1.1

to obtain

J1 ∼
M∑
n=1

n∑
k=1

P (p(0, τk)Xk > x,Nt = n)

=

(
∞∑
n=1

n∑
k=1

−
∞∑

n=M+1

n∑
k=1

)
P (p(0, τk)Xk > x,Nt = n)

= J11 − J12. (3.4)

By changing the order of the two sums in J11, we have

J11 =
∞∑
k=1

∞∑
n=k

P (p(0, τk)Xk > x,Nt = n)
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=
∞∑
k=1

P (p(0, τk)Xk > x,Nt ≥ k)

=
∞∑
k=1

P (p(0, τk)Xk > x, τk ≤ t)

=
∞∑
k=1

∫ t

0

F

(
x

p(0, s)

)
P (τk ∈ ds)

=

∫ t

0

F

(
x

p(0, s)

)
dE[Ns], (3.5)

where the last step is due to E[Ns] =
∑∞

k=1 P (τk ≤ s) for s ≥ 0. For x > 0, by the

monotonicity of the zero-coupon bond price p(0, ·), we have

J12 =
∞∑

n=M+1

n∑
k=1

P (p(0, τk)Xk > x,Nt = n)

≤
∞∑

n=M+1

n∑
k=1

P (p(0, τ1)Xk > x,Nt = n)

=
∞∑

n=M+1

n∑
k=1

∫ t

0

P (p(0, s)Xk > x)P (Nt−s = n− 1)P (τ1 ∈ ds)

=

∫ t

0

F

(
x

p(0, s)

)( ∞∑
n=M+1

nP (Nt−s = n− 1)

)
P (τ1 ∈ ds)

=

∫ t

0

F

(
x

p(0, s)

)(
E (Nt−s + 1) 1(Nt−s≥M)

)
P (τ1 ∈ ds)

≤ E (Nt + 1) 1(Nt≥M)

∫ t

0

F

(
x

p(0, s)

)
dE[Ns].

Since ENt < ∞, for arbitrarily fixed small δ > 0 we can find some M ∈ N large enough

such that

J12 ≤ δ

∫ t

0

F

(
x

p(0, s)

)
dE[Ns]. (3.6)

Next we deal with J2 in (3.3). For arbitrarily fixed small ε > 0, by the independence

between {X1, X2, . . .} and {τ1, τ2, . . .}, we apply Theorem 1.2 to obtain

J2 ≤ Cε

∞∑
n=M+1

(1 + ε)n
n∑
k=1

P (p(0, τk)Xk > x,Nt = n) .

Then following the treatment on J12 above, we derive

J2 ≤ Cε

∞∑
n=M+1

(1 + ε)n
n∑
k=1

P (p(0, τ1)Xk > x,Nt = n)

9



= Cε

∞∑
n=M+1

(1 + ε)n
n∑
k=1

∫ t

0

P (p(0, s)Xk > x)P (Nt−s = n− 1)P (τ1 ∈ ds)

= Cε

∫ t

0

F

(
x

p(0, s)

)( ∞∑
n=M+1

n(1 + ε)nP (Nt−s = n− 1)

)
P (τ1 ∈ ds)

= Cε

∫ t

0

F

(
x

p(0, s)

)(
E (Nt−s + 1) (1 + ε)Nt−s+11(Nt−s≥M)

)
P (τ1 ∈ ds)

≤ Cε
(
E (Nt + 1) (1 + ε)Nt+11(Nt≥M)

) ∫ t

0

F

(
x

p(0, s)

)
dE[Ns].

By Theorem 1 of Kočetova et al. (2009), there is always some b > 1 such that EbNt <∞.

Thus, for small ε, δ > 0, we can find some M ∈ N large enough such that

J2 ≤ δ

∫ t

0

F

(
x

p(0, s)

)
dE[Ns]. (3.7)

Finally, a simple combination of (3.3)–(3.7), by the arbitrariness of δ > 0, gives the desired

result.
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