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Abstract
The tail behavior of randomly weighted sums has become an increasingly in-

teresting topic in applied probability and this study has played an important role
in a few problems in insurance, finance, and risk management. In this paper, we
extend the study to the case of non-standard bivariate regular variation and, as
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claims (without interest rate, with a constant force of interest, or with stochastic
investment returns).

Keywords: bivariate regular variation; randomly weighted sums; asymptotics;
limit measure; aggregate claims

MSC 2010: Primary 91B30; Secondary: 62P05, 62E20
JEL classification: G220; C460; G320

1 Introduction

The tail behavior of randomly weighted sums has become an increasingly interesting topic

in applied probability and this study has played an important role in a few problems in

insurance, finance, and risk management. See Resnick and Willekens (1991), Tang and

Tsitsiashvili (2003b), Goovaerts et al. (2005), Hult and Samorodnitsky (2008), Zhang et

al. (2009), Fougeres and Mercadier (2012), Olvera-Cravioto (2012), and Tang and Yuan

(2014), to name a few that are closely related to the current study.

Let {Xi; i ∈ N} be a sequence of independent, identically distributed (i.i.d.), and

nonnegative random variables with generic random variable X, and let {ξi; i ∈ N} be

another sequence of nonnegative dependent random variables, independent of the former

random variables. This study focuses on the tail behavior of

S∞ =
∞∑
i=1

ξiXi, (1.1)

∗Corresponding author: Yang Yang
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usually under a heavy-tailed condition on X and suitable moment conditions on {ξi; i ∈
N}. In (1.1), if each Xi is interpreted as the amount of a benefit or a claim during period

i and each ξi as the stochastic present value factor over the first i periods, then S∞ is

interpreted as the aggregate stochastic present value (time 0 equivalent value) of future

benefits (namely, a perpetuity) or of future claims, which is often a key quantity to analyze

in risk theory.

A well-known result in this study, which corresponds to the univariate case of Theorem

2.1 of Resnick and Willekens (1991), is the following:

Proposition 1.1 Assume that X ∈ RV−α for some α > 0 (see Section 2 for its definition)

and that {ξi; i ∈ N} satisfy the following moment conditions (which we denote as Mα for

convenience to quote later):

• in case α ∈ (0, 1),
∑∞

i=1E
[
max

{
ξα−εi , ξα+εi

}]
<∞ for some small ε > 0;

• in case α ∈ [1,∞),
∑∞

i=1

(
E
[
max

{
ξα−εi , ξα+εi

}]) 1
α+ε <∞ for some small ε > 0.

Then

lim
x→∞

P (S∞ > x)

P (X > x)
=
∞∑
i=1

E [ξαi ] . (1.2)

Such an asymptotic result has immediate implications for a few problems in insurance,

finance, and risk management. For example, in risk theory, for various cases with heavy-

tailed insurance claims and with/without risky investments, the probability of ruin usually

has the same asymptotic behavior as P (S∞ > x), and thus relation (1.2) readily shows

an approximation P (X > x)
∑∞

i=1E [ξαi ] for the probability of ruin. See, for example,

Tang (2005) for such a treatment; see also Paulsen (2008) and Asmussen and Albrecher

(2010) for reviews of some early works on this study.

For another example, following the aforementioned interpretation of S∞ as the ag-

gregate stochastic present value of future insurance claims, the randomly weighted sum

in (1.1) serves as an effective platform for the interplay of two fundamental risk sources

faced by nowadays insurance business, namely, insurance risk caused by insurance claims

and financial risk due to risky investments. In this way, S∞ becomes a risk management

tool. The study of its tail behavior lends important insights on the control of both risks

to an insurance risk manager who manages its insurance and investment portfolios for

maximizing gains. Originating from the time-honored subject of portfolio optimization

in finance, it has developed to be an active research topic in insurance, so called portfolio

optimization under solvency constraints; see Tang and Yuan (2012), Asanga et al. (2014),

and Asimit et al. (2014) for recent discussions on this topic in the insurance context. Un-

der the help of the approximation for P (S∞ > x) as given in (1.2), those tail-related risk

measures such as Value-at-Risk and Tail-Value-at-Risk of S∞, used to describe various

solvency constraints, are readily computable with precision at an acceptable level.
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In this paper, we will extend the study to a bivariate case in which the primary

random variables form a sequence of i.i.d. nonnegative random pairs possessing a non-

standard bivariate regular variation structure, and the random weights are independent

of the primary random variables and satisfy certain moment conditions similar to the one

in Proposition 1.1. As applications, we will interpret the study in various situations in

general insurance. The pursued extension is of vital meaning for academics, practitioners,

and regulators, as in practice every insurance company runs multiple insurance business

lines and it needs to closely monitor and analyze the risk of the multiple lines and allocate

risk capital among them. To keep the paper short, we only consider the bivariate case,

but we would like to point out that the extension to multivariate cases is straightforward.

After establishing two general theoretical results showing the bivariate regular variation

structure for two associated randomly weighted sums, we interpret the results in terms

of a bivariate process of aggregate claims, a bivariate aggregate stochastic present value

process (according to either a constant force of interest or stochastic investment returns)

of future claims, and so on.

The rest of the paper is organized as follows. Section 2 introduces the concepts of uni-

variate and bivariate regular variation, Section 3 establishes as main results the bivariate

regular variation structure for a two associated randomly weighted sums, Section 4 ap-

plies the study to various situations in general insurance and conducts numerical studies

to examine the accuracy of the obtained formulas, and finally Section 5 collects all proofs

of the main results, their corollaries, as well as two needed lemmas.

2 Regular variation

Throughout the paper, all limit relations are according to x→∞ unless otherwise stated.

For two positive functions f1 and f2, write f1 ∼ f2 if lim f1/f2 = 1. For any p, q ∈ R,

write p ∨ q = max{p, q}. For an event A, denote its indicator function by 1A. Denote by

FX the distribution of a random variable X, by FX = 1− FX the tail of X, and so on.

2.1 Univariate regular variation

A positive function f on R+ = [0,∞) is said to be regularly varying at ∞ with index

α ∈ R, written as f ∈ RVα, if

lim
x→∞

f(xy)

f(x)
= yα, y > 0.

When α = 0, this defines a slowly varying function at ∞. See Bingham et al. (1987) and

Resnick (1987) for textbook treatments of regular variation.
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For simplicity, for a random variable X with distribution FX , write

UX(x) =

(
1

FX

)←
(x) = inf

{
y ∈ R :

1

FX(y)
≥ x

}
, x > 0,

where inf ∅ =∞ by convention. We are interested in random variables X with a regularly

tail FX ∈ RV−α for some α > 0, for which case we simply write X ∈ RV−α. This regular

variation can be restated as follows. There exists a limit measure ν non-degenerate (i.e.,

not identically 0) on R+ such that the limit relation

lim
x→∞

xP

(
X

UX(x)
∈ B

)
= ν(B)

holds for every Borel set B ⊂ R+ that is bounded away from 0 and ν-continuous. This

measure ν is actually given by ν(s,∞) = s−α for s > 0 and hence is homogeneous in the

sense that the relation

ν(λ
1
αB) = λ−1ν(B) (2.1)

holds for any λ > 0 and any Borel set B ⊂ R+ that is away from 0.

The well-known Breiman’s theorem states that for two independent nonnegative ran-

dom variables X and ξ, if X ∈ RV−α for some α > 0 and E [ξα+ε] < ∞ for some ε > 0,

then

lim
x→∞

P (ξX > x)

FX(x)
= E [ξα] .

See Breiman (1965) for the original version of the result and see Cline and Samorodnitsky

(1994), Denisov and Zwart (2007), and Fougeres and Mercadier (2012) for related discus-

sions and extensions. To be consistent with the main context of this paper, we rewrite

Breiman’s theorem in terms of UX as

lim
x→∞

xP

(
ξX

UX(x)
> 1

)
= E [ξα] . (2.2)

2.2 Non-standard bivariate regular variation

A nonnegative random pair (X, Y ) is said to follow a non-standard bivariate regular

variation (BRV) structure if there exists a limit measure ν non-degenerate on R2
+ such

that the limit relation

lim
x→∞

xP

((
X

UX(x)
,

Y

UY (x)

)
∈ B

)
= ν(B) (2.3)

holds for every Borel set B ⊂ R2
+ that is bounded away from 0 and ν-continuous. Nec-

essarily, both FX and FY are regularly varying. We assume X ∈ RV−α and Y ∈ RV−β
for some α, β > 0, for which case we write (X, Y ) ∈ BRV−α,−β(ν). If FX and FY are
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identical, so are UX and UY , then relation (2.3) reduces to a standard BRV structure:

with U denoting UX = UY ,

lim
x→∞

xP

(
(X, Y )

U(x)
∈ B

)
= ν(B). (2.4)

Throughout the paper, unless otherwise stated we always simply write BRV but we mean

a non-standard, hence more general, BRV structure. Remarkably, the information of

dependence of (X, Y ) in the upper-right tail is contained in the limit measure ν. It allows

a variety of tail dependence structures for (X, Y ) ranging from asymptotic independence,

asymptotic dependence at a varying degree, to asymptotic full dependence. The reader

is referred to de Haan and Resnick (1981) and Resnick (1987, 2007) for the introduction

and comprehensive treatments of multivariate regular variation.

Very recently, Tang and Xiao (2018) show that, similar to (2.1) in the univariate case,

the limit measure ν in (2.3) possesses a homogeneity property in the sense that, for any

λ > 0 and any Borel set B ⊂ R2
+\{0},

ν(Bλ) = λ−1ν(B), (2.5)

where Bλ = {(λ 1
αp, λ

1
β q) : (p, q) ∈ B}. This is also consistent with the homogeneity

property known for the standard case; for the latter, see, e.g., page 178 in Resnick (2007)

and Theorem 3.1 of Lindskog et al. (2014).

3 BRV of randomly weighted sums

Let {(Xi, Yi); i ∈ N} be a sequence of i.i.d. nonnegative random pairs with generic pair

(X, Y ), interpreted as primary random pairs, and let {ξi, ηi; i ∈ N} be another sequence

of nonnegative dependent random variables, interpreted as random weights, independent

of {(Xi, Yi); i ∈ N}. Write

Sn =
n∑
i=1

ξiXi and Tn =
n∑
i=1

ηiYi, n ∈ N ∪ {∞}. (3.1)

The dependence between Sn and Tn comes from both the intricate dependence struc-

ture between each pair (Xi, Yi) and the arbitrary dependence structure among the random

weights. We have restricted the pairs (Xi, Yi) to be nonnegative, but we would like to

point out that the whole work, subject to some minor and obvious adjustments, is valid

for real-valued random pairs (Xi, Yi).

Here comes our first main result:

Theorem 3.1 Assume that (X, Y ) ∈ BRV−α,−β(ν) for some α, β > 0 and that E
[
ξα+εi

]
+

E
[
ηβ+εi

]
< ∞ for some ε > 0. Then, for each n ∈ N, the random pair (Sn, Tn) still
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possesses BRV−α,−β(ν̃) with the limit measure ν̃ characterized by, for (p, q) > 0,

ν̃[0, (p, q)]c =
1

pα

n∑
i=1

E [ξαi ] +
1

qβ

n∑
i=1

E
[
ηβi

]
−

n∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
. (3.2)

By Lemma 5.2, each weighted pair (ξiXi, ηiYi) possesses BRV−α,−β(ν̃i) with the limit

measure ν̃i characterized by, for (p, q) > 0,

ν̃i[0, (p, q)]
c =

1

pα
E [ξαi ] +

1

qβ
E
[
ηβi

]
− E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
.

Thus, the limit measure ν̃ of the BRV structure of (Sn, Tn) satisfies

ν̃ =
n∑
i=1

ν̃i.

In the next result we extend Theorem 3.1 to n =∞, which is crucially important for

our applications.

Theorem 3.2 Assume that (X, Y ) ∈ BRV−α,−β(ν) for some α, β > 0 and that {ξi; i ∈ N}
and {ηi; i ∈ N} satisfy the moment conditions Mα and Mβ introduced in Proposition 1.1,

respectively. Then the random pair (S∞, T∞) still possesses BRV−α,−β(ν̃) with the limit

measure ν̃ characterized by, for (p, q) > 0,

ν̃[0, (p, q)]c =
1

pα

∞∑
i=1

E [ξαi ] +
1

qβ

∞∑
i=1

E
[
ηβi

]
−
∞∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
. (3.3)

A recent study on the topic is Li (2018). As is easily seen, our main results are

related to but different from the corresponding results in Li (2018) in several ways. An

essential difference exists in that the latter, although considering slightly more general

distribution classes than the regular variation class, assumes that X and Y are so-called

strongly asymptotically independent, while our study is concentrated on the asymptotic

dependence case.

4 Applications to general insurance

4.1 A bivariate risk model

In this section we show various situations in general insurance where the BRV struc-

ture is preserved under randomly weighted sums. Consider a general insurance business

consisting of two business lines, each generating a flow of claims to be described below.

Suppose that accidents under the insurance coverage occur successively at epochs

0 ≤ τ1 ≤ τ2 ≤ · · · , constituting a general counting process

Nt = sup {n ∈ N : τn ≤ t} , t ≥ 0,
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where sup ∅ = 0 by convention. Clearly, its mean function is given by

E[Nt] =
∞∑
i=1

P (Nt ≥ i) =
∞∑
i=1

P (τi ≤ t) .

Among the simplest are homogeneous, nonhomogeneous, and mixed Poisson processes (the

latter also known as a Cox process), for which cases the mean function takes an explicit

expression. Certain renewal counting processes with i.i.d. interarrival times having a

phase-type distribution (of which the Erlang distribution is a special case) also admit an

explicit expression for the mean function E[Nt]; see, e.g., Asmussen (2003).

Suppose that each accident i simultaneously causes two types of claims, Xi and Yi. As

we will use nonnegative random variables to model these claims, in case only one type of

claim is caused, the other type of claim is recorded as zero. Another explanation is that

accident i causes one loss that is however split into two parts, Xi and Yi, to be covered

separately by the two lines of the business.

Such a bivariate risk model has been extensively explored in risk theory; see Chan et

al. (2003), Cai and Li (2005, 2007), Li et al. (2007), Chen et al. (2011), Hu et al. (2013),

Yang and Li (2014) and Foss et al. (2017), to name a few.

Throughout this section, assume that {(Xi, Yi); i ∈ N} is a sequence of i.i.d. nonnega-

tive random pairs, with generic pair (X, Y ), independent of the general counting process

{Nt; t ≥ 0}.

4.2 In a world without economic factors

Consider the bivariate risk model introduced above in a world without economic factors.

Then the aggregate amounts of claims of the two types by time t are, respectively,

SNt =
Nt∑
i=1

Xi and TNt =
Nt∑
i=1

Yi, t ≥ 0. (4.1)

The dependence between SNt and TNt comes from both the common counting process

Nt shared by the two lines and the intricate dependence structure between each pair

(Xi, Yi).

Corollary 4.1 Assume (X, Y ) ∈ BRV−α,−β(ν) for some α, β > 0 and 0 < E[Nγ
t ] < ∞

for some γ > α∨β∨1. Then the random pair (SNt , TNt) still possesses BRV−α,−β(ν̃) with

the limit measure ν̃ characterized by, for (p, q) > 0,

ν̃[0, (p, q)]c = E[Nt]

(
1

pα
+

1

qβ
− ν ((p, q) ,∞]

)
. (4.2)

For an insurer who operates two business lines, given that one line runs into financial

stress, the insurer should be keen to whether or not the other line will run into financial
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stress too. Formally, denote by P ∗ such a conditional probability that line two runs into

financial stress given that line one has already. If the random pair (SNt , TNt) possesses

BRV−α,−β(ν̃), then it holds for any fixed (p, q) > 0 that

P ∗ = lim
x→∞

P (TNt > qUY (x)|SNt > pUX(x))

= lim
x→∞

xP (SNt > pUX(x), TNt > qUY (x))

xP (SNt > pUX(x))

=
ν̃ ((p, q),∞]

ν̃ ((p, 0),∞]
. (4.3)

Under the conditions of Corollary 4.1, plugging into (4.3) the limit measure ν̃ characterized

by (4.2) yields

P ∗ =
E[Nt]ν ((p, q),∞]

E[Nt]p−α
= pαν ((p, q),∞] .

4.3 In the presence of a constant force of interest

We continue to consider the bivariate risk model introduced in Subsection 4.1, and we

now introduce a constant force of interest r to the model; that is, one dollar invested now

becomes ert dollars at time t ≥ 0, or one dollar at time t ≥ 0 is equivalent to e−rt dollar at

time 0. Then the aggregate stochastic present values of claims of the two types by time t

are, respectively,

SNt =
Nt∑
i=1

e−rτiXi and TNt =
Nt∑
i=1

e−rτiYi, t ≥ 0. (4.4)

Corollary 4.2 Under the conditions of Corollary 4.1, the random pair (SNt , TNt) still

possesses BRV−α,−β(ν̃) with the limit measure ν̃ characterized by, for (p, q) > 0,

ν̃[0, (p, q)]c =

∫ t

0−

(
1

pαeαrs
+

1

qβeβrs
− ν ((pers, qers) ,∞]

)
dE[Ns]. (4.5)

If (X, Y ) follows the standard BRV structure (2.4) so that α = β, the homogeneity

property (2.1) of ν implies that ν ((pers, qers) ,∞] = e−αrsν ((p, q) ,∞]. Thus, the limit

measure given by (4.5) is simplified to

ν̃[0, (p, q)]c =

(
1

pα
+

1

qα
− ν ((p, q) ,∞]

)∫ t

0−
e−αrsdE[Ns].

Still consider the conditional probability P ∗ in (4.3). In the current situation of Corol-

lary 4.2, plugging into (4.3) the limit measure ν̃ characterized by (4.5) yields

P ∗ =

∫ t
0− ν ((pers, qers) ,∞] dE[Ns]∫ t

0− p
−αe−αrsdE[Ns]

.

Similarly to the above, under the standard BRV structure (2.4) for (X, Y ), this can be

simplified to

P ∗ = pαν ((p, q),∞] .
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4.4 In the presence of stochastic returns on risky investments

Now suppose that the insurer makes investments into some risk-free and risky assets and

earns stochastic returns. Denote by AXi and AYi the stochastic accumulation factors of

the two lines based on respective overall returns over each period i. Note that both AXi
and AYi are positive random variables. Then

ξi =

(
i∏

j=1

AXj

)−1
and ηi =

(
i∏

j=1

AYj

)−1
, i ∈ N, (4.6)

represent the stochastic present value factors of the two lines, respectively, over the first

i periods. Furthermore, the randomly weighted sums

Sn =
n∑
i=1

ξiXi and Tn =
n∑
i=1

ηiYi, n ∈ N ∪ {∞},

represent the aggregate stochastic present values of the claims along the two lines, re-

spectively, within the first n periods. This discrete-time risk model has been extensively

explored in risk theory after the work of Tang and Tsitsiashvili (2003a), but most of the

study focuses on the one-dimensional case only.

Considering that the two business lines coexist in the same external economic envi-

ronment, it now becomes crucially important to allow ξi and ηi for i ∈ N defined in (4.6)

to be arbitrarily dependent on each other, of which we have taken care throughout this

study. In conclusion, Theorems 3.1–3.2 are readily applicable to this situation and yield

the BRV structure of (Sn, Tn) for n ∈ N ∪ {∞}.
The expressions (3.2)–(3.3) for the limit measure given by Theorems 3.1–3.2, especially

the last terms, are rather involved for the general case. Now we show a special case which

admits a substantial simplification. Assume that the accumulation factors AXi and AYi
for both lines are identical, so are the stochastic present value factors ξi and ηi. This

assumption would be acceptable if the insurer collects gains from both lines and makes

investments all together. Further assume that (X, Y ) follows the standard BRV structure

(2.4) so that α = β, for which case the homogeneity property (2.1) of ν implies that

E

[
ν

((
p

ξi
,
q

ξi

)
,∞

]]
= E [ξαi ] ν ((p, q) ,∞] , i ∈ N.

Thus, the expressions (3.2)–(3.3) for the limit measure ν̃ are simplified to

ν̃[0, (p, q)]c =

(
1

pα
+

1

qα
− ν ((p, q) ,∞]

) n∑
i=1

E [ξαi ] , n ∈ N ∪ {∞}.

In this idealized situation, the conditional probability P ∗ as that in (4.3) again takes the

form

P ∗ = lim
x→∞

P (Tn > qUY (x)|Sn > pUX(x)) =
ν̃ ((p, q),∞]

ν̃ ((p, 0),∞]
= pαν ((p, q),∞] .
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4.5 Numerical studies

In this subsection we conduct numerical studies to examine the accuracy of the asymptotic

expressions for P ∗ defined in (4.3) in Subsections 4.2–4.3. For this purpose, we compare

the conditional tail probability P (TNt > qUY (x)|SNt > pUX(x)) obtained by crude Monte

Carlo (CMC) simulation with the limit P ∗ = pαν ((p, q),∞] obtained by the asymptotic

formula.

As can be easily verified, a random pair (X, Y ) possessing a Gumbel copula and

regularly varying marginal tails follows the BRV structure (2.3); see also Subsection 5.1

of Tang and Yuan (2003) and Section 4 of Tang and Yang (2018). Recall that a Gumbel

copula is of the form

C(u, v) = exp
{
− ((− log u)ρ + (− log v)ρ)

1
ρ

}
, (u, v) ∈ [0,1],

where the parameter ρ ≥ 1 controls the strength of the tail dependence. Let X and Y

follow Pareto distributions

FX(x) = 1−
(

θ1
x+ θ1

)α
, FY (x) = 1−

(
θ2

x+ θ2

)β
, x > 0,

with parameters α, β, θ1, θ2 > 0, so that FX ∈ RV−α and FY ∈ RV−β. Then (X, Y ) ∈
BRV−α,−β(ν) with the limit measure ν satisfying

ν[0, (p, q)]c =
(
p−αρ + q−βρ

) 1
ρ , (p, q) > 0;

see Tang and Yuan (2003) or Tang and Yang (2018).

Furthermore, the counting process {Nt; t ≥ 0} is specified to a Poisson process with

intensity λ > 0.

We first consider the risk model without economic factors in Subsection 4.2. The

various parameters are set to:

• ρ = 9;

• α = 1.6, β = 1.3, θ1 = θ2 = 10;

• λ = 100, t = 10;

• (p, q) = (0.2, 0.3).

The asymptotic estimate P ∗ = pαν ((p, q),∞] is computed by numerical integration and

calculated to be 0.36. For the CMC estimation, we first generate the value of Nt and then

generate m samples {(X(k)
i , Y

(k)
i ); i = 1, . . . , Nt} for k = 1, . . . ,m. The conditional tail

probability P (TNt > qUY (x)|SNt > pUX(x)) is estimated by∑m
k=1 1(

S
(k)
Nt
>pUX(x),T

(k)
Nt

>qUY (x)
)∑m

k=1 1(
S
(k)
Nt
>pUX(x)

) ,
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where the random pairs (S
(k)
Nt
, T

(k)
Nt

) for k = 1, . . . ,m are i.i.d. copies of (SNt , TNt) defined

by (4.1).

In Figure 4.1, we compare the CMC estimate for P (TNt > qUY (x)|SNt > pUX(x)) with

the asymptotic estimate P ∗ = pαν ((p, q),∞] given by (4.3) on the left and show their

ratio on the right. The CMC simulation is conducted with a sample of size m = 108. From

the figure, we see that as x increases from 107.5 to 109.5 the conditional tail probability

gradually becomes close to the asymptotic estimate. The fluctuation when x is large is

due to the poor performance of the CMC method.
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Figure 4.1: Comparison of the simulated conditional tail probability with the asymptotic
estimate in Subsection 4.2

We next consider the risk model with a constant force of interest r in Subsection 4.3.

The various parameters are set to:

• ρ = 8;

• α = β = 1.4, θ1 = θ2 = 10;

• λ = 100, t = 30;

• r = 0.05;

• (p, q) = (0.2, 0.3).

The asymptotic estimate P ∗ = pαν ((p, q),∞] is computed by numerical integration and

calculated to be 0.52. The procedure of the simulated estimation with (SNt , TNt) defined

by (4.4) is similar to the previous case.

In Figure 4.2, we compare the CMC estimate for P (TNt > qUY (x)|SNt > pUX(x)) with

the asymptotic estimate P ∗ = pαν ((p, q),∞] on the left and show their ratio on the right.

The simulated estimate is obtained with a sample of size m = 108 and x from 107 to 1010.
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Figure 4.2: Comparison of the simulated conditional tail probability with the asymptotic
estimate in Subsection 4.3

5 Proofs

5.1 Lemmas

The following lemma can be easily proven by applying Breiman’s theorem as quoted in

(2.2); see also Lemma 7 of Tang and Yuan (2014) for a slightly extended version:

Lemma 5.1 Let X ∈ RV−α for some α > 0, let ξ be a nonnegative random variable with

E [ξα+ε] < ∞ for some ε > 0, let {∆x;x ∈ R+} be a set of random events satisfying

limx→∞ P (∆x) = 0, and let {ξ, {∆x;x ∈ R+}} be independent of X. Then

lim
x→∞

xP

(
ξX

UX(x)
> 1,∆x

)
= 0.

The following lemma shows that the BRV structure can be preserved when being

randomly weighted. The lemma extends Proposition A.1 of Basrak et al. (2002) and

Theorem 1 of Fougeres and Mercadier (2012) to the non-standard case.

Lemma 5.2 Let two nonnegative random pairs (X, Y ) and (ξ, η) be independent of each

other. If (X, Y ) ∈ BRV−α,−β(ν) for some α, β > 0 and E [ξα+ε] +E
[
ηβ+ε

]
<∞ for some

ε > 0, then the random pair (ξX, ηY ) still possesses BRV−α,−β(ν̃) with the limit measure

ν̃ characterized by, for (p, q) > 0,

ν̃[0, (p, q)]c =
E [ξα]

pα
+
E
[
ηβ
]

qβ
− E

[
ν

((
p

ξ
,
q

η

)
,∞

]]
.

Proof. It follows straightforwardly from Breiman’s theorem as quoted in (2.2) that

lim
x→∞

xP

(
ξX

UX(x)
> p

)
=
E [ξα]

pα
, lim

x→∞
xP

(
ηY

UY (x)
> q

)
=
E
[
ηβ
]

qβ
. (5.1)

12



Moreover, for arbitrarily fixed M > 0, we do the split

xP

(
ξX

UX(x)
> p,

ηY

UY (x)
> q

)
= xP

(
ξX

UX(x)
> p,

ηY

UY (x)
> q, (ξ ≤M) ∩ (η ≤M)

)
+xP

(
ξX

UX(x)
> p,

ηY

UY (x)
> q, (ξ > M) ∪ (η > M)

)
= I1 + I2.

For I1, by the dominated convergence theorem,

lim
x→∞

I1 = lim
x→∞

∫∫
0<y,z≤M

xP

(
yX

UX(x)
> p,

zY

UY (x)
> q

)
P (ξ ∈ dy, η ∈ dz)

=

∫∫
0<y,z≤M

lim
x→∞

xP

(
yX

UX(x)
> p,

zY

UY (x)
> q

)
P (ξ ∈ dy, η ∈ dz)

=

∫∫
0<y,z≤M

ν

((
p

y
,
q

z

)
,∞

]
P (ξ ∈ dy, η ∈ dz)

→ E

[
ν

((
p

ξ
,
q

η

)
,∞

]]
, M ↑ ∞.

For I2, by Breiman’s theorem,

I2 ≤ xP

(
ξX

UX(x)
> p, ξ > M

)
+ xP

(
ηY

UY (x)
> q, η > M

)
→ 1

pα
E
[
ξα1(ξ>M)

]
+

1

qβ
E
[
ηβ1(η>M)

]
→ 0, M ↑ ∞.

It follows that

lim
x→∞

xP

(
ξX

UX(x)
> p,

ηY

UY (x)
> q

)
= E

[
ν

((
p

ξ
,
q

η

)
,∞

]]
.

Combining this with the two relations in (5.1), we obtain

lim
x→∞

xP

((
ξX

UX(x)
,
ηY

UY (x)

)
∈ [0, (p, q)]c

)
=
E [ξα]

pα
+
E
[
ηβ
]

qβ
− E

[
ν

((
p

ξ
,
q

η

)
,∞

]]
.

This concludes the proof.

5.2 Proof of Theorem 3.1

By some well-known results in the study of randomly weighted sums, we have

lim
x→∞

xP

(
Sn

UX(x)
> p

)
=

1

pα

n∑
i=1

E [ξαi ] , lim
x→∞

xP

(
Tn

UY (x)
> q

)
=

1

qβ

n∑
i=1

E
[
ηβi

]
;

13



see, e.g., Theorem 3 of Tang and Yuan (2014). Now we are going to prove that

lim
x→∞

xP

(
Sn

UX(x)
> p,

Tn
UY (x)

> q

)
=

n∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
. (5.2)

To derive the upper bound for (5.2), for arbitrarily fixed small δ > 0 write

A =

(
n∨
i=1

ξiXi

UX(x)
> (1− δ)p

)
, B =

(
n∨
i=1

ηiYi
UY (x)

> (1− δ)q

)
.

In terms of these sets, we do the split

xP

(
Sn

UX(x)
> p,

Tn
UY (x)

> q

)
≤ xP

(
Sn

UX(x)
> p,

Tn
UY (x)

> q,A ∩B
)

+xP

(
Sn

UX(x)
> p,

Tn
UY (x)

> q,Ac
)

+xP

(
Sn

UX(x)
> p,

Tn
UY (x)

> q,Bc

)
= I1 + I2 + I3. (5.3)

For I1, we have

I1 ≤ xP (A ∩B)

≤
n∑
i=1

n∑
j=1

xP

(
ξiXi

UX(x)
> (1− δ)p, ηjYj

UY (x)
> (1− δ)q

)
=

∑
1≤i=j≤n

+
∑

1≤i 6=j≤n

. (5.4)

By Lemma 5.2, each term in the sum
∑

1≤i=j≤n satisfies

lim
x→∞

xP

(
ξiXi

UX(x)
> (1− δ)p, ηiYi

UY (x)
> (1− δ)q

)
= E

[
ν

((
(1− δ)p

ξi
,
(1− δ)q

ηi

)
,∞

]]
.

Note that for each term in the sum
∑

1≤i 6=j≤n the product ηjYj is independent of Xi. By

Lemma 5.1, we have

lim
x→∞

xP

(
ξiXi

UX(x)
> (1− δ)p, ηjYj

UY (x)
> (1− δ)q

)
= 0.

Plugging these two estimates into (5.4) yields

lim sup
x→∞

I1 ≤
n∑
i=1

E

[
ν

((
(1− δ)p

ξi
,
(1− δ)q

ηi

)
,∞

]]

≤
n∑
i=1

E

[
ν

((
(1− δ)α∨βα p

ξi
,
(1− δ)

α∨β
β q

ηi

)
,∞

]]
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= (1− δ)−(α∨β)
n∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
→

n∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
, δ ↓ 0, (5.5)

where the second step is due to the fact that the set
((

sp
ξi
, sq
ηi

)
,∞

]
increases as s > 0

decreases, and the third step due to the homogeneity property (2.5) of ν. For I2, it holds

that

I2 ≤ xP

(
Sn

UX(x)
> p,Ac

)
= xP

(
Sn

UX(x)
> p,

n∨
i=1

ξiXi

UX(x)
>
p

n
,
n∨
j=1

ξjXj

UX(x)
≤ (1− δ)p

)

≤
n∑
i=1

xP

(
ξiXi

UX(x)
>
p

n
,

n∑
k=1,k 6=i

ξkXk

UX(x)
> δp

)
→ 0, (5.6)

where the last step is due to Lemma 5.1 again. In the same way,

lim
x→∞

I3 = 0. (5.7)

Plugging the estimates of (5.5)–(5.7) into (5.3) yields the upper bound for (5.2).

Next we derive the lower bound for (5.2). Write

Ci =

(
ξiXi

UX(x)
> p,

ηiYi
UY (x)

> q

)
, i = 1, . . . , n.

Since {(Xi, Yi); i ∈ N} are nonnegative, applying Bonferroni’s inequality leads to

xP

(
Sn

UX(x)
> p,

Tn
UY (x)

> q

)
≥ xP

(
n⋃
i=1

Ci

)

≥
n∑
i=1

xP (Ci)−
∑

1≤i<j≤n

xP (Ci ∩ Cj)

= J1 − J2. (5.8)

For J1, applying Lemma 5.2 we have

lim
x→∞

J1 =
n∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
. (5.9)

For J2 in (5.8), similarly to (5.6), each term in it is no more than

xP

(
ξiXi

UX(x)
> p,

ηjYj
UY (x)

> q

)
→ 0
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by Lemma 5.1. Hence,

lim
x→∞

J2 = 0. (5.10)

Plugging the estimations of (5.9)–(5.10) into (5.8) yields the lower bound for (5.2).

5.3 Proof of Theorem 3.2

Applying Proposition 1.1 to both sums S∞ and T∞, we have, respectively,

lim
x→∞

xP

(
S∞

UX(x)
> p

)
=

1

pα

∞∑
i=1

E [ξαi ] ,

lim
x→∞

xP

(
T∞
UY (x)

> q

)
=

1

qβ

∞∑
i=1

E
[
ηβi

]
.

Thus, it remains to prove that

lim
x→∞

xP

(
S∞

UX(x)
> p,

T∞
UY (x)

> q

)
=
∞∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
. (5.11)

The finiteness of the sum in (5.11) can be verified as follows:

∞∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
≤

∞∑
i=1

E

[
ν

((
p

ξi
, 0

)
,∞

]]
= p−αν ((1, 0) ,∞]

∞∑
i=1

E [ξαi ]

< ∞.

By relation (5.2), it holds for arbitrarily fixed n ∈ N that

xP

(
S∞

UX(x)
> p,

T∞
UY (x)

> q

)
≥ xP

(
Sn

UX(x)
> p,

Tn
UY (x)

> q

)
→

n∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
→

∞∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
, n ↑ ∞,

giving the lower bound for (5.11). Now we aim at the corresponding upper bound. For

arbitrarily fixed n ∈ N and ε ∈ (0, 1), we derive

xP

(
S∞

UX(x)
> p,

T∞
UY (x)

> q

)
≤ xP

(
Sn

UX(x)
> (1− ε)p, Tn

UY (x)
> (1− ε)q

)
+xP

(∑∞
i=n+1 ξiXi

UX(x)
> εp

)
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+xP

(∑∞
i=n+1 ηiYi

UY (x)
> εq

)
= K1 +K2 +K3.

Applying Theorem 3.1 and then following (5.5), we have

lim
x→∞

K1 =
n∑
i=1

E

[
ν

((
(1− ε)p

ξi
,
(1− ε)q

ηi

)
,∞

]]
≤ (1− ε)−(α∨β)

n∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
→

n∑
i=1

E

[
ν

((
p

ξi
,
(q

ηi

)
,∞

]]
, ε ↓ 0.

By Proposition 1.1,

lim
x→∞

K2 =
1

pα

∞∑
i=n+1

E [ξαi ]→ 0, n ↑ ∞;

lim
x→∞

K3 =
1

qβ

∞∑
i=n+1

E
[
ηβi

]
→ 0, n ↑ ∞.

Putting these together, we obtain

lim sup
x→∞

xP

(
S∞

UX(x)
> p,

T∞
UY (x)

> q

)
≤

∞∑
i=1

E

[
ν

((
p

ξi
,
(q

ηi

)
,∞

]]
,

as desired.

5.4 Proof of Corollary 4.1

Rewrite the random pair (SNt , TNt) as

(SNt , TNt) =

(
∞∑
i=1

1(Nt≥i)Xi,

∞∑
i=1

1(Nt≥i)Yi

)
,

which becomes a pair of randomly weighted sums (3.1) with random weights ξi = ηi =

1(Nt≥i) for i ∈ N. Thus, the current proof is merely a validation of Theorem 3.2. The

limit measure given by (3.2) becomes

ν̃[0, (p, q)]c =
1

pα

∞∑
i=1

E [ξαi ] +
1

qβ

∞∑
i=1

E
[
ηβi

]
−
∞∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
=

1

pα

∞∑
i=1

E
[
1(Nt≥i)

]
+

1

qβ

∞∑
i=1

E
[
1(Nt≥i)

]
−
∞∑
i=1

E
[
ν ((p, q) ,∞] 1(Nt≥i)

]
17



= E[Nt]

(
1

pα
+

1

qβ
− ν ((p, q) ,∞]

)
.

It remains to verify the moment conditions Mα and Mβ (introduced in Proposition 1.1)

on the random weights. In case α ∈ (0, 1), for any small ε > 0,

∞∑
i=1

E
[
ξα−εi ∨ ξα+εi

]
=
∞∑
i=1

E
[
1(Nt≥i)

]
= E[Nt] <∞.

In case α ∈ [1,∞), for any small ε > 0 such that γ > α + ε,

∞∑
i=1

(
E
[
ξα−εi ∨ ξα+εi

]) 1
α+ε =

∞∑
i=1

(P (Nt ≥ i))
1

α+ε

≤
∞∑
i=1

(
E[Nγ

t ]

iγ

) 1
α+ε

= (E[Nγ
t ])

1
α+ε

∞∑
i=1

i−
γ
α+ε <∞,

where the second step applies Markov’s inequality. This verifies Mα. The other condition

Mβ can be verified in the same way.

5.5 Proof of Corollary 4.2

Rewrite the random pair (SNt , TNt) as

(SNt , TNt) =

(
∞∑
i=1

e−rτi1(τi≤t)Xi,
∞∑
i=1

e−rτi1(τi≤t)Yi

)
,

which becomes a pair of randomly weighted sums (3.1) with random weights ξi = ηi =

e−rτi1(τi≤t) for i ∈ N. Thus, the current proof is merely another validation of Theorem

3.2. In the limit measure given by (3.2), the first term becomes

1

pα

∞∑
i=1

E [ξαi ] =
1

pα

∞∑
i=1

E
[
e−αrτi1(τi≤t)

]
=

1

pα

∞∑
i=1

∫ t

0−
e−αrsP (τi ∈ ds)

=
1

pα

∫ t

0−
e−αrs

∞∑
i=1

P (τi ∈ ds)

=
1

pα

∫ t

0−
e−αrsdE[Ns].

In the same way, the second term becomes

1

qβ

∞∑
i=1

E
[
ηβi

]
=

1

qβ

∞∑
i=1

E
[
e−βrτi1(τi≤t)

]
=

1

qβ

∫ t

0−
e−βrsdE[Ns],
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and the last term becomes

∞∑
i=1

E

[
ν

((
p

ξi
,
q

ηi

)
,∞

]]
=

∞∑
i=1

E
[
ν ((perτi , qerτi) ,∞] 1(τi≤t)

]
=

∫ t

0−
ν ((pers, qers) ,∞] dE[Ns].

Putting these results together we obtain the limit measure as given. The verifications

of the moment conditions on the random weights are similar to the previous proof and

therefore are omitted.
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