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Abstract

This note extends Hoeffding’s lemma from the covariance between two random variables to
that between transformations of random variables, and provides clarification of several existing
functional generalizations. In the same spirit as these results, an explicit integral formula of
Kendall’s tau for general, possibly discontinuous random variables is also determined.
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1 Introduction

The notion of covariance as a simple reflection of the strength of the linear dependence between two
random variables arises ubiquitously in probability, statistics, and various related areas. Among
the multitude of covariance formulae in the literature, the one that is most intimately linked to the
study of dependence structures and stochastic orders is the formula attributed to Hoeffding (1940).
Hoeffding’s formula, also interchangeably referred to as Hoeffding’s lemma in the sequel, exhibits
the covariance between any square-integrable random variables X and Y as an explicit integral
comparison between their joint survival function and marginal survival functions, i.e.,

Cov[X,Y ] =

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) dxdy. (1.1)

This integral representation (1.1) separates the joint survival function of the random vector (X,Y ),
where information about the dependence structure of (X,Y ) is captured, from the marginal survival
functions.

Since its genesis in Hoeffding (1940), there have been attempts in the literature to extend Ho-
effding’s lemma to transformations of random variables, but most have reached limited success.
Under the assumption of absolutely continuous distributions, Mardia (1967) derived Cov(Xr, Y s)
for r ≥ 1 and s ≥ 1 in conjunction with some special contingency-type bivariate distributions.
Building on the prototypical higher-order generalization of Mardia (1967), Sen (1994) mentioned,
without proof, the adaptation of Hoeffding’s formula to strictly monotone transformations of ran-
dom variables. The generalized formula of Sen (1994) reads (see Equation (2.4) therein)

Cov[f(X), g(Y )] =

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df(x)dg(y), (1.2)

where f and g are strictly monotone functions, and the integrals are presumably interpreted in
the Lebesgue-Stieltjes sense. However, as Section 2 of this article shows, Equation (1.2), albeit
its simplicity and resemblance to (1.1), is generally flawed due to the possible discontinuities of
the functions f and g, and that Lebesgue-Stieltjes integrals are traditionally defined only with
respect to left-continuous or right-continuous non-decreasing integrators. More recently, Cuadras
(2002, 2015) established the validity of (1.2) for continuous random variables and transformations
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of bounded variation. In brief, many of these functional extensions suffer from a faulty formulation
or the imposition of technical continuity assumptions on the underlying random variables or the
transformations, undermining the generality of the intended results and their applicability to real
problems.

Motivated by the profound impact of Hoeffding’s lemma, but limited generality of its existing
functional extensions, this note aims to derive rigorously a series of generalizations of Hoeffding’s
lemma to the covariance between general transformations of general random variables, thereby
correcting Sen (1994)’s conjecture and extending Cuadras (2002)’s formula. As a stepping stone, we
first formulate in Section 2 Hoeffding’s lemma for monotone transformations of random variables.
Apparently distinct from Sen (1994)’s conjectured equation, the generalized covariance formula
in this version turns out to comprise four Lebesgue-Stieltjes integrals with different integrands
and integrators. With the first-step extension to monotone functions at hand, in Section 3 we
further extend Hoeffding’s lemma to a wider class of non-monotone functions, including absolutely
continuous functions and functions of bounded variation. Finally, Section 4 shares the same spirit
as Sections 2 and 3 and presents a closed-form formula for Kendall’s tau for general, possibly
discontinuous random variables.

Throughout this paper, all random variables are defined on a given probability space (Ω,F ,P).
We do not assume a priori the continuity or strict monotonicity of their distribution functions. It
is tacitly assumed, however, that all integrals and covariances exist and are finite.

2 Monotone functions

Before formulating our main results, it is instructive to review the deceptively simple notion of
Lebesgue-Stieltjes integral. Recall that one can associate a given non-decreasing right-continuous
real function f with a measure µf on R defined by

µf ((a, b]) = f(b)− f(a) for a ≤ b, (2.1)

which extends uniquely to the Borel σ-algebra on R. The right-continuity of f is crucial to establish-
ing the countable additivity of µf . An analogous identification can be made if f is non-decreasing
and left-continuous via the formula

µf ([a, b)) = f(b)− f(a) for a ≤ b. (2.2)

Notice that in (2.1), the interval in the argument of µf is open on the left, but closed on the right,
whereas in (2.2) the interval is closed on the left, but open on the right. Such subtle differences will
play a crucial role in the functional generalizations of this paper. For later purposes, we also point
out that the measures defined in (2.1) and (2.2) are σ-finite (see, e.g., Theorem 2.8.1 of Leadbetter
et al. (2014)), which is essential for Fubini’s theorem to be applicable.

Given a non-decreasing left- or right-continuous function f and its associated measure µf , we
define the Lebesgue-Stieltjes integral of a Borel measurable function φ with respect to f by

ˆ
R
φ(x) df(x) :=

ˆ
R
φ(x) dµf (x),

provided that the Lebesgue integral on the right-hand side exists.
To set forth our functional generalizations of Hoeffding’s lemma, we need a technical lemma

which suggests how Lebesgue-Stieltjes integrals with respect to a general (not necessarily left-
continuous or right-continuous) monotone function can be defined unambiguously. Without loss
of generality, we consider non-decreasing functions. Below we denote by f(x+) and f(x−) the
right-hand and left-hand limits of a function f at x.
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Figure 2.1: The construction of fr in the proof of Lemma 2.1 in the case of a single discontinuity
point. The line in bold represents the original function f .

Lemma 2.1. Let f be a non-decreasing real function. There exist a non-decreasing right-continuous
function fr and a non-decreasing left-continuous function fl such that f = fr + fl.

Proof. For any real x, the function f must be either continuous at x (if f(x−) = f(x) = f(x+))
or have jump(s) arising from the left-discontinuity (if f(x−) < f(x)) and/or right-discontinuity (if
f(x) < f(x+)) at x. Therefore, we can uniquely represent f as

f(x) = fc(x) +
∑
i

ai1[ci,∞)(x) +
∑
j

bj1(dj ,∞)(x), for all x ∈ R, (2.3)

for some real ci’s which are the left-discontinuous points of f with a jump size of ai (≥ 0), some
real dj ’s which are the right-discontinuous points of f with a jump size of bj (≥ 0), with the two
sums (empty sums are defined by convention to be zero) taken over the at most countable set of
discontinuity of f , and fc(x) := f(x) −

∑
i ai1[ci,∞)(x) −

∑
j bj1(dj ,∞)(x), which, by construction,

is a continuous function. Defining

fr(x) := fc(x) +
∑
i

ai1[ci,∞)(x) and fl(x) :=
∑
j

bj1(dj ,∞)(x), (2.4)

which are a non-decreasing right-continuous function and a non-decreasing left-continuous function
respectively, we immediately obtain f = fr + fl.

Remark 2.2. (i) The constructions of fr and fl in (2.4) are motivated from the proof of Theorem
7 of Dhaene et al. (2012) in the context of distortion risk measures. Here the function
fl captures successively the magnitude of each right-discontinuous jump of f , and fr is a
modification of f by decrementing the graph of f strictly after each right-discontinuous jump
by precisely the size of that jump, restoring right continuity (see Figure 2.1).

(ii) The Lebesgue-Stieltjes integral of a Borel measurable function h with respect to f can be
defined as ˆ

R
h(x) df(x) :=

ˆ
R
h(x) dfr(x) +

ˆ
R
h(x) dfl(x), (2.5)

where the two Lebesgue-Stieltjes integrals on the right-hand side of (2.5) are well-defined. This
definition will be of use in Section 3. It is easy to see that this integral does not depend on the
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particular right-continuous and left-continuous components of f . More precisely, choosing

f̃r(x) :=
∑
i

ai1[ci,∞)(x) and f̃l(x) = fc(x) +
∑
j

bj1(dj ,∞)(x) (2.6)

for f = f̃r + f̃l results in the same Lebesgue-Stieltjes integral with respect to f .

The following lemma providing integral representations for differences between functional values
of non-decreasing functions will also prove handy.

Lemma 2.3. Let h be a non-decreasing real function, and x1 and x2 be any real numbers.

(a) If h is right-continuous, then

h(x1)− h(x2) =

ˆ
R

(
1[t,∞)(x1)− 1[t,∞)(x2)

)
dh(t).

(b) If h is left-continuous, then

h(x1)− h(x2) =

ˆ
R

(
1(t,∞)(x1)− 1(t,∞)(x2)

)
dh(t).

Proof. We only prove (a) because the proof of (b) is similar. Distinguishing between whether
x2 < x1 or x1 < x2, we have

h(x1)− h(x2) = 1(−∞,x1)(x2)[h(x1)− h(x2)]− 1(−∞,x2)(x1)[h(x2)− h(x1)]

= 1(−∞,x1)(x2)

ˆ
R

1(x2,x1](t) dh(t)− 1(−∞,x2)(x1)

ˆ
R

1(x1,x2](t) dh(t)

= 1(−∞,x1)(x2)

ˆ
R

(
1(−∞,x1](t)− 1(−∞,x2](t)

)
dh(t)

− 1(−∞,x2)(x1)

ˆ
R

(
1(−∞,x2](t)− 1(−∞,x1](t)

)
dh(t)

=

ˆ
R

(
1(−∞,x1](t)− 1(−∞,x2](t)

)
dh(t)

=

ˆ
R

(
1[t,∞)(x1)− 1[t,∞)(x2)

)
dh(t),

where the second equality follows from (2.1).

We are now in a position to present the first generalized Hoeffding’s lemma by modifying the
coupling technique used to prove (1.1) (see Property 1.6.13 on page 28 of Denuit et al. (2005)
amongst others for a typical proof of Hoeffding’s lemma). The resulting formula comprises four
Lebesgue-Stieltjes integrals, all of which possess distinct integrands and integrators. The integral
representation is in stark contrast to (1.2), which fails to account for the possible discontinuities of
the two monotone transformations.

Theorem 2.4. Let X and Y be random variables, and f and g be non-decreasing real functions
such that

E[|f(X)|] <∞, E[|g(Y )|] <∞ and E[|f(X)g(Y )|] <∞. (2.7)
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Then

Cov[f(X), g(Y )] =

ˆ
R

ˆ
R

(P[X ≥ x, Y ≥ y]− P[X ≥ x]P[Y ≥ y]) dfr(x)dgr(y)

+

ˆ
R

ˆ
R

(P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y]) dfr(x)dgl(y)

+

ˆ
R

ˆ
R

(P[X > x, Y ≥ y]− P[X > x]P[Y ≥ y]) dfl(x)dgr(y)

+

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) dfl(x)dgl(y) (2.8)

for any non-decreasing right-continuous functions fr, gr and non-decreasing left-continuous func-
tions fl, gl such that f = fr + fl and g = gr + gl.

Proof. Using a standard extension argument (see, e.g., page 111 of Kallenberg (2002)), we may
assume without loss of generality that the underlying probability space (Ω,F ,P) supports a random
vector (X ′, Y ′) which is an i.i.d. copy of (X,Y ). Then

2Cov[f(X), g(Y )] = 2E [(f(X)− E[f(X)]) (g(Y )− E[g(Y )])]

= E
[(
f(X)− f(X ′)

) (
g(Y )− g(Y ′)

)]
. (2.9)

By Lemma 2.1, we fix any non-decreasing right-continuous functions fr, gr, and non-decreasing
left-continuous functions fl, gl satisfying f = fr + fl and g = gr + gl. Rewriting the two differences
f(X) − f(X ′) and g(Y ) − g(Y ′) in (2.9) as appropriate Lebesgue-Stieltjes integrals by virtue of
Lemma 2.3 yields

2Cov[f(X), g(Y )]

= E
[(
fr(X)− fr(X ′)

) (
gr(Y )− gr(Y ′)

)]
+ E

[(
fr(X)− fr(X ′)

) (
gl(Y )− gl(Y ′)

)]
+E

[(
fl(X)− fl(X ′)

) (
gr(Y )− gr(Y ′)

)]
+ E

[(
fl(X)− fl(X ′)

) (
gl(Y )− gl(Y ′)

)]
= E

[(ˆ
R

(1[x,∞)(X)− 1[x,∞)(X
′)) dfr(x)

)(ˆ
R

(1[y,∞)(Y )− 1[y,∞)(Y
′)) dgr(y)

)]
+E

[(ˆ
R

(1[x,∞)(X)− 1[x,∞)(X
′)) dfr(x)

)(ˆ
R

(1(y,∞)(Y )− 1(y,∞)(Y
′)) dgl(y)

)]
+E

[(ˆ
R

(1(x,∞)(X)− 1(x,∞)(X
′)) dfl(x)

)(ˆ
R

(1[y,∞)(Y )− 1[y,∞)(Y
′)) dgr(y)

)]
+E

[(ˆ
R

(1(x,∞)(X)− 1(x,∞)(X
′)) dfl(x)

)(ˆ
R

(1(y,∞)(Y )− 1(y,∞)(Y
′)) dgl(y)

)]
. (2.10)

We claim that these four expectations can be simplified into

E
[(ˆ

R
(1[x,∞)(X)− 1[x,∞)(X

′)) dfr(x)

)(ˆ
R

(1[y,∞)(Y )− 1[y,∞)(Y
′)) dgr(y)

)]
= 2

ˆ
R

ˆ
R

(P[X ≥ x, Y ≥ y]− P[X ≥ x]P[Y ≥ y]) dfr(x)dgr(y), (2.11)

E
[(ˆ

R
(1[x,∞)(X)− 1[x,∞)(X

′)) dfr(x)

)(ˆ
R

(1(y,∞)(Y )− 1(y,∞)(Y
′)) dgl(y)

)]
= 2

ˆ
R

ˆ
R

(P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y]) dfr(x)dgl(y), (2.12)
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E
[(ˆ

R
(1(x,∞)(X)− 1(x,∞)(X

′)) dfl(x)

)(ˆ
R

(1[y,∞)(Y )− 1[y,∞)(Y
′)) dgr(y)

)]
= 2

ˆ
R

ˆ
R

(P[X > x, Y ≥ y]− P[X > x]P[Y ≥ y]) dfl(x)dgr(y), (2.13)

E
[(ˆ

R
(1(x,∞)(X)− 1(x,∞)(X

′)) dfl(x)

)(ˆ
R

(1(y,∞)(Y )− 1(y,∞)(Y
′)) dgl(y)

)]
= 2

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) dfl(x)dgl(y), (2.14)

Since the techniques to derive (2.11)–(2.14) are highly similar, for the purpose of illustration we
only show (2.13). To this end, we multiply the two integrals, interchange the order of integration
by Fubini’s theorem (justified by the integrability conditions given in (2.7)) and using the fact that
(X,Y ) and (X ′, Y ′) are i.i.d., yielding

E
[(ˆ

R
(1(x,∞)(X)− 1(x,∞)(X

′)) dfl(x)

)(ˆ
R

(1[y,∞)(Y )− 1[y,∞)(Y
′)) dgr(y)

)]
=

ˆ
Ω

ˆ
R

ˆ
R

(
1{X>x,Y≥y}(ω)− 1{X>x,Y ′≥y}(ω)

−1{X′>x,Y≥y}(ω) + 1{X′>x,Y ′≥y}(ω)
)

dfl(x)dgr(y)dP(ω)

=

ˆ
R

ˆ
R

ˆ
Ω

(
1{X>x,Y≥y}(ω)− 1{X>x,Y ′≥y}(ω)

−1{X′>x,Y≥y}(ω) + 1{X′>x,Y ′≥y}(ω)
)

dP(ω)dfl(x)dgr(y)

= 2

ˆ
R

ˆ
R

(P[X > x, Y ≥ y]− P[X > x]P[Y ≥ y]) dfl(x)dgr(y).

Finally, inserting the expressions in (2.11)–(2.14) into (2.10) leads to the desired integral represen-
tation of Cov[f(X), g(Y )].

Several cautionary remarks concerning the proof of Theorem 2.4 are in order.

Remark 2.5. (i) Due to the subtle differences between how the induced measures of right-continuous
and left-continuous non-decreasing functions are defined in (2.1) and (2.2), the integrands of
the corresponding Lebesgue-Stieltjes integrals differ. Specifically, strict inequalities go hand
in hand with left-continuous integrators whereas weak inequalities and right-continuous inte-
grators hang together.

(ii) It is seen from the proof of Theorem 2.4 that the validity of (2.8) is unaffected by which
left-continuous and right-continuous components of f and g are selected.

(iii) One may be tempted to argue erroneously that because the functions

(x, y) 7→ P[X ≥ x, Y ≥ y]− P[X ≥ x]P[Y ≥ y]

(x, y) 7→ P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y]

(x, y) 7→ P[X > x, Y ≥ y]− P[X > x]P[Y ≥ y]

(x, y) 7→ P[X > x, Y > y]− P[X > x]P[Y > y]

are equal almost everywhere, it appeared valid to replace the four integrands in (2.8) by the
same integrand and to use (2.5) to simplify (2.8) as a single integral:

Cov[f(X), g(Y )] =

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df(x)dg(y),
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which is Equation (2.4) of Sen (1994). The fact is that the above four bivariate functions are
almost everywhere equal only with respect to the Lebesgue measure on R2, but the induced
measures of the left- and right-continuous components of f and g need not be absolutely
continuous with respect to the Lebesgue measure.

The following simple example refutes the general validity of Sen (1994)’s conjectured equation
and shows that

Cov[f(X), g(Y )] 6=
ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df(x)dg(y)

in general even when f and g are left-continuous or right-continuous non-decreasing functions.

Example 2.6. For any fixed real c and d, we take f(x) = 1(c,∞)(x) and g(y) = 1[d,∞)(y), which
are left-continuous and right-continuous non-decreasing functions respectively. Following (2.4), we
have fr = gl = 0, fl = f and gr = g with the induced measures of f and g being δc and δd, the
Dirac measures at c and d respectively. Applying Theorem 2.4, we have

Cov
[
1(c,∞)(X), 1[d,∞)(Y )

]
=

ˆ
R

ˆ
R

(P[X > x, Y ≥ y]− P[X > x]P[Y ≥ y]) dδc(x)dδd(y)

= P[X > c, Y ≥ d]− P[X > c]P[Y ≥ d],

which agrees with the elementary evaluation

Cov
[
1(c,∞)(X), 1[d,∞)(Y )

]
= E[1(c,∞)×[d,∞)(X,Y )]− E

[
1(c,∞)(X)

]
E
[
1[d,∞)(Y )

]
= P[X > c, Y ≥ d]− P[X > c]P[Y ≥ d].

Incidentally, note that in general (e.g. if the distribution of (X,Y ) has an atom at (c, d))

Cov[f(X), g(Y )] 6=
ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df(x)dg(y)

= P[X > c, Y > d]− P[X > c]P[Y > d].

The generalized Hoeffding’s formula in Theorem 2.4 for general monotone transformations con-
sists of four distinct integrals and may look formidable. Under appropriate continuity assump-
tions on either the monotone transformations (which apply to Mardia (1967) because f(x) = xr

and g(y) = ys are continuous) or the joint distribution function of the two random variables (as
in Cuadras (2002)), considerable simplification arises and the four-term formula reduces to Sen
(1994)’s formula, namely (1.2).

Corollary 2.7. Let X and Y be random variables, and f and g be non-decreasing real functions
such that (2.7) holds.

(a) If both f and g are right-continuous, then

Cov[f(X), g(Y )] =

ˆ
R

ˆ
R

(P[X ≥ x, Y ≥ y]− P[X ≥ x]P[Y ≥ y]) df(x)dg(y).

(b) If f is right-continuous and g is left-continuous, then

Cov[f(X), g(Y )] =

ˆ
R

ˆ
R

(P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y]) df(x)dg(y).
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(c) If f is left-continuous and g is right-continuous, then

Cov[f(X), g(Y )] =

ˆ
R

ˆ
R

(P[X > x, Y ≥ y]− P[X > x]P[Y ≥ y]) df(x)dg(y).

(d) If both f and g are left-continuous, then

Cov[f(X), g(Y )] =

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df(x)dg(y).

(e) If f and g are continuous, or the joint distribution function of (X,Y ) is continuous, then
each of the identities under (a) to (d) holds.

3 Absolutely continuous functions

We now enhance the applicability of Hoeffding’s lemma by extending its coverage to the covariance
between non-monotone functions of random variables. The key is to decompose the transformations
f and g into differences of appropriate non-decreasing functions, to which Theorem 2.4 can be
applied. We first examine the important case of absolutely continuous functions, for which the
simple double integral representation of covariance can be transformed into ordinary Lebesgue
integrals. Our functional generalization of Hoeffding’s lemma is concluded by a discussion on how
general discontinuous and non-monotone transformations can be dealt with.

By definition, a real function f is said to be absolutely continuous if for every ε > 0, there
exists δ > 0 such that

∑n
i=1 |f(bi)−f(ai)| < ε whenever {(ai, bi)}ni=1 is a finite disjoint collection of

open intervals in R with
∑n

i=1(bi − ai) < δ. To define the Lebesgue-Stieltjes integral with respect
to a general absolutely continuous function f , we first write f = f1 − f2 for some non-decreasing
absolutely continuous functions f1 and f2 (see, e.g., Theorem 39.11 of Aliprantis and Burkinshaw
(1998)). Then the Lebesgue-Stieltjes integral of a Borel measurable function h with respect to f is
defined as ˆ

R
h(x) df(x) :=

ˆ
R
h(x) df1(x)−

ˆ
R
h(x) df2(x), (3.1)

provided that the two Lebesgue-Stieltjes integrals on the right-hand side exist, and the difference
makes sense. By standard measure-theoretic techniques, it can be shown that such a definition
does not depend on the particular f1 and f2 chosen to represent f (see page 379 of Aliprantis and
Burkinshaw (1998)).

Theorem 3.1. Let X and Y be random variables, and f and g be absolutely continuous functions
such that (2.7) holds. Then

Cov[f(X), g(Y )] =

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df(x)dg(y) (3.2)

=

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) f ′(x)g′(y) dxdy, (3.3)

where f ′ and g′ are the derivatives of f and g which exist almost everywhere. The integrand
P[X > x, Y > y]− P[X > x]P[Y > y] in (3.2) and (3.3) can be replaced by any of

P[X ≥ x, Y ≥ y]− P[X ≥ x]P[Y ≥ y],

P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y],

P[X > x, Y ≥ y]− P[X > x]P[Y ≥ y],
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Proof. Write f = f1 − f2 and g = g1 − g2 for some non-decreasing absolutely continuous functions
f1, f2, g1, g2. Due to the bilinearity of covariance,

Cov[f(X), g(Y )] = Cov[f1(X), g1(Y )]+Cov[f2(X), g2(Y )]−Cov[f1(X), g2(Y )]−Cov[f2(X), g1(Y )].

Applying Corollary 2.7 (d) to the above four covariances, we have

Cov[f(X), g(Y )] =

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df1(x)dg1(y)

+

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df2(x)dg2(y)

−
ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df1(x)dg2(y)

−
ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df2(x)dg1(y)

=

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) df(x)dg(y).

This proves (3.2). By virtue of absolutely continuity, we may replace df(x) and dg(y) by f ′(x) dx
and g′(y) dy respectively (see, e.g., Remark (v)(a) on page 285 of Stein and Shakarchi (2005)),
arriving at (3.3).

To show the last part of the theorem, we note that the following bivariate functions

(x, y) 7→ P[X ≥ x, Y ≥ y]− P[X ≥ x]P[Y ≥ y]

(x, y) 7→ P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y]

(x, y) 7→ P[X > x, Y ≥ y]− P[X > x]P[Y ≥ y]

(x, y) 7→ P[X > x, Y > y]− P[X > x]P[Y > y]

are equal almost everywhere with respect to the Lebesgue measure on R2, and the induced measures
of the absolutely continuous functions f1, f2, g1, g2 are also absolutely continuous with respect to
the Lebesgue measure (see Theorem 39.12 of Aliprantis and Burkinshaw (1998)). Therefore, the
term P[X > x, Y > y]− P[X > x]P[Y > y] in (3.2) and (3.3) can be replaced by any of

P[X ≥ x, Y ≥ y]− P[X ≥ x]P[Y ≥ y],

P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y],

P[X > x, Y ≥ y]− P[X > x]P[Y ≥ y],

without altering the values of the integrals.

Remark 3.2. (i) In the case where one of f and g is non-decreasing and the other one is absolutely
continuous, the integral formula for Cov[f(X), g(Y )] consists of two terms. To see this,
without loss of generality we assume that f is non-decreasing and g is absolutely continuous.
Writing f = fr + fl and g = g1 − g2 for some non-decreasing right-continuous function fr,
non-decreasing left-continuous function fl and non-decreasing absolutely continuous functions
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g1 and g2, we apply (3.1) and Corollary 2.7 (b) and (d) to obtain

Cov[f(X), g(Y )] = Cov[fr(X), g1(Y )] + Cov[fl(X), g1(Y )]

−Cov[fr(X), g2(Y )]− Cov[fl(X), g2(Y )]

=

ˆ
R

ˆ
R

(P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y]) dfr(x)dg1(y)

+

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) dfl(x)dg1(y)

−
ˆ
R

ˆ
R

(P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y]) dfr(x)dg2(y)

−
ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) dfl(x)dg2(y)

=

ˆ
R

ˆ
R

(P[X ≥ x, Y > y]− P[X ≥ x]P[Y > y]) dfr(x)dg(y)

+

ˆ
R

ˆ
R

(P[X > x, Y > y]− P[X > x]P[Y > y]) dfl(x)dg(y).

Because g1 and g2 are absolutely continuous (in particular, left- and right-continuous), every
“Y > y” in the preceding formula can also be replaced by “Y ≥ y”.

(ii) One can indeed extend Hoeffding’s lemma to functions of bounded variation, as noted in
Cuadras (2002), by decomposing such functions into differences of non-decreasing functions, to
which Theorem 2.4 can be applied. The resulting formula for general random variables consists
of a total of 16 non-recombining double integrals with different integrands and integrators.
Due to the notational complexity of this ultimate formula and that there is no immediate
need for such generality in the remainder of this paper and in most applications, we choose
not to present it here.

4 A formula for Kendall’s tau for general random variables

In the same spirit as Sections 2 and 3, this section provides an integral expression for Kendall’s tau
(Kendall (1938)), which is a nonparametric measure of concordance, for general random variables
with possibly discontinuous distributions and a caveat when the discontinuity of distributions is
not appropriately taken into account.

Definition 4.1. For a given random vector (X,Y ), Kendall’s tau is defined as the probability of
concordance less the probability of discordance:

τ [X,Y ] := P[(X −X ′)(Y − Y ′) > 0]− P[(X −X ′)(Y − Y ′) < 0],

where (X ′, Y ′) is any i.i.d. copy of (X,Y ).

In the literature, the treatment of Kendall’s tau is almost exclusively restricted to random
variables with continuous and strictly increasing distributions, for which the technicalities arising
from changes of variables in integration can be sidestepped. In Theorem 4.2 below, we manage to
overcome these technical challenges and generalize the conventional formula of Kendall’s tau for
continuous random variables to general, possibly discontinuous ones. The integrands of our integral
formula parallel those of (2.8). An expression in a similar vein, stated in terms of distribution
functions, can be found in Proposition 2.2 of Mesfioui and Tajar (2005).
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Theorem 4.2. For any random variables X and Y with joint distribution function F ,

τ [X,Y ] =

ˆ
R2

P[X ≥ x, Y ≥ y] dF (x, y) +

ˆ
R2

P[X ≥ x, Y > y] dF (x, y)

+

ˆ
R2

P[X > x, Y ≥ y] dF (x, y) +

ˆ
R2

P[X > x, Y > y] dF (x, y)− 1. (4.1)

Proof. We first write

τ [X,Y ] = P[(X −X ′)(Y − Y ′) > 0]− P[(X −X ′)(Y − Y ′) < 0]

= P[X < X ′, Y < Y ′] + P[X > X ′, Y > Y ′]− P[X < X ′, Y > Y ′]− P[X > X ′, Y < Y ′].

Note that

P[X < X ′, Y > Y ′] = P[X < X ′]− P[X < X ′, Y ≤ Y ′],
P[X > X ′, Y < Y ′] = P[Y < Y ′]− P[X ≤ X ′, Y < Y ′],

and P[X < X ′, Y < Y ′]− P[X < X ′]− P[Y < Y ′] = −P[X < X ′ or Y < Y ′]

= P[X ≥ X ′, Y ≥ Y ′]− 1.

Thus

τ [X,Y ] = P[X < X ′, Y < Y ′] + P[X > X ′, Y > Y ′]

−
(
P[X < X ′]− P[X < X ′, Y ≤ Y ′]

)
−
(
P[Y < Y ′]− P[X ≤ X ′, Y < Y ′]

)
= P[X ≥ X ′, Y ≥ Y ′] + P[X ≤ X ′, Y < Y ′] + P[X < X ′, Y ≤ Y ′] + P[X > X ′, Y > Y ′]− 1,

which, together with the fact that (X,Y ) and (X ′, Y ′) are i.i.d., leads to (4.1).

Remark 4.3. (i) When the joint distribution/survival function of (X,Y ) is continuous, we retrieve
from (4.1) the usual formula (see, e.g., Equation (2.41) on page 55 of Joe (2015))

τ [X,Y ] = 4

ˆ
R2

P[X > x, Y > y] dF (x, y)− 1 = 4E[F̄ (X,Y )]− 1, (4.2)

where F̄ is the joint survival function of (X,Y ).

(ii) As an example where (4.1) and (4.2) differ, consider the case when X and Y are i.i.d. Bernoulli
random variables with a success probability of 0.5. If F̄X and F̄Y denote the survival functions
of X and Y , then

F̄X(x) = F̄Y (x) =


1, if x < 0,

0.5, if 0 ≤ x < 1,

0, if 1 ≤ x.
It follows from (4.1) and the independence between X and Y that

τ [X,Y ] = P[X ≥ X ′]P[Y ≥ Y ′] + P[X ≥ X ′]P[Y > Y ′]

+P[X > X ′]P[Y ≥ Y ′] + P[X > X ′]P[Y > Y ′]− 1

= P[X ≥ X ′]
(
P[Y ≥ Y ′] + P[Y > Y ′]

)
+ P[X > X ′]

(
P[Y ≥ Y ′] + P[Y > Y ′]

)
− 1

= P[X ′ ≥ X]
(
P[Y ′ ≥ Y ] + P[Y > Y ′]

)
+ P[X > X ′]

(
P[Y ′ ≥ Y ] + P[Y > Y ′]

)
− 1

= P[X ′ ≥ X] + P[X > X ′]− 1

= 0,

whereas (4.2) gives

τ [X,Y ] = 4E[F̄X(X)F̄Y (Y )]−1 = 4E[F̄X(X)]E[F̄Y (Y )]−1 = 4[0.5(0.5)+0(0.5)]2−1 = −0.75.

The discrepancy between the two values is a consequence of the discontinuity of the Bernoulli
distribution.
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