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Abstract

The formulation of optimal reinsurance policies that take various practical con-
straints into account is a problem commonly encountered by practitioners. In the
context of a distortion-risk-measure-based optimal reinsurance model without moral
hazard, this article introduces and employs a variation of the Neyman-Pearson Lemma
in statistical hypothesis testing theory to solve a wide class of constrained optimal rein-
surance problems analytically and expeditiously. Such a Neyman-Pearson approach
identifies the unit-valued derivative of each ceded loss function as the test function of
an appropriate hypothesis test and transforms the problem of designing optimal rein-
surance contracts to one which resembles the search of optimal test functions achieved
by the classical Neyman-Pearson Lemma. As an illustration of the versatility and supe-
riority of the proposed Neyman-Pearson formulation, we provide complete and trans-
parent solutions of several specific constrained optimal reinsurance problems, many of
which were only partially solved in the literature by substantially more difficult means
and under extraneous technical assumptions. Examples of such problems include the
construction of the optimal reinsurance treaties in the presence of premium budget
constraints, counterparty risk constraints and the optimal insurer-reinsurer symbiotic
reinsurance treaty considered recently in Cai et al. (2016) [Cai, J., Lemieux, C., Liu,
F., 2016. Optimal reinsurance from the perspectives of both an insurer and a reinsurer.
ASTIN Bulletin 46, 815–849.].

Keywords: Distortion; 1-Lipschitz; Value-at-Risk; Reciprocal reinsurance; Signed
measure

1 Introduction

The judicious use of reinsurance as a practical vehicle for risk optimization and strategic
business planning lies at the heart of the successful operation of an insurance corporation. For
more than half a century, reinsurance has provided a flexible mechanism on which insurance
companies can capitalize to strategically transfer a portion of their business to reinsurers,
thereby lessening the volatility of their risk exposure and achieving various business planning
and solvency objectives. Pioneered in Borch (1960) and Arrow (1963) in the context of
variance minimization and expected utility maximization from the perspective of an insurer,
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the study of optimal reinsurance has been established as a time-honored research area which
has gathered further momentum in recent decades given the increasingly intense need for
risk management highlighted by the unprecedented surge in the frequency and severity of
catastrophes worldwide.

Amongst the myriad of optimal reinsurance models in the literature, this article centers on
the class of risk-measure-based models, which have gained widespread popularity alongside
the recent proliferation of risk measures such as Value-at-Risk (VaR) and Tail Value-at-
Risk (TVaR) in the banking and insurance industries. Unlike their classical expected utility
counterparts, these models involve an explicit usage of risk measures to quantify risk, dictate
preferences and formulate constraints. Adopting VaR and TVaR as risk measures, Cai and
Tan (2007) determined analytically the optimal retention of a stop-loss reinsurance under
the expected value premium principle. Their studies were continued in Cai et al. (2008),
where the optimal reinsurance arrangements within the class of non-decreasing convex ceded
loss functions were deduced by minimizing the VaR and TVaR of the total retained loss
of the insurer via some sophisticated approximation and convergence arguments. Cheung
(2010) revisited Cai et al. (2008)’s problems, provided an alternative geometric approach
and also solved the VaR minimization problem under Wang’s premium principle. Further
developments along similar lines can be found in Chi and Tan (2011) and Tan et al. (2011).
Since then, VaR-based and TVaR-based reinsurance models continued to arouse substan-
tial attention from researchers and practitioners, and were extended in two predominant
directions:

1. More general risk measures: Mainly of theoretical interest, one direction of extension
is concerned with the use of risk measures and premium principles more general than
VaR, TVaR and the standard expected value premium principle. Along this line, a
particularly promising risk-measure-based optimal reinsurance model is the distortion-
risk-measure-based model, which entails the minimization of the distortion risk measure
(DRM) of the total retained risk of an insurer together with the distortion reinsurance
premium principle. This model was first studied in Cui et al. (2013) under some
technical left-continuity assumptions and later examined more transparently and sys-
tematically in Cheung and Lo (2017) from a cost-benefit perspective and in Zhuang
et al. (2016) using a marginal indemnification function approach. The merits of the
DRM-based model are multi-fold. First, it is known that the perception of risk DRM
reflects is more consistent with human behavior than what the traditional expected
utility paradigm offers (see Belles-Sampera et al. (2016) for more information). Sec-
ond, due to the translation invariance of DRM, risk minimization is synonymous with
profit maximization. Last but not least, the class of DRM is a very general one which
includes VaR, TVaR and many other well-known risk measures as special cases. While
a general model usually leads to a higher level of technical complications, it turns out
it is in the high level of generality implicit in the DRM setting that the mathematical
structure of the reinsurance model becomes distinctively clear and the solution of the
optimal reinsurance problem unexpectedly easy.

2. More complex constraints: Another promising line of research is devoted to the impo-
sition of increasingly complex constraints that reflect diverse practical considerations,
the most common one being a reinsurance premium budget constraint. In the context
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of a DRM-based model, the optimal reinsurance problem under a premium budget
constraint was first studied in Cui et al. (2013), further examined in Zheng and Cui
(2014), and later revisited and simplified in Cheung and Lo (2017) and Zhuang et al.
(2016). The presence of such a budget constraint necessitates the allocation of limited
financial resources to achieve minimality of risk and, as noted in Cheung and Lo (2017)
and Zhuang et al. (2016), considerably raises the technical complexity of the optimal
reinsurance problem.

Another popular constraint pertains to the risk tolerance level of the insurer and/or the
reinsurer. This kind of constraint recognizes the two-party nature of reinsurance, which
suggests that a reinsurance treaty designed solely from the perspective of one party
while completely disregarding the interests of the other is practically non-marketable.
In this direction, Cummins and Mahul (2004) were among the first to revisit Arrow’s
classical expected-utility-based optimal reinsurance model via imposing a determin-
istic upper bound on each feasible ceded loss function. In the framework of risk-
measure-based models, the investigation of optimal reinsurance taking reinsurer’s risk
constraints into account was initiated in Cheung et al. (2012), where the TVaR of the
insurer’s total retained loss was minimized under a VaR constraint on the reinsurer’s
net loss. Recently, Lu et al. (2016) examined the problem of minimizing the VaR
and TVaR of the insurer’s total loss subject to bounded reinsurer’s loss and provided
an implicit construction of the optimal solutions. Whereas most studies are from the
insurer’s perspective only, Cai et al. (2016) took into account the joint interests of
the insurer and reinsurer, and introduced an innovative problem in which a convex
combination of the insurer’s loss and the reinsurer’s loss is minimized subject to their
respective risk constraints.

In brief, there can be many economically meaningful constraints that can be embed-
ded in an optimal reinsurance model, yet ad hoc approaches have been developed to
(partially) solve a very limited number of constrained optimal reinsurance problems.

Motivated by the generality and usefulness of the DRM-based model and the diversity of
constraints that prevail in practice, this paper strives to interweave the two foregoing lines
of research, one theoretical and one practical, and introduces how a novel “Neyman-Pearson”
perspective provides a unifying, transparent and comprehensive treatment of a wide body
of constrained optimal reinsurance problems. The linchpin is a constrained functional min-
imization problem of considerable generality whose objective and constraint functions are
both Lebesgue integrals with generic integrands carrying the unit-valued derivative of the
ceded loss function to be chosen. It is shown that a number of existing and novel constrained
optimal reinsurance problems, such as optimal contract design in the presence of a reinsur-
ance premium budget, a counterparty risk constraint, and Cai et al. (2016)’s insurer-reinsurer
symbiotic problem, fall under the umbrella of such a Neyman-Pearson formulation upon ap-
propriate configuration. When viewed in the correct light, the generic problem parallels
the Neyman-Pearson Lemma in statistical hypothesis testing theory and can be solved via
analogous comparison arguments, although it has its own subtly unique and technical issues.
It is this striking resemblance between the proposed constrained minimization problem and
the Neyman-Pearson Lemma that justifies designating our analysis as a “Neyman-Pearson”
approach.
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Given the wide variety of methods proposed in the recent literature to tackle constrained
optimal reinsurance problems, it is imperative to pinpoint the fundamental differences and
the superiority of the proposed Neyman-Pearson methodology relative to existing approaches
with respect to the following three inter-related areas:

1. Scope of applicability: Compared to the cost-benefit argument first implicitly used in
Cui et al. (2013) and later made precise in Cheung and Lo (2017), the Neyman-Pearson
approach can be applied to deal with constraints much more general than reinsurance
premium constraints, including those that are not cost-benefit in nature. When the
constrained minimization problem under consideration does not possess a cost-benefit
character, which relies on the non-negativity of the integrand of the constraint function,
the approaches of Cui et al. (2013) and Cheung and Lo (2017) become inapplicable,
yet the Neyman-Pearson solution scheme can be implemented just as easily. In this
regard, the Neyman-Pearson approach can be considered as a non-trivial and versatile
extension of the cost-benefit approach to one for analyzing more general and complex
constraints.

2. Level of technicalities: Technically, our Neyman-Pearson methodology successfully puts
constrained optimal reinsurance problems into perspective and provides a much more
accessible and methodical approach to dealing with these problems, many of which
were only partially solved in the literature by substantially more cumbersome means,
under unnecessary mathematical assumptions and with particular solutions having
been found. Ad hoc methods that very much hinge upon specific risk measures such
as VaR and TVaR and are often plagued by superfluous technicalities (e.g. those in
Cheung et al. (2012) and Lu et al. (2016)) are eschewed.

3. Explicitness and completeness of solutions: Arguably the greatest strength of the
Neyman-Pearson approach is its ability to exhibit the optimal solutions of a wide spec-
trum of constrained optimal reinsurance problems in explicit and easily comprehensible
forms, as opposed to the nebulous solutions often accompanied by several implicitly
defined quantities observed in many existing papers (e.g. Cai et al. (2016) and Lu et al.
(2016)). In addition, with explicit solutions beyond the classical insurance-layer-type
solutions identified, our approach manages to provide full characterizations of the op-
timal solutions and thoroughly address the feasibility, well-posedness and uniqueness
issues of optimal reinsurance problems, which are unsettled in most papers (e.g. Cai
et al. (2016), Lo (2016) and Lu et al. (2016)).

The rest of this article is organized as follows. Section 2 describes the DRM-based optimal
reinsurance model that forms the cornerstone of the entire article and presents three con-
crete models whose diversity and commonality motivate the Neyman-Pearson formulation of
constrained optimal reinsurance problems proposed in Section 3. Heuristics that underlies
the Neyman-Pearson solution scheme is explained, followed by its successive applications in
Section 4 to fully solve the three types of constrained optimal reinsurance problems. The
closed-form solutions obtained are compared and contrasted with existing ones, and their su-
periority is highlighted. Section 5 concludes the article with prospective research directions.
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2 DRM-based optimal reinsurance model

In this section, we lay the mathematical groundwork of the DRM-based optimal reinsurance
model, and explain the motivation of a Neyman-Pearson formulation of constrained optimal
reinsurance problems via three concrete examples.

2.1 Model set-up

We begin with a precise and concise description of the DRM-based model paying special
attention to the stipulation of the optimization criterion, the class of feasible ceded loss
functions and the reinsurance premium principle. In this model, risk is evaluated by means
of distortion risk measures (DRMs), whose definition relies on the notion of a distortion
function. We say that g : [0, 1] → [0, 1] is a distortion function if g is a non-decreasing
function such that g(0) = 0 and g(1) = 1. Unlike many previous papers (such as Cui et al.
(2013) and Zhuang et al. (2016)), we do not confine ourselves to convex, concave or (left- or
right-) continuous distortion functions, since our analysis is valid without these extraneous
technical assumptions and therefore of higher generality. Corresponding to a distortion
function g, the DRM of a non-negative random variable Y is defined by

ρg(Y ) :=

ˆ ∞
0

g(SY (y)) dy, (2.1)

where SY (y) := P(Y > y) is the survival function of Y . In order that (2.1) makes sense,
throughout this article we restrict our attention to distortion functions g such that g(0+)
:= limx↓0 g(x) = 0i, and assume that all random variables are sufficiently integrable in the
sense of possessing well-defined and finite DRMs.

A remarkable feature of DRM is its inclusion of a wide class of common risk measures. In
the later part of this article, we specifically analyze VaR, which is arguably the most popular
DRM. Its definition is recalled below. In the sequel, we denote the indicator function of a
given set A by 1A, i.e., 1A(x) = 1 if x ∈ A, and 1A(x) = 0 otherwise.

Definition 2.1. (Definitions of generalized inverses and VaR) Given a non-decreasing func-
tion T : D → R, the generalized left-continuous inverse and generalized right-continuous
inverse of T are defined respectively by

T−1(x) := inf{y ∈ D | T (y) ≥ x} and T−1+(x) := inf{y ∈ D | T (y) > x},

with the convention inf ∅ = supD. The Value-at-Risk (VaR) of a random variable Y at
the probability level of p ∈ (0, 1] is the generalized left-continuous inverse of its distribution
function FY at p:

VaRp(Y ) := F−1Y (p) = inf{y ∈ R | FY (y) ≥ p}.
iSuppose by way of contradiction that g(0+) > 0. For any unbounded non-negative random variable

Y , whose survival function satisfies SY (y) > 0 for all y ≥ 0, the non-decreasing monotonicity of g leads to
ρg(Y ) =

´∞
0
g(SY (y)) dy ≥ g(0+)

´∞
0

dy =∞.
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In this article, both the notation VaRp(Y ) and F−1Y (p) will be used interchangeably
whenever convenient. For later purposes, we point out the useful equivalence

F−1Y (p) ≤ y ⇔ p ≤ FY (y) for all p ∈ (0, 1), (2.2)

and that the distortion function giving rise to the p-level VaR is g(x) = 1{x>1−p} (see Equa-
tions (4) and (44) of Dhaene et al. (2006)), which is neither convex nor concave.

To mitigate its risk exposure to the ground-up loss, which is modeled by a general non-
negative random variable X (note that no extra assumptions such as absolute continuity or
strict monotonicity besides non-negativity are imposed on the distribution of X), the insurer
is offered the choice of purchasing a reinsurance policy I from a reinsurer. When x is the
realization of X, the reinsurer pays I(x) to the insurer, with the insurer retaining a loss of
x − I(x). Technically, the function I is known as the ceded loss function (also known as
the indemnity function) and defines a reinsurance policy. In this article, the feasible class of
reinsurance policies available for sale is restricted to the set of non-decreasing and 1-Lipschitz
functions null at zeroii, i.e.,

I =
{
I : R+ → R+ | I(0) = 0, 0 ≤ I(x2)− I(x1) ≤ x2 − x1 for 0 ≤ x1 ≤ x2

}
.

The conditions imposed on the set I are not driven by mathematical considerations, but are
intended to eradicate the practical issue of ex post moral hazard due to the manipulation of
losses. In fact, for any reinsurance treaty selected from I, the ceded loss cannot exceed the
ground-up loss, and both the insurer and reinsurer will suffer as the ground-up loss becomes
more severe, thereby having no incentive to misrepresent claims. Mathematically, the 1-
Lipschitzity condition does result in some appealing technical convenience, with every I ∈ I
being absolutely continuous with a unit-valued derivative I ′ which exists almost everywhere.
Following Zhuang et al. (2016), we term I ′ the marginal ceded loss function, which quantifies
the increase in the ceded loss per unit increase in the ground-up loss. Moreover, because of the
relationship I(x) =

´ x
0
I ′(t) dt, each ceded loss function enjoys a one-to-one correspondence

with its marginal counterpart.
In exchange for bearing the ceded loss I(X) from the insurer, the reinsurer is compensated

by the reinsurance premium PI(X), which is a function of I(X). The resulting total risk
exposure of the insurer is then changed from X to X − I(X) + PI(X). Conceivably, ceding
more loss to the reinsurer results in the insurer incurring a smaller retained loss at the expense
of a higher reinsurance premium. In essence, optimal reinsurance is an art of how risk should
be ceded and retained to achieve a certain sense of optimality, which, in the current article, is
minimization with respect to a DRM. Premium-wise, we calibrate the reinsurance premium
for a given ceded loss function I ∈ I by the formula

PI(X) :=

ˆ ∞
0

r
(
SI(X)(x)

)
dx, (2.3)

where r : [0, 1] → R+ is a non-decreasing function satisfying r(0+) = 0. It is important to
point out that we do not require r(1) = 1, thereby making allowances for profit loading by

iiTo be precise, every I ∈ I should be defined on [0, F−1X (1)) rather than R+ and every integral
´∞
0

in

this article should mean
´ F−1

X (1)

0
, but we choose not to overload notations.
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the reinsurer possible. For example, one may set r(x) = (1 + θ)h(x) with r(1) = 1 + θ > 1,
where h is a distortion function and θ > 0 is the safety loading charged by the reinsurer.
Premium principles incorporating different safety loadings on different layers of risk such as
r(x) = [(1 + θ1)1{0≤x≤c} + (1 + θ2)1{c<x≤1}]h(x), where 0 < θ1 < θ2 and 0 < c < 1, are also
feasible. Equation (2.3) is therefore flexible enough to accommodate a wide variety of safety
loading structures (including a structure that charges no loading).

Just as DRMs are general enough to cover a wide class of risk measures, a number of
common premium principles, including the well-known expected value premium principle,
Wang’s premium principle and maximum possible claims principles, can be retrieved from
(2.3) by different specifications of the function r (see Cui et al. (2013) and Cheung and Lo
(2017)). Furthermore, the form of (2.3) is dual to (2.1). When viewed in the correct light,
such symmetry is highly conducive to understanding the general mathematical structure of
our optimal reinsurance models and turns out to put the analysis into much better perspective
than when specific risk measures and premium principles are assumed.

The following technical lemma, which can be found in Lemma 2.1 of Cheung and Lo
(2017), places the marginal ceded loss function I ′ in the integrands of appropriate inte-
grals and renders the optimal selection of I ′ (equivalently, I) more transparent. It plays an
instrumental role in a Neyman-Pearson formulation of optimal reinsurance problems.

Lemma 2.2. (Integral representations of risk and premium functions) For any distortion
function g and ceded loss function I in I,

ρg
(
X − I(X) + PI(X)

)
= ρg(X) +

ˆ ∞
0

[r(SX(x))− g(SX(x))]I ′(x) dx

and

PI(X) =

ˆ ∞
0

r(SX(x))I ′(x) dx.

2.2 Three concrete models

In the context of the DRM-based model set up in the preceding subsection, we now introduce
three sets of concrete constrained optimal reinsurance problems whose diversity with respect
to their objective and constraint functions warrants the unifying Neyman-Pearson approach
to be presented in Section 3.

• Model 1: Budget-constrained risk minimization{
inf
I∈I

ρgi
(
X − I(X) + PI(X)

)
s.t. PI(X) ≤ π,

(2.4)

where gi is the DRM selected by the insurer, and π is a constant which can be thought
of as the budget that the insurer allocates to reinsurance activities. In this model,
the presence of the budget constraint reflects the financial limitations of the insurer,
which must determine how to make the most of the limited budget to attain the
greatest reduction in its total retained risk measured by the DRM. Problem (2.4), in
the DRM framework, has its genesis in Cui et al. (2013), where some sophisticated
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partition arguments were employed under some technical assumptions on the functions
gi and r. It was subsequently solved in complete generality and more transparently in
Cheung and Lo (2017), who showed that the design of optimal reinsurance amounts to
comparing the marginal cost and benefit of reinsurance.

• Model 2: Risk minimization in the presence of counterparty risk constraints

As noted in Cai et al. (2013, 2016), the insurer and reinsurer, who are counterparties
of each other, often have conflicting interests. Devising a reinsurance contract from the
sole perspective of one party at the expense of the interests of the other, though mathe-
matically feasible, is practically unrealistic. Consequently, a more pragmatic approach
to optimal reinsurance is to formulate reinsurance policies which are optimal to one
party and simultaneously acceptable to the other, as in the following two problems:{

inf
I∈I

ρgi
(
X − I(X) + PI(X)

)
s.t. ρgr

(
I(X)− PI(X)

)
≤ π0,

(2.5)

and {
inf
I∈I

ρgr
(
I(X)− PI(X)

)
s.t. ρgi

(
X − I(X) + PI(X)

)
≤ π1,

(2.6)

where gr is the distortion function adopted by the reinsurer to quantify its net risk ex-
posure I(X)−PI(X) as a result of entering into the reinsurance contract. Economically,
Problem (2.5) (resp. (2.6)) concerns the reinsurance arrangement which is optimal to
the insurer (resp. reinsurer) while acceptable to the reinsurer (resp. insurer), whose
risk level is maintained below the risk tolerance level of π0 (resp. π1). The counter-
party risk constraints in Problems (2.5) and (2.6) are sometimes known as participation
constraints because they induce the counterparty to “participate” in reinsurance.

It should be emphasized that Problems (2.5) and (2.6), which are in the general realm
of DRM, are entirely novel and not amenable to existing approaches. Despite their gen-
erality and apparent intractability, it will be shown that our Neyman-Pearson solution
scheme lends itself perfectly to Problems (2.5) and (2.6) for any distortion functions gi
and gr. In order to make the effects of the counterparty risk constraints more conspic-
uous, we will also examine the following specific VaR-based problems :{

inf
I∈I

VaRα(X − I(X) + PI(X))

s.t. VaRβ(I(X)− PI(X)) ≤ π0,
(2.7)

and {
inf
I∈I

VaRβ(I(X)− PI(X))

s.t. VaRα(X − I(X) + PI(X)) ≤ π1,
(2.8)

where α and β are fixed probability levels in (0, 1) chosen by the insurer and reinsurer
respectively. The use of VaR in these two problems is justified by the widespread
popularity and mathematical tractability of VaR. Note that a special case of Problem
(2.7) with β = 1 (i.e., bounded reinsurer’s loss) was solved partially in the recent paper
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Lu et al. (2016) via some implicit constructions. As mentioned in Section 1 and will
be shown later, one of the highlights of the Neyman-Pearson approach in this article
is its ability to exhaust the entire set of optimal solutions of Problems (2.7) and (2.8)
(as well as the general Problems (2.5) and (2.6)) explicitly and expeditiously.

• Model 3: An insurer-reinsurer symbiotic optimal reinsurance model
inf
I∈I

λρgi
(
X − I(X) + PI(X)

)
+ (1− λ)ρgr

(
I(X)− PI(X)

)
s.t.

ρgi
(
X − I(X) + PI(X)

)
≤ π1,

ρgr
(
I(X)− PI(X)

)
≤ π0,

(2.9)

where λ is a number in [0, 1] that can be interpreted as the weight allocated to the
insurer’s loss, and π1 and π0 are again the risk tolerance levels of the insurer and
reinsurer respectively. First studied in Cai et al. (2016) in the special case when
the insurer and reinsurer are both VaR-adopters, this “symbiotic” problem (in which
the insurer and reinsurer form a “symbiosis”) is another attempt to devise optimal
reinsurance policies taking into account the possibly conflicting interests of the insurer
and the reinsurer. Instead of minimizing the loss of one party subject to the risk
constraint of the other, Problem (2.9) distinguishes itself from Problems (2.5) and (2.6)
in that it entails the minimization of a convex combination of the DRM of the insurer’s
loss and that of the reinsurer’s loss, subject to the risk constraints of both parties.
Here the weight λ quantifies the relative importance of the interests of the insurer and
reinsurer, with the special cases λ = 1 and λ = 0 corresponding to Problem (2.5) and
Problem (2.6) respectively. The practical significance of Problem (2.9) consists in the
formulation of reinsurance contracts that are not a priori designed to be optimal to
one single party, but are compromised to be optimal on a symbiotic basis. Our prime
interest lies in how this compromise manifests mathematically in the contract design,
and in particular, depends on the choice of the weight λ. Intuitively, as λ increases
from 0 to 1, more and more importance is attached to the insurer’s interest, and it is
expected that the solutions of Problem (2.9) will approach those of Problem (2.7).

In this article, we revisit Cai et al. (2016)’s VaR problem as a mathematically tractable
and practically popular representative of Problem (2.9):

inf
I∈I

λVaRα

(
X − I(X) + PI(X)

)
+ (1− λ)VaRβ

(
I(X)− PI(X)

)
s.t.

VaRα

(
X − I(X) + PI(X)

)
≤ π1,

VaRβ

(
I(X)− PI(X)

)
≤ π0,

(2.10)

Through a series of sophisticated analysis involving the introduction of various auxiliary
functions, Cai et al. (2016) derived the semi-explicit solutions of Problem (2.10). The
approach pursued in this paper is radically different. The key is to exploit the properties
of VaR as a member of the DRM and to transform Problem (2.10), in which two risk
constraints are in force, equivalently into either Problem (2.7) or Problem (2.8), both
of which carry a single risk constraint, depending on the range of values of λ. Such a
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transformation is unanticipated because it effectively means that the symbiotic risk-
minimization problem is identical to the seemingly different risk minimization problem
from the perspective of one party subject to the constraint of the other, when VaR is
chosen as the measurement of risk. As soon as this first-step transformation has been
performed, Problem (2.10) can be explicitly solved by virtue of the explicit solutions
of Problems (2.7) and (2.8). In addition to being considerably more transparent, the
solution scheme in this article enjoys the advantage of being able to characterize the
entire set of solutions of Problem (2.10).

The aforementioned three sets of constrained optimal reinsurance problems possess different
objective functions and/or constraint functions, as well as underlying economic meaning.
While developing model-specific, ad hoc solutions that are of limited applicability is possible,
as is traditionally carried out in the literature, the conceptually and practically important
question arises naturally as to whether it is feasible to develop a unifying framework to
analyze all of these problems. Doing so not only places a large class of constrained optimal
reinsurance problems under the same umbrella, but also puts the mathematical structure
of these problems into perspective. The next section provides an affirmative answer, but
one is prompted to view these constrained problems from a much more general and wider
perspective, making their commonalities self-evident.

3 Neyman-Pearson formulation of constrained optimal

reinsurance problems

The key to a unifying treatment of the constrained optimal reinsurance problems in the
preceding section consists in recasting their objective and constraint functions in integral
form aided by the use of Lemma 2.2, yielding

inf
I∈I

ˆ ∞
0

f1(x)I ′(x) dx

s.t.

ˆ ∞
0

f0(x)I ′(x) dx ≤ π

, (3.1)

where f1 and f0 are integrable functions defined on the non-negative real line, and π is
a generic real constant. Problem (3.1) is an abstract constrained functional minimization
problem which not only is of theoretical interest per se, but also encompasses various practical
constrained optimal reinsurance problems, including but not limited to those described in
Subsection 2.2iii, upon the prescription of appropriate f1 and f0. It merits mention that in
Problem (3.1), we do not assume the non-negativity or monotonicity of f1 and f0, neither
is π required to be a non-negative constant. This contributes to the generality of Problem
(3.1) and, concomitantly, gives rise to some non-trivial technical challenges that need to be
overcome meticulously.

iiiStrictly speaking, Problem (2.10) is not directly covered by Problem (3.1) because of the presence of two
constraints. However, it is shown in Subsection 4.3 that Problem (2.10) can be converted into an equivalent
one-constraint problem covered by Problem (3.1).
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To statisticians, Problem (3.1) is strongly reminiscent of the classical result of the Neyman-
Pearson Lemma in statistical hypothesis test theory (see, for example, Section 6.1 of Shao
(2003) and Section 3.2 of Lehmann and Romano (2005)). Before setting forth the formal
solutions of Problem (3.1), it is instructive to unravel and exploit its intricate connections
with the Neyman-Pearson Lemma. In fact, it will be shown later that Problem (3.1) can be
solved by a modification of the essential spirit that underlies the Neyman-Pearson Lemma.
To this end, we consider the maximization counterpart of Problem (3.1):

sup
I∈I

ˆ ∞
0

f1(x)I ′(x) dx

s.t.

ˆ ∞
0

f0(x)I ′(x) dx ≤ π

. (3.2)

If f1 and f0 are non-negative integrable functions, then they can be thought of as kernels
(i.e., unnormalized probability density functions) of two probability density functions, or
equivalently as the Radon-Nikodým derivatives of two measures with respect to the Lebesgue
measure on the non-negative real line. Introducing the two simple hypotheses

H0 : The kernel of X is f0 versus H1 : The kernel of X is f1

for any absolutely continuousiv non-negative random variable X and identifying I ′ as the
test function of a (randomized) hypothesis test (i.e., the probability of rejecting the null
hypothesis) based on a single realization of X, one observes that Problem (3.2) can be
phrased in probabilistic language as (EHi

is the expectation under Hi for i = 0, 1) sup
I∈I

EH1 [I
′(X)]

s.t. EH0 [I
′(X)] ≤ α ∈ (0, 1)

,

which is equivalent to maximizing the power of the hypothesis test subject to the constraint
that the size of the test is no larger than α. The Neyman-Pearson Lemma asserts that
the most powerful test is achieved by the likelihood ratio test (LRT), which rejects the null
hypothesis for certain if the likelihood ratio f1(X)/f0(X) takes sufficiently large values, i.e.,
the optimal test function is

I ′∗(x) = 1{f1(x)>c∗f0(x)} + γ∗(x)1{f1(x)=c∗f0(x)},

for some real cutoff level c∗ and unit-valued function γ∗ so that the test has an exact size of α.
This comparison spirit makes intuitive sense because the null hypothesis is justifiably rejected
when the alternative hypothesis appears considerably more plausible as supported by a large
alternative likelihood f1, in conjunction with an untenable null hypothesis suggested by a
low null likelihood f0.

Upon comparing Problem (3.1) with the classical Neyman-Pearson problem, the most
conspicuous difference (apart from the fact that minimization instead of maximization is

ivOur analysis remains applicable if one replaces the integrals
´∞
0
f1(x)I ′(x) dx and

´∞
0
f0(x)I ′(x) dx

in Problem (3.1) by
´∞
0
f1(x)I ′(x) dµ(x) and

´∞
0
f0(x)I ′(x) dµ(x) respectively for any measure µ on the

non-negative real line, but there is no need for such additional generality in this paper.
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performed in the former) is that f1 and f0 in Problem (3.1) are not necessarily non-negative
functions, as is the case in most constrained optimal reinsurance problems. This precludes
the interpretation of f1 and f0 as kernels of two absolutely continuous probability distribu-
tions and deprives Problem (3.1) of the colorful probabilistic meaning in connection with
the Neyman-Pearson Lemma. Despite this noteworthy technical difference, we shall see in
Theorem 3.2 that essentially the same comparison spirit underlying the Neyman-Pearson
Lemma is at work and the optimal solutions of Problem (3.1) are still of the LRT type,
provided that appropriate modifications taking into account the signs of f1 and f0 are made
(see Remark 3.3 (i)).

We begin with a preparatory lemma concerned with some useful technical properties of
the constraint function when restricted to the class of LRT-type reinsurance policies. Below
we denote by G(c+) and G(c−) the right-hand and left-hand limits of G at c.

Lemma 3.1. (Technical properties of the restricted constraint function) Define G : [−∞, 0]→
R by

G(c) :=

ˆ
{f1<cf0}

f0(x) dx.

Then:

(a) G is a non-decreasing function.

(b) G(0) =
´
{f1<0} f0(x) dx and G(−∞) =

´
{f0<0} f0(x) dx.

(c) For any c < 0,

G(c)−G(c−) = −
ˆ
{f1=cf0, f0<0}

f0(x) dx

and

G(c+)−G(c) =

ˆ
{f1=cf0, f0>0}

f0(x) dx.

Proof. (a) The fact that G is non-decreasing can be easily seen by writing

G(c) =

ˆ
{f1/f0<c, f0>0}

f0(x) dx+

ˆ
{f1/f0>c, f0<0}

f0(x) dx, (3.3)

where both integrals are non-decreasing in c.

(b) These follow immediately from the definition of G and (3.3).

(c) These follow from the fact that the first integral in (3.3) is left-continuous in c while
the second integral is right-continuous in c.

In the classical Neyman-Pearson setting, f1 and f0 are non-negative, in which case G is
a non-decreasing left-continuous function. In the general context of Problem (3.1), f1 and
f0 are signed integrable functions, resulting in the technical complication that G, although
non-decreasing, is not necessarily a left-continuous or right-continuous function. See the
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proof of Proposition 4.3 for an example where G exhibits both left-discontinuity and right-
discontinuity.

Equipped with Lemma 3.1, we are now in a position to fully solve Problem (3.1). Our
proof parallels that of the classical Neyman-Pearson Lemma, but additional technical dif-
ficulties introduced by the signed nature of f1 and f0 need to be tackled. For simplicity,
the solutions of Problem (3.1) are equivalently and more conveniently stated in terms of the
marginal ceded loss function. No generality is lost due to the one-to-one correspondence
between a ceded loss function and its marginal counterpart.

Theorem 3.2. (Solutions of generalized Neyman-Pearson Problem (3.1)) Consider Problem
(3.1).

(a) Suppose that π ≥ G(0) =
´
{f1<0} f0(x) dx. Then the optimal solutions of Problem (3.1)

must be in the form of

I ′∗(x) =


1, if f1(x) < 0,

γ∗(x), if f1(x) = 0,

0, if f1(x) > 0,

where γ∗ : R+ → [0, 1] is any function such thatˆ ∞
0

f0(x)I ′∗(x) dx = G(0) +

ˆ
{f1=0}

f0(x)γ∗(x) dx ≤ π.

(b) Suppose that ˆ
{f0<0}

f0(x) dx = G(−∞) ≤ π < G(0) =

ˆ
{f1<0}

f0(x) dx.

Define c∗ = G−1+(π). Then the optimal solutions of Problem (3.1) must be of the form

I ′∗(x) =


1, if f1(x) < c∗f0(x),

γ∗(x), if f1(x) = c∗f0(x),

0, if f1(x) > c∗f0(x),

where γ∗ : R+ → [0, 1] is any function such thatˆ ∞
0

f0(x)I ′∗(x) dx = G(c∗) +

ˆ
{f1=c∗f0}

f0(x)γ∗(x) dx = π.

(c) If π < G(−∞) =
´
{f0<0} f0(x) dx, then Problem (3.1) has no solutions.

Proof. Since Case (c) is trivial and the proofs of Cases (a) and (b) are analogous to each
other, to avoid unnecessary repetition we only prove (b), which is the most interesting and
intricate case.

We first show that the selection of a unit-valued function γ∗ : R+ → [0, 1] such thatˆ ∞
0

f0(x)I ′∗(x) dx = G(c∗) +

ˆ
{f1=c∗f0}

f0(x)γ∗(x) dx = π (3.4)

is always possible. By the definition of c∗, three cases can arise:
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Case 1. Assume that G(c∗−) ≤ π < G(c∗). By Lemma 3.1 (c), we have´
{f1=c∗f0, f0<0} f0(x) dx < 0, and

G(c∗−) = G(c∗) +

ˆ
{f1=c∗f0, f0<0}

f0(x) dx

≤ G(c∗) +

ˆ
{f1=c∗f0, f0<0}

f0(x)γ(x) dx ≤ G(c∗)

for any unit-valued function γ. To satisfy (3.4), a possible choice of γ∗(·) is to set

γ∗(x) =
π −G(c∗)´

{f1=c∗f0, f0<0} f0(t) dt
1{f0(x)<0} ∈ [0, 1] for all x ≥ 0.

Case 2. Assume that G(c∗) = π. Then setting γ∗(x) = 0 for all x ≥ 0 immediately leads
to (3.4).

Case 3. Assume that G(c∗) < π ≤ G(c∗+). By Lemma 3.1 (c) again, we have´
{f1=c∗f0, f0>0} f0(x) dx > 0, and

G(c∗) ≤ G(c∗) +

ˆ
{f1=c∗f0, f0>0}

f0(x)γ(x) dx

≤ G(c∗) +

ˆ
{f1=c∗f0, f0>0}

f0(x) dx = G(c∗+)

for any unit-valued function γ. We can set

γ∗(x) =
π −G(c∗)´

{f1=c∗f0, f0>0} f0(t) dt
1{f0(x)>0} ∈ [0, 1] for all x ≥ 0

to fulfill (3.4).

We now fix any I ∈ I such that
´∞
0
f0(x)I ′(x) dx ≤ π. If f1(x) < c∗f0(x), then I ′∗(x)−I ′(x) =

1− I ′(x) ≥ 0. When f1(x) > c∗f0(x), we have I ′∗(x)− I ′(x) = −I ′(x) ≤ 0. Therefore,

[f1(x)− c∗f0(x)][I ′∗(x)− I ′(x)] ≤ 0 for any x ≥ 0,

so integrating both sides over the non-negative real line yieldsˆ ∞
0

[f1(x)− c∗f0(x)][I ′∗(x)− I ′(x)] dx ≤ 0,

which is equivalent toˆ ∞
0

f1(x)[I ′∗(x)− I ′(x)] dx ≤ c∗
ˆ ∞
0

f0(x)[I ′∗(x)− I ′(x)] dx.

Because c∗ ≤ 0 and
´∞
0
f0(x)I ′(x) dx ≤ π =

´∞
0
f0(x)I ′∗(x) dx, we conclude that

ˆ ∞
0

f1(x)[I ′∗(x)− I ′(x)] dx ≤ 0,
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establishing the minimality of I∗.
If I∗∗ is another function in I such that

´∞
0
f1(x)I ′∗∗(x) dx =

´∞
0
f1(x)I ′∗(x) dx and´∞

0
f0(x)I ′∗∗(x) dx ≤ π, then necessarily

ˆ ∞
0

[f1(x)− c∗f0(x)][I ′∗(x)− I ′∗∗(x)] dx = 0.

This, together with [f1(x) − c∗f0(x)][I ′∗(x) − I ′∗∗(x)] ≤ 0 for all x ≥ 0, implies that I ′∗∗ = I ′∗
almost everywhere on {f1 6= c∗f0}.

Remark 3.3. (i) The construction of the optimal solutions in Case (b) of Theorem 3.2
can be demystified by the dissection analysis performed in Lo (2016), which can be
summarized as follows. Observe that the set {f1 < c∗f0} can be partitioned into

{f1 < c∗f0} = {f1 < c∗f0, f0 ≤ 0} ∪ {f1 < c∗f0, f0 > 0}
= {f1 < 0, f0 ≤ 0} ∪ {c∗ < f1/f0 < 0, f0 < 0} ∪ {f1/f0 < c∗, f0 > 0},

in which the three sets reflect different heuristic considerations:

• Every optimal solution I∗ of Problem (3.1) must satisfy I ′∗(x) = 1 for all
x ∈ {f1 < 0, f0 ≤ 0}, on which the objective and constraint functions are si-
multaneously reduced to the greatest extent. Likewise, we must have I ′∗(x) = 0
for all x ∈ {f1 > 0, f0 ≥ 0}.
• On the set {f1 < 0, f0 > 0}, an extra unit of ceded loss lowers the objective

function but undesirably raises the constraint function. To result in the greatest
decrease in the objective function with the least increase in the constraint function,
intuitively one should set I ′∗(x) = 1 on the subset where f1 takes the most negative
values while f0 assumes the least positive values, or equivalently, where the ratio
f1/f0 takes the most negative values. This translates into the subset {f1/f0 <
c∗, f0 > 0} = {f1 < c∗f0, f0 > 0}.
• On the set {f1 > 0, f0 < 0}, optimally we set I ′∗(x) = 1 on the subset where
f1 takes the least positive values, whereas f0 assumes the most negative values,
or where f1/f0 takes the least negative values. This is captured by the subset
{c∗ < f1/f0 < 0, f0 < 0}.

More details of such dissection analysis can be found in Subsection 3.1 of Lo (2016).

(ii) A careful examination of the proof of Theorem 3.2 reveals that c∗ can be set to any
value between (and including) G−1(π) and G−1+(π). Regardless of the choice of c∗, the
three mutually exclusive and exhaustive cases (1) G(c∗−) ≤ π < G(c∗); (2) G(c∗) = π
and (3) G(c∗) < π ≤ G(c∗+) should still be distinguished because the existence of γ∗
needs to be handled separately.

(iii) If the set of ceded loss functions is changed to

I = {I : R+ → R+ | I(0) = 0, I ′1(x) ≤ I ′(x) ≤ I ′2(x) for all x ≥ 0},
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where I ′1 and I ′2 are two given unit-valued functions, then the optimal solutions of
Problem (3.1) can be easily modified as

I ′∗(x) =


I ′2(x), if f1(x) < c∗f0(x),

γ∗(x), if f1(x) = c∗f0(x),

I ′1(x), if f1(x) > c∗f0(x),

where γ∗ : R+ → [0, 1] is any unit-valued function such that I ′1(x) ≤ γ∗(x) ≤ I ′2(x) for all
x ≥ 0, and

´∞
0
f0(x)I ′∗(x) dx ≤ π in Case (a) of Theorem 3.2 and

´∞
0
f0(x)I ′∗(x) dx =

π in Case (b), with other obvious modifications on the definition of the restricted
constraint function G and the three conditions on π in Theorem 3.2. Such constraints
on the class of feasible ceded loss functions were imposed in Balbás et al. (2015) and
Zhuang et al. (2016) to further reduce moral hazard.

(iv) In essence, Theorem 3.2 is a generalization of the classical Neyman-Pearson Lemma
from (probability) measures to signed measures defined by the two possibly signed
functions f1 and f0, and I ′ admits more general interpretations than a test function
(in this article, I ′ is interpreted as a marginal ceded loss function, but it need not be
in other contexts). Note that while there exist scattered extensions of the Neyman-
Pearson Lemma to signed measures akin to Theorem 3.2 in the literature, these results
are often stated in an incomplete and obscure form that is not useful for practical
purposes. One example is Theorem 1 of Wagner (1969), in which the class of feasible
ceded loss functions (following the terminology and notation of the current article) is
defined in terms of the optimal solution given a priori, not to mention that additional
differentiability conditions are imposed on f1 and f0. Another example is Proposition
10 on page 30 of Rao (2014), where the optimality of I∗ is established only among all
I ∈ I such that

´∞
0
f0(x)I ′(x) dx =

´∞
0
f0(x)I ′∗(x) dx, but not all I ∈ I satisfying the

constraint
´∞
0
f0(x)I ′(x) dx ≤ π, and that the value of π is not clearly distinguished.

With Theorem 3.2, we provide a clear-cut characterization of the entire set of optimal
solutions of Problem (3.1) for all mutually exclusive and exhaustive conditions on π.
In doing so, it also addresses the issue of (non)uniqueness of the optimal solutions of
Problem (3.1). It is shown that the solutions are generally non-unique, unless the set
{f1 = c∗f0} is a Lebesgue null set.

4 Closed-form solutions of three concrete constrained

optimal reinsurance problems

Theorem 3.2 forms the theoretical foundation of our Neyman-Pearson approach to optimal
reinsurance and furnishes a ready recipe for solving a wide body of constrained optimal
reinsurance problems efficiently. To illustrate the versatility of Theorem 3.2, in this section
we prescribe the functions f1 and f0 in Problem (3.1), and employ Theorem 3.2 to completely
solve the three concrete constrained optimal reinsurance problems presented in Subsection
2.2.
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4.1 Budget-constrained optimal reinsurance

The budget-constrained optimal reinsurance problem studied in a number of prior papers
can be solved effortlessly as an immediate application of Theorem 3.2.

Proposition 4.1. (Budget-constrained optimal reinsurance) Consider Problem (2.4).

(a) Suppose that π ≥
´
{r(SX)<gi(SX)} r(SX(x)) dx. Then Problem (2.4) is solved by

I ′∗(x) =


1, if r(SX(x)) < gi(SX(x)),

γ∗(x), if r(SX(x)) = gi(SX(x)),

0, if r(SX(x)) > gi(SX(x)),

for any function γ∗ : R+ → [0, 1] such that

ˆ
{r(SX)<gi(SX)}

r(SX(x)) dx+

ˆ
{r(SX)=gi(SX)}

r(SX(x))γ∗(x) dx ≤ π.

(b) Suppose that 0 ≤ π <
´
{r(SX)<gi(SX)} r(SX(x)) dx. Then Problem (2.4) is solved by

I ′∗(x) =


1, if gi(SX(x))/r(SX(x)) > c∗,

γ∗(x), if gi(SX(x))/r(SX(x)) = c∗,

0, if gi(SX(x))/r(SX(x)) < c∗,

where c∗ = inf
{
c ≥ 1

∣∣∣´{gi(SX)/r(SX)>c} r(SX(x)) dx ≤ π
}

, and γ∗ : R+ → [0, 1] is any

function such that

ˆ
{gi(SX)/r(SX)>c∗}

r(SX(x)) dx+

ˆ
{gi(SX)/r(SX)=c∗}

r(SX(x))γ∗(x) dx = π.

(c) Suppose that π < 0. Then Problem (2.4) has no solutions.

Proof. In this setting, f1(x) = r(SX(x))− gi(SX(x)) and f0(x) = r(SX(x)). Then Cases (a)
and (c) are immediate. For Case (b), it suffices to note that

c∗ = sup

{
c ≤ 0

∣∣∣∣ˆ
{r(SX)−gi(SX)<cr(SX)}

r(SX(x)) dx ≤ π

}
= sup

{
c ≤ 0

∣∣∣∣ˆ
{gi(SX)/r(SX)>1−c}

r(SX(x)) dx ≤ π

}
= 1− inf

{
c ≥ 1

∣∣∣∣ˆ
{gi(SX)/r(SX)>c}

r(SX(x)) dx ≤ π

}
,

followed by relabeling 1− c∗ as c∗.
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Proposition 4.1 is a streamlined version of Theorem 3.3 of Cheung and Lo (2017) and
Theorem 4.1 of Zhuang et al. (2016). It shows that their cost-benefit and marginal indem-
nification function approaches fall into the realm of the Neyman-Pearson approach of this
article. As amply discussed in Cheung and Lo (2017), gi(SX)/r(SX) can be interpreted as
the ratio of the marginal benefit of reinsurance to the marginal cost of reinsurance. Intuition
suggests and Proposition 4.1 (b) confirms that the insurer, with the aim of minimizing its
total retained risk using the given limited budget, should purchase reinsurance on the losses
on which the excess of the marginal benefit of reinsurance over the marginal cost is the
greatest, until the whole budget is consumed. We refer to Cheung and Lo (2017) for more
details.

4.2 Optimal reinsurance in the presence of counterparty risk con-
straints

We now analyze the insurer’s DRM minimization problem subject to the reinsurer’s DRM
risk constraint (Problem (2.5)) and the reinsurer’s DRM minimization problem subject to
the insurer’s DRM risk constraint (Problem (2.6)). Due to the close resemblance between
the two problems, we only present the solutions for Problem (2.5), for which the functions
f1 and f0 are given by

f1(x) = r(SX(x))− gi(SX(x)) and f0(x) = gr(SX(x))− r(SX(x)).

Specializing Theorem 3.2 to these two functions immediately leads to the following complete
solutions of Problem (2.5).

Proposition 4.2. (Insurer’s DRM minimization in the presence of reinsurer’s DRM risk
constraint) Consider Problem (2.5). Define G : [−∞, 0]→ R by

G(c) =

ˆ
{(1+c)r(SX)<gi(SX)+cgr(SX)}

[gr(SX(x))− r(SX(x))] dx.

(a) Suppose that π ≥
´
{r(SX)<gi(SX)}[gr(SX(x))−r(SX(x))] dx. Then Problem (2.5) is solved

by

I ′∗(x) =


1, if r(SX(x)) < gi(SX(x)),

γ∗(x), if r(SX(x)) = gi(SX(x)),

0, if r(SX(x)) > gi(SX(x)),

for any function γ∗ : R+ → [0, 1] such that

G(0) +

ˆ
{r(SX)=gi(SX)}

[gr(SX(x))− r(SX(x))]γ∗(x) dx ≤ π.

(b) Suppose that

ˆ
{gr(SX)<r(SX)}

[gr(SX(x))−r(SX(x))] dx ≤ π <

ˆ
{r(SX)<gi(SX)}

[gr(SX(x))−r(SX(x))] dx.
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Define c∗ = G−1+(π). Then Problem (2.5) is solved by

I ′∗(x) =


1, if (1 + c∗)r(SX(x)) < gi(SX(x)) + c∗gr(SX(x)),

γ∗(x), if (1 + c∗)r(SX(x)) = gi(SX(x)) + c∗gr(SX(x)),

0, if (1 + c∗)r(SX(x)) > gi(SX(x)) + c∗gr(SX(x)),

where γ∗ : R+ → [0, 1] is any function such that

G(c∗) +

ˆ
{(1+c∗)r(SX)=gi(SX)+c∗gr(SX)}

[gr(SX(x))− r(SX(x))]γ∗(x) dx = π.

(c) Suppose that π <
´
{gr(SX)<r(SX)}[gr(SX(x))− r(SX(x))] dx. Then Problem (2.5) has no

solutions.

We remark that our solutions given in Proposition 4.2 work for any distortion functions
gi and gr because our methodology based on Theorem 3.2 does not rely on any particular
properties of the functions f1 and f0.

In order to display the above optimal solutions more concretely and to cast further light
on the effects of the counterparty risk constraints on the contract design, in the remainder of
this subsection we concentrate on the VaR-based Problems (2.7) and (2.8) as exemplars of
Problems (2.5) and (2.6) with particular practical relevance (owing to the ubiquity of VaR)
and with partial solutions available in Lu et al. (2016), whereby the utility of the Neyman-
Pearson approach fully manifests itself. For concreteness, we suppose that the expected value
premium principle with a profit loading of θ is in force, i.e., r(x) = (1 + θ)x, where θ ≥ 0.
Extensively used in the literature, including Lu et al. (2016), this reinsurance premium prin-
ciple facilitates the comparison of our novel results with those in Lu et al. (2016), although
our methodology remains valid when other premium principles in the general form of (2.3)
are prescribed (at the possible cost of losing the concrete representations of the optimal ceded
loss functions). The functions f1 and f0 are then given by

f1(x) = (1 + θ)SX(x)− 1{SX(x)>1−α} and f0(x) = 1{SX(x)>1−β} − (1 + θ)SX(x). (4.1)

In what follows, we write, for any real x and y, x ∧ y = min(x, y), x ∨ y = max(x, y) and
x+ = max(x, 0).

Proposition 4.3. (Insurer’s VaR minimization in the presence of reinsurer’s VaR risk con-
straint) Consider Problem (2.7) with f1 and f0 specified in (4.1). Assume that θ/(θ + 1) ≤
α ∧ β.

(a) Suppose that π0 ≥
´ F−1

X (α)

F−1+
X (θ/(θ+1))

f0(x) dx. Then Problem (2.7) is solved by

I ′∗(x) =


1, if F−1+X (θ/(θ + 1)) < x < F−1X (α),

γ∗(x), if F−1X (θ/(θ + 1)) ≤ x ≤ F−1+X (θ/(θ + 1)),

0, elsewhere,

for any function γ∗ : R+ → [0, 1] such that
ˆ F−1

X (α)

F−1+
X (θ/(θ+1))

f0(x) dx+

ˆ F−1+
X (θ/(θ+1))

F−1
X (θ/(θ+1))

f0(x)γ∗(x) dx ≤ π0.
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(b) Suppose that

ˆ
[0,F−1

X (θ/(θ+1)))∪[F−1
X (β),∞)

f0(x) dx ≤ π0 <

ˆ F−1
X (α)

F−1+
X (θ/(θ+1))

f0(x) dx.

Then Problem (2.7) is solved by

I ′∗(x) =


1, if F−1X (β) ≤ x < F−1X (α),

γ∗(x), if 0 ≤ x < F−1X (α ∧ β) or x ≥ F−1X (α ∨ β),

0, elsewhere,

for any function γ∗ : R+ → [0, 1] such that

ˆ
[F−1

X (β),F−1
X (α))

f0(x) dx+

ˆ
[0,F−1

X (α∧β))∪[F−1
X (α∨β),∞)

f0(x)γ∗(x) dx = π0.

(c) Suppose that π0 <
´
[0,F−1

X (θ/(θ+1)))∪[F−1
X (β),∞)

f0(x) dx. Then Problem (2.7) admits no

solutions.

Proof. For any fixed c ≤ 0, consider the inequality (1+c)r(SX(x)) < gi(SX(x))+cgr(SX(x)),
which is equivalent to

(1 + c)(1 + θ)SX(x) < 1{SX(x)>1−α} + c1{SX(x)>1−β} (4.2)

over x ∈ [0, F−1X (1)). We distinguish three cases.

Case 1. When c < −1, then with the aid of (2.2) we see that (4.2) is true if and only if
x < F−1X (θ/(θ + 1)) or x ≥ F−1X (β).

Case 2. When c = −1, then (4.2) is valid if and only if x ∈ [F−1X (β), F−1X (α)) (which is an
empty set when α ≤ β).

Case 3. When c > −1, then (4.2) holds if and only if either x ∈ (F−1+X (θ/(θ+1)), F−1X (α))
or x ∈ [F−1+X (θ/(θ + 1)), F−1X (α)) (the latter occurs when FX has a point of
discontinuity at F−1+X (θ/(θ + 1))).

Noting that almost everywhere equal functions have the same Lebesgue integral, we
deduce that (see Figure 1)

G(c) =



ˆ
[0,F−1

X (θ/(θ+1)))∪[F−1
X (β),∞)

f0(x) dx, if c < −1,
ˆ
[F−1

X (β),F−1
X (α))

f0(x) dx, if c = −1,

ˆ F−1
X (α)

F−1+
X (θ/(θ+1))

f0(x) dx, if − 1 < c ≤ 0.

If π0 satisfies
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0
c

G(c)

´ F−1
X (α)

F−1+
X (θ/(θ+1))

f0(x) dx

´
[0,F−1

X (θ/(θ+1)))∪[F−1
X (β),∞)

f0(x) dx

´
[F−1

X (β),F−1
X (α))

f0(x) dx (possibly zero)

−1

π0

Figure 1: The graph of G(c) in Proposition 4.3.

ˆ
[0,F−1

X (θ/(θ+1)))∪[F−1
X (β),∞)

f0(x) dx ≤ π0 <

ˆ F−1
X (α)

F−1+
X (θ/(θ+1))

f0(x) dx,

then c∗ = −1. As

{r(SX) < gi(SX)} = (F−1+X (θ/(θ + 1)), F−1X (α)) or [F−1+X (θ/(θ + 1)), F−1X (α)),

{r(SX) = gi(SX)} = [F−1X (θ/(θ + 1)), F−1+X (θ/(θ + 1))) or [F−1X (θ/(θ + 1)), F−1+X (θ/(θ + 1))],

{gr(SX) < r(SX)} = [F−1X (β), F−1X (α)),

{gr(SX) = r(SX)} = [0, F−1X (α ∧ β)) ∪ [F−1X (α ∨ β),∞),

an application of Proposition 4.2 completes the proof.

Remark 4.4. (i) The assumption θ/(θ + 1) ≤ α ∧ β, which is imposed to ease the presen-
tation of the optimal solutions, is indeed very mild and, for all intents and purposes,
satisfied, because the profit loading θ charged by the reinsurer usually takes a small
positive value whereas the probability levels α and β that define the VaR risk measure
tend to approach one in practice.

(ii) Further insights into the behavior of the optimal solutions of Problem (2.7) can be
gained by examining the signs and magnitudes of f1 and f0 over different subsets of
the non-negative real line.

• Note that f1 and f0 take the same sign on the set [F−1X (α∧β), F−1X (α∨β)). When
α > β, both f1 and f0 are negative on [F−1X (α∧β), F−1X (α∨β)) = [F−1X (β), F−1X (α)).
The optimal reinsurance strategy is to purchase full coverage on this set (i.e., set
I ′∗(x) = 1), leading to the greatest reduction in the objective function, which
aligns with the goal of Problem (2.7), as well as the constraint function, providing
additional room for reinsurance coverage on other sets. When α ≤ β, both f1
and f0 are positive on [F−1X (α∧β), F−1X (α∨β)) = [F−1X (α), F−1X (β)). Reinsurance
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coverage in this set thanklessly increases the objective function as well as the
constraint function. This set should be completely discarded in the design of the
optimal reinsurance treaty.

• Outside [F−1X (α ∧ β), F−1X (α ∨ β)), f1 and f0 assume opposite signs but the same
magnitude. Ceding an extra unit of loss on the complement of [F−1X (α∧β), F−1X (α∨
β)) leads to a decrease (resp. increase) in the objective function that is ex-
actly compensated by the increase (resp. decrease) in the constraint function.
This explains the perhaps astounding result in Proposition 4.3 (b) that the de-
sign of the optimal reinsurance policy can be arbitrary on the complement of
[F−1X (α ∧ β), F−1X (α ∨ β)), as long as the resulting contract binds the reinsurer’s
risk constraint.

(iii) Proposition 4.3 can be considered as a substantial improvement of Theorem 3.6 of Lu
et al. (2016) involving bounded reinsurer’s risk in three respects:

(1) First, Proposition 4.3 distinguishes various optimal solutions of Problem (2.7)
by different explicit, mutually exclusive and exhaustive conditions on the upper
bound π0, which can be readily ascertained upon the prescription of the distri-
bution of the ground-up loss X, in contrast to the conditions which are defined
implicitly in Lu et al. (2016) (see the conditions “b∗0 ≥ VaRX(p)”, “b∗0 < VaRX(p)”
and the implicit definition of the quantity b∗0 therein) and difficult to verify. Our
conditions on π0 are also mathematical ways of expressing the stringency of the
reinsurer’s risk constraint.

(2) Second, with respect to the form of the optimal solutions, arguably the great-
est power of Proposition 4.3 is that it manages to exhaust all of the solutions
of Problem (2.7), whereas only particular insurance-layer-type solutions are pre-
sented in Theorem 3.6 of Lu et al. (2016). This is inherently due to Lu et al.
(2016)’s methodology, which reduces the feasible set of ceded loss functions to
a two-dimensional sub-class and inevitably results in a loss of optimal solutions.
The Neyman-Pearson approach in this article is a clear demonstration that a
wide spectrum of reinsurance policies can serve as the optimal solutions of Prob-
lem (2.7), in addition to providing an explicit and transparent characterization of
the set of optimal solutions.

(3) Third, Proposition 4.3 possesses much higher generality in that we dispense with
the absolute continuity and strict monotonicity traditionally imposed on the dis-
tribution function of the ground-up loss for technical reasons, and that Problem
(2.7) is defined by a VaR risk constraint characterized by the reinsurer’s risk
level β, which is generally different from the insurer’s risk level α. Proposition
4.3 not only encompasses the two complementary cases, α ≤ β (in which case
the set [F−1X (β), F−1X (α)) is empty and the integral

´
[F−1

X (β),F−1
X (α))

f0(x) dx is zero)

and α > β, but also retrieves the bounded loss setting in Lu et al. (2016) upon
sending β to 1.

With different specifications of f1 and f0, our Neyman-Pearson solution scheme can be
readily adapted to solve the TVaR-based problems also studied in Lu et al. (2016).
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As f1 < cf0 is equivalent to f0 < c−1f1 for any c < 0, a by-product of the proof of
Proposition 4.3 is the following corollary, which provides complete solutions of Problem
(2.8) and will be of use in the next subsection.

Corollary 4.5. (Reinsurer’s VaR minimization in the presence of insurer’s VaR risk con-
straint) Consider Problem (2.8) with f1 and f0 specified in (4.1). Assume that θ/(θ + 1) ≤
α ∧ β.

(a) Suppose that π1 ≥
´
[0,F−1

X (θ/(θ+1)))∪[F−1
X (β),∞)

f1(x) dx. Then Problem (2.8) is solved by

I ′∗(x) =


1, if x < F−1X (θ/(θ + 1)) or x ≥ F−1X (β),

γ∗(x), if F−1X (θ/(θ + 1)) ≤ x ≤ F−1+X (θ/(θ + 1)),

0, if F−1+X (θ/(θ + 1)) < x < F−1X (β),

for any function γ∗ : R+ → [0, 1] such that

ˆ
[0,F−1+

X (θ/(θ+1)))∪[F−1
X (β),∞)

f1(x) dx+

ˆ F−1+
X (θ/(θ+1))

F−1
X (θ/(θ+1))

f1(x)γ∗(x) dx ≤ π1.

(b) Suppose that

ˆ F−1
X (α)

F−1+
X (θ/(θ+1))

f1(x) dx ≤ π1 <

ˆ
[0,F−1

X (θ/(θ+1)))∪[F−1
X (β),∞)

f1(x) dx.

Then Problem (2.8) is solved by

I ′∗(x) =


1, if F−1X (β) ≤ x < F−1X (α),

γ∗(x), if 0 ≤ x < F−1X (α ∧ β) or x ≥ F−1X (α ∨ β),

0, elsewhere,

for any function γ∗ : R+ → [0, 1] such thatˆ
[F−1

X (β),F−1
X (α))

f1(x) dx+

ˆ
[0,F−1

X (α∧β))∪[F−1
X (α∨β),∞)

f1(x)γ∗(x) dx = π1.

(c) Suppose that π1 <
´ F−1

X (α)

F−1+
X (θ/(θ+1))

f1(x) dx. Then Problem (2.8) has no solutions.

4.3 Insurer-reinsurer symbiotic optimal reinsurance

As a further illustration of the Neyman-Pearson technique and a natural continuation of
Problems (2.7) and (2.8) studied in the preceding subsection, we now revisit the insurer-
reinsurer symbiotic risk minimization problem (Problem (2.10)) studied in Cai et al. (2016),
which we reproduce as follows for convenience:

inf
I∈I

λVaRα

(
X − I(X) + PI(X)

)
+ (1− λ)VaRβ

(
I(X)− PI(X)

)
s.t.

VaRα

(
X − I(X) + PI(X)

)
≤ π1

VaRβ

(
I(X)− PI(X)

)
≤ π0

.

23



To guarantee that the set of solutions of Problem (2.10) is non-empty, we follow Cai et al.
(2016) and impose the following assumptions on the ranges of values of π1 and π0:

F−1+X

(
θ

θ + 1

)
+ (1 + θ)

ˆ F−1
X (α)

F−1+
X (θ/(θ+1))

SX(x) dx ≤ π1

F−1X

(
θ

θ + 1

)
− (1 + θ)

(ˆ
[0,F−1

X (θ/(θ+1)))∪[F−1
X (β),∞)

SX(x) dx

)
≤ π0

F−1X (α ∧ β) ≤ π1 + π0

. (4.3)

The first two conditions ensure that π1 and π0 are no less than the smallest values of the two
constraint functions, i.e.,

inf
I∈I

VaRα(X − I(X) + PI(X)) ≤ π1 and inf
I∈I

VaRβ(I(X)− PI(X)) ≤ π0,

and the last condition, which arises from the 1-Lipschitz property of any I ∈ I, rules out the
possibility that π1 and π0 simultaneously take exceptionally low values. The allowable set
of values of (π1, π0) is then a triangular region, in which optimal solutions of Problem (2.10)
exist, as will be shown in Proposition 4.6 below. Most intriguingly, Problem (2.10) can be
solved by disregarding one of the two constraints and reducing it to either Problem (2.7) or
Problem (2.8), depending on whether λ > 1/2 or λ < 1/2 (see Remark 4.7 (i) for why this
happens). By doing so, the optimal solutions presented in Proposition 4.3 and Corollary 4.5
of Subsection 4.2 will come in useful again, and Problem (2.10) can be solved very easily.

Proposition 4.6. (Insurer-reinsurer symbiotic optimal reinsurance) Consider Problem (2.10)
with f1 and f0 specified in (4.1). Assume that θ/(θ + 1) ≤ α ∧ β.

(a) If λ > 1/2, then Problem (2.10) has the same set of solutions as Problem (2.7), i.e.,{
inf
I∈I

VaRα(X − I(X) + PI(X))

s.t. VaRβ(I(X)− PI(X)) ≤ π0
,

with π0 satisfying (4.3) (see Proposition 4.3 for the solutions).

(b) If λ = 1/2, then Problem (2.10) is solved by

I ′∗(x) =


1, if F−1X (β) ≤ x < F−1X (α),

γ∗(x), if 0 ≤ x < F−1X (α ∧ β) or x ≥ F−1X (α ∨ β),

0, elsewhere,

where γ∗ : R+ → [0, 1] is any function such that

ˆ
[F−1

X (β),F−1
X (α))

fi(x) dx+

ˆ
[0,F−1

X (α∧β))∪[F−1
X (α∨β),∞)

fi(x)γ∗(x) dx ≤ πi

for i = 0, 1.
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(c) If λ < 1/2, then Problem (2.10) has the same set of solutions as Problem (2.8), i.e.,{
inf
I∈I

VaRβ(I(X)− PI(X))

s.t. VaRα(X − I(X) + PI(X)) ≤ π1
,

with π1 satisfying (4.3) (see Corollary 4.5 for the solutions).

Proof. We only prove (a) here. The proofs of (b) and (c) are similar and omitted. In integral
form, Problem (2.10) is equivalent to

inf
I∈I

ˆ ∞
0

[λf1(x) + (1− λ)f0(x)]I ′(x) dx

s.t.

ˆ ∞
0

f1(x)I ′(x) dx ≤ π′1ˆ ∞
0

f0(x)I ′(x) dx ≤ π0

, (4.4)

where π′1 = π1−VaRα(X). As f1 and f0 are both negative on [F−1X (β), F−1X (α)) and positive
on [F−1X (α), F−1X (β)) (see Remark 4.4 (ii)), without loss of generality we may restrict attention
to only those I’s such that I ′(x) = 1 for all x ∈ [F−1X (β), F−1X (α)) and I ′(x) = 0 for all
x ∈ [F−1X (α), F−1X (β)), since every optimal solution (if it exists) of Problem (4.4) must satisfy
these properties.

Suppose that λ > 1/2, and let I∗ be any optimal solution of Problem (2.7) with π0
satisfying (4.3). We first show that I∗ is a feasible solution of Problem (4.4). By Proposition
4.3, the optimal value of the objective function of Problem (2.7) is

ˆ ∞
0

f1(x)I ′∗(x) dx =

ˆ F−1
X (α)

F−1+
X (θ/(θ+1))

f1(x) dx+

ˆ F−1+
X (θ/(θ+1))

F−1
X (θ/(θ+1))

f1(x)γ∗(x) dx

= F−1+X

(
θ

θ + 1

)
+ (1 + θ)

ˆ F−1
X (α)

F−1+
X (θ/(θ+1))

SX(x) dx− F−1X (α)

≤ π1 − F−1X (α)

= π′1,

if π0 ≥
´ F−1

X (α)

F−1+
X (θ/(θ+1))

f0(x) dx, by the first inequality in (4.3); if

ˆ
[0,F−1

X (θ/(θ+1)))∪[F−1
X (β),∞)

f0(x) dx ≤ π0 <

ˆ F−1
X (α)

F−1+
X (θ/(θ+1))

f0(x) dx,
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then ˆ ∞
0

f1(x)I ′∗(x) dx

=

ˆ
[F−1

X (β),F−1
X (α))

f1(x) dx+

ˆ
[0,F−1

X (α∧β))∪[F−1
X (α∨β),∞)

f1(x)γ∗(x) dx

= (1 + θ)

ˆ
[F−1

X (β),F−1
X (α))

SX(x) dx− [F−1X (α)− F−1X (β)]+

−
ˆ
[0,F−1

X (α∧β))∪[F−1
X (α∨β),∞)

f0(x)γ∗(x) dx

= −
ˆ
[F−1

X (β),F−1
X (α))

f0(x) dx− [F−1X (α)− F−1X (β)]+ −
ˆ
[0,F−1

X (α∧β))∪[F−1
X (α∨β),∞)

f0(x)γ∗(x) dx

= −π0 − [F−1X (α)− F−1X (β)]+

≤ π1 − F−1X (α ∧ β)− [F−1X (α)− F−1X (β)]+

= π1 − F−1X (α)

= π′1,

using the third inequality in (4.3). In both cases,
´∞
0
f1(x)I ′∗(x) dx ≤ π′1, showing the

feasibility of I∗ as a solution of Problem (4.4).
Now for any fixed I satisfying

´∞
0
f1(x)I ′(x) dx ≤ π′1,

´∞
0
f0(x)I ′(x) dx ≤ π0, I

′(x) = 1
for all x ∈ [F−1X (β), F−1X (α)) and I ′(x) = 0 for all x ∈ [F−1X (α), F−1X (β)), it follows from the
definition of I∗ that ˆ ∞

0

f1(x)I ′∗(x) dx ≤
ˆ ∞
0

f1(x)I ′(x) dx.

Moreover, because f1(x) = −f0(x) for all x /∈ [F−1X (α∧β), F−1X (α∨β)) and I ′∗(x) = I ′(x) for
all x ∈ [F−1X (α ∧ β), F−1X (α ∨ β)), we also have

ˆ ∞
0

f0(x)[I ′(x)− I ′∗(x)] dx =

ˆ ∞
0

f1(x)[I ′∗(x)− I ′(x)] dx ≤ 0.

Therefore,
ˆ ∞
0

[λf1(x) + (1− λ)f0(x)][I ′∗(x)− I ′(x)] dx

= λ

ˆ ∞
0

f1(x)[I ′∗(x)− I ′(x)] dx+ (1− λ)

ˆ ∞
0

f0(x)[I ′∗(x)− I ′(x)] dx

= λ

ˆ ∞
0

f1(x)[I ′∗(x)− I ′(x)] dx+ (1− λ)

ˆ ∞
0

f1(x)[I ′(x)− I ′∗(x)] dx

= (2λ− 1)

ˆ ∞
0

f1(x)[I ′∗(x)− I ′(x)] dx

≤ 0,

where the last inequality follows from λ > 1/2. This proves the optimality of any solution
of Problem (2.7) for Problem (4.4), and equivalently, for Problem (2.10).
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Conversely, if I∗∗ is an optimal solution of Problem (4.4), then the above proof shows
that necessarily ˆ ∞

0

f1(x)I ′∗∗(x) dx =

ˆ ∞
0

f1(x)I ′∗(x) dx,

which means that I∗∗ is also a solution of Problem (2.7).

Remark 4.7. (i) The fact that the two-constraint Problem (2.10) can be equivalently re-
duced to the one-constraint Problems (2.7) and (2.8) subject to (4.3), which are
optimization problems from the perspective of only one party, may seem puzzling,
given that Problem (2.10) is designed to factor in the joint interests of the insurer
and reinsurer in the first place. Such anomaly can be heuristically explained in the
light of the behavior of the functions f1 and f0, which satisfy f1(x) = −f0(x) for all
x /∈ [F−1X (α ∧ β), F−1X (α ∨ β)) (see Remark 4.4 (ii)). As f1 and f0 are always opposite
in sign but the same in magnitude on the complement of [F−1X (α ∧ β), F−1X (α ∨ β)),
ceding an additional unit of loss there leads to a decrease (resp. increase) in f1 that
is exactly offset by the increase (resp. decrease) in f0. If λ > 1/2, the decrease (resp.
increase) in the objective function will outweigh the increase (resp. decrease), leading
to an overall decrease (resp. increase) in the objective function. This explains why
when λ > 1/2, Problem (2.10) is solved by solely minimizing

´∞
0
f1(x)I ′(x) dx over

I ∈ I subject to the constraints (4.3). Analogous explanations hold in the cases when
λ = 1/2 and λ < 1/2.

(ii) Further to (i), it should be emphasized that the reduction of the two-constraint Problem
(2.10) to the one-constraint Problems (2.7) and (2.8) heavily relies upon the character
of f1 and f0 when both the insurer and reinsurer adopt VaR as their risk measures
and should be perceived as the exception rather than the rule. This phenomenon is
not expected to occur when other risk measures such as TVaR are prescribed, in which
case the “exact offsetting” property of f1 and f0 described in (i) is lost and Problem
(2.10) cannot be solved by the methods proposed in this article. In fact, the peculiarity
observed in Proposition 4.6 is a manifestation of a further shortcoming of VaR when it
is employed as a decision-making vehicle in risk management, in addition to many of
its flaws documented, for example, in Basak and Shapiro (2001) and Dowd and Blake
(2006).

(iii) In addition to Problem (2.10), Cai et al. (2016) (see Problem (25) therein) also consid-
ered the insurer-reinsurer symbiotic risk minimization problem subject to the insurer’s
loss constraint and the reinsurer’s profit constraint:

inf
I∈I

λVaRα

(
X − I(X) + PI(X)

)
+ (1− λ)VaRβ

(
I(X)− PI(X)

)
s.t.

VaRα

(
X − I(X) + PI(X)

)
≤ π1

P(PI(X) − I(X) ≥ L2) ≥ γ

, (4.5)

where L2 is the profit target and γ is the confidence level of the reinsurer. Although
the reinsurer’s profit constraint is equivalent to VaRγ[I(X) − PI(X)] ≤ −L2, whose
structure is identical to the reinsurer’s risk constraint in Problem (2.10), note that the
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two confidence levels β and γ need not be the same, in which case three functions,
f0, f1 defined in (4.1), and f2 defined by f2(x) := 1{SX(x)>1−γ} − (1 + θ)SX(x) need
to be dealt with. Therefore, unless β = γ, Problem (4.5) is essentially different from
Problem (2.10) and requires further analysis.

5 Concluding remarks

Constrained optimal reinsurance is a mathematically challenging and practically significant
research problem that has constantly attracted a great deal of interest from researchers and
practitioners. This article addresses constrained optimal reinsurance problems by drawing
upon their intrinsic Neyman-Pearson nature, which puts these problems into perspective
and allows for a unifying, transparent and thorough treatment. The Neyman-Pearson-type
explicit solutions obtained by specializing the general solution scheme to three concrete
constrained optimal reinsurance problems demonstrate that many of them were only par-
tially and unnecessarily tediously analyzed by ad hoc methods in the literature, but are
now completely and methodically solved. It is anticipated that the usefulness of such a
Neyman-Pearson approach will extend beyond the realm of optimal reinsurance to many
other constrained optimization problems in risk management and insurance which are partly
or not at all statistical in character.

We remark that while there are generalizations of the classical Neyman-Pearson Lemma
to the case of multiple inequality constraints in the mathematics and statistics literature (see,
for example, Property 3.5 of Francis and Wright (1969), Proposition 6.1 of Shao (2003), and
Theorem 3.6.1 of Lehmann and Romano (2005)), they merely provide sufficient conditions for
the constrained optimization problem to admit optimal solutions. These sufficient conditions
are hard to ascertain in practice, and that clear-cut characterizations given in Theorem 3.2
of this article are hardly available. The solution of optimal reinsurance problems in the
presence of several external constraints remains an insurmountable problem that requires
future research.
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