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Abstract The notion of Pareto optimality is commonly employed to formulate decisions that
reconcile the conflicting interests of multiple agents with possibly different risk preferences. In the
context of a one-period reinsurance market comprising an insurer and a reinsurer, both of which
perceive risk via distortion risk measures, also known as dual utilities, this article characterizes the
set of Pareto-optimal reinsurance policies analytically and visualizes the insurer-reinsurer trade-off
structure geometrically. The search of these policies is tackled by translating it mathematically
into a functional minimization problem involving a weighted average of the insurer’s risk and the
reinsurer’s risk. The resulting solutions not only cast light on the structure of the Pareto-optimal
contracts, but also allow us to portray the resulting insurer-reinsurer Pareto frontier graphically.
In addition to providing a pictorial manifestation of the compromise reached between the insurer
and reinsurer, an enormous merit of developing the Pareto frontier is the considerable ease with
which Pareto-optimal reinsurance policies can be constructed even in the presence of the insurer’s
and reinsurer’s individual risk constraints. A strikingly simple graphical search of these constrained
policies is performed in the special cases of Value-at-Risk and Tail Value-at-Risk.

Keywords Distortion · 1-Lipschitz · Value-at-Risk · Pareto frontier · Multi-criteria optimization ·
Risk sharing

1 Introduction

In various applied problems arising in engineering, finance, operations research, and the like, de-
cisions are often made with the vexed aim of reconciling a host of conflicting criteria. In finance,
for example, investors are struck with the desire to maximize the expected value of their portfolio
returns while minimizing their risk, which is quantified by the standard deviation in the celebrated
Markowitz mean-variance framework. In the statistics arena, reducing the probability of commit-
ting a Type I error of a hypothesis test for a given sample size generally leads to an increase in
the Type II error probability. Typically, the decision-making process entails a compromise between
several criteria that are at least partially at odds with one another, and the procedure is formally
known as multi-criteria or multi-objective optimization. For recent accomplishments, applications
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(especially in finance), and anticipated future developments in this fertile field of research, readers
are referred to Ehrgott (2005), Wallenius et al. (2008), Zopounidis and Pardalos (2010), Maggis
and La Torre (2012), Aouni et al. (2014), Jayaraman et al. (2015), La Torre (2017), and Zarepisheh
and Pardalos (2017) among others and the references therein.

Among the wide spectrum of multi-criteria optimization problems, this article centers on the
design of optimal reinsurance policies in a one-period bilateral setting, which is a problem of consid-
erable practical interest in actuarial science and risk management. Reinsurance, which is essentially
insurance purchased by an insurance company (or insurer) from a reinsurance corporation (or rein-
surer), is a commonly used liability management strategy that allows an insurer to reduce the
amount of its risk exposure by transferring part of its business to reinsurers. This would in turn
result in a more manageable portfolio of insured risks that dovetails with the risk-taking capability
of the insurer. Technically, reinsurance can be viewed as a special form of risk sharing between an
insurer and a reinsurer. Whereas optimal risk sharing consists in selecting a redistribution of risks
to reach a certain level of optimality, the decision variable in optimal reinsurance problems is re-
stricted to the indemnity function. In broader contexts in finance, risk management, and insurance,
optimal risk sharing with various objective functionals has been an extensively studied research
topic (see, e.g., Ludkovski and Young (2009), Grechuk and Zabarankin (2012), Asimit et al. (2013)).
Nevertheless, studies of optimal reinsurance policies are often not amenable to existing results in
optimal risk sharing due to the comonotonicity of the shared risks inherent in optimal reinsurance
problems and the presence of additional practical constraints. These technical complications have
rendered optimal reinsurance a subtly unique optimal risk sharing problem deserving of separate
investigation. Pioneered in Borch (1960) and Arrow (1963) in the context of variance minimization
and expected utility maximization from the perspective of an insurer, and later extended to a
risk-measure-based framework, as in Cai and Tan (2007), Cai et al. (2008), Chi and Tan (2011),
Cui et al. (2013), Cong and Tan (2016) and Lo (2016, 2017b), just to name a few, the formulation
of optimal reinsurance contracts has been examined with a diversity of objective functionals and
premium principles of varying degrees of mathematical sophistication. Optimal solutions ranging
from stop-loss, quota-share policies to general insurance layers have been found depending on the
precise specification of the concerned optimization problem. Given the rising importance of reinsur-
ance as a versatile risk optimization strategy in the current catastrophe-plagued age, the study of
optimal reinsurance has gained substantial impetus and represented a burgeoning line of research.

Despite the vast literature on optimal reinsurance, most existing research is preoccupied with
the mathematically feasible, but economically unrealistic study of reinsurance policies that are de-
signed to be optimal to one and only one party, either the insurer or reinsurer. This overlooks the
substantive fact that the insurer and reinsurer bear intrinsically conflicting interests as counterpar-
ties in a reinsurance contract. As noted in Borch (1969), a reinsurance arrangement which appears
very attractive to one party may fail to be acceptable to the other. Due to the misalignment of
the interests of the insurer and reinsurer, and consequently the general impossibility of a reinsur-
ance policy being simultaneously optimal to both parties, reinsurers inevitably have to grapple
with the problem of designing reinsurance contracts that ensure their long-run profitability and,
at the same time, appeal to their customers, namely insurers. The construction of such bilaterally
acceptable reinsurance policies that accommodate the joint interests of the insurer and reinsurer is
therefore a technically challenging, but practically meaningful task. Along these lines of reasoning,
recently Hürlimann (2011) obtained the optimal parameters of a partial stop-loss contract under
various joint party criteria. Cai et al. (2013) determined the optimal reinsurance contract under
the criteria of joint survival and profitability probabilities of an insurer and a reinsurer. Lo (2017a)
derived the reinsurance policy which is optimal to one party while acceptable to the other from a
Neyman-Pearson perspective. Cai et al. (2017) and Jiang et al. (2017) appealed to the celebrated
notion of Pareto optimality and determined the collection of Pareto-optimal contracts in the Tail
Value-at-Risk (TVaR) and Value-at-Risk (VaR) settings, respectively. By definition, a reinsurance
policy is said to be Pareto-optimal if it is impossible to lower the risk of one party without dete-
riorating the other party. The concept of Pareto optimality is particularly useful in multi-criteria
optimization as it helps decision makers eliminate decisions which do not deserve consideration
and focus on those that represent good compromise between multiple parties.



Pareto-optimal reinsurance policies in the presence of individual risk constraints 3

Building upon the line of research of Cai et al. (2016, 2017), this article characterizes, alge-
braically and geometrically, the entire set of Pareto-optimal reinsurance policies when the insurer
and reinsurer evaluate risk via distortion risk measures (DRMs), also known as dual utilities or
Yaari’s functionals (Yaari (1987)), and examines the implications of Pareto optimality for the
insurer-reinsurer trade-off mechanism in the DRM-based-framework. The use of DRMs as the risk
measurement vehicle strikes a due balance between modeling flexibility and analytic tractability.
Not only do DRMs encompass a wide variety of contemporary risk measures, most notably VaR
and TVaR, they also admit a convenient integral representation that sheds light on the percep-
tion of risk they reflect and lends itself readily to theoretical derivations. Under the general DRM
framework, we associate the quest for Pareto-optimal reinsurance policies, which is inherently a
two-criteria optimization problem, equivalently with a single-objective weighted sum functional
minimization problem, which in turn provides a simple recipe for generating all Pareto-optimal
solutions. This reduction procedure is commonly referred to as weighted sum scalarization (in con-
trast to the goal programming method employed in some of the contributions mentioned in the
first paragraph; see also, e.g., Chapter 3 of Ehrgott (2005)) in multi-criteria optimization. The
weighted sum comprises the risks of the insurer and reinsurer measured by DRMs and captures
the relative negotiation power of the insurer and reinsurer by means of a weight parameter. Apply-
ing the Marginal Indemnification Function approach developed in Assa (2015) and Zhuang et al.
(2016), we manage to solve the weighted sum problem and derive all Pareto-optimal solutions
analytically and expeditiously. In order to display the optimal solutions more concretely and gain
further insights into their structure, we subsequently specialize our DRM-based analysis to VaR
and TVaR, which are justifiably the most prominent risk measures in the insurance and banking
industries, and obtain explicit expressions for the Pareto-optimal reinsurance contracts. Compared
to Cai et al. (2016, 2017) and Jiang et al. (2017), the solutions in this paper are more clear-cut
and the proofs more systematic and transparent due to the abstraction that DRMs offer. It is
shown in the VaR case that the Pareto-optimal policy is equivalent to the one designed from the
sole perspective of the insurer (resp. reinsurer) when the insurer receives more weight (resp. less
weight) than the reinsurer in the weighted sum minimization problem. This phenomenon carries
over to the TVaR case when the weight parameter is sufficiently large or sufficiently low, but for a
range of intermediate values, there exists a compromise made between the insurer and reinsurer,
meaning that the solution is neither optimal to the insurer nor to the reinsurer, but is the best on
a collective basis.

As a side benefit, the explicitness of our optimal solutions enables us to represent our findings
geometrically by portraying the insurer’s and reinsurer’s risk levels that the Pareto-optimal rein-
surance arrangements give rise to. These pairs of points constitute, in the two-dimensional space,
a convex curve known as the Pareto frontier, which proves to be a convenient visual aid for un-
derstanding the insurer-reinsurer trade-off structure. The geometry of the Pareto frontier depends
critically on the choice of the DRMs. It is found that it is a downward sloping straight line in
the VaR case, and typically comprises two downward sloping straight lines connected by a convex
curve in the TVaR case. These salient geometric features, which we are among the first to study
systematically, can be attributed to the properties of VaR and TVaR as particular members of the
class of DRMs. Collectively, our analytic expressions for the Pareto-optimal reinsurance policies
as well as our geometric descriptions in the form of the Pareto frontier shed valuable light on the
insurer-reinsurer decision-making mechanism in the pursuit of Pareto efficiency.

It should be stressed that Pareto optimality is a minimal notion of efficiency. A Pareto-optimal
reinsurance policy does not necessarily result in an equitable distribution of risk between the
insurer and reinsurer, which tend to have constraints on their risk-taking capability. This casts
doubt on the marketability of a Pareto-optimal reinsurance contract in practice for failing to be
simultaneously acceptable to the insurer and reinsurer. This motivates us to embed, in the second
part of this article, risk constraints on the part of the insurer and reinsurer, and study the resulting
constrained collection of Pareto-optimal reinsurance arrangements. In multi-criteria optimization,
this is sometimes known as the hybrid method (see, e.g., Section 4.2 of Ehrgott (2005)). Our
constraints include, as a special case, individual rationality constraints, which ensure that both
the insurer and reinsurer are better off as a result of reinsurance. Technically, the presence of two



4 Ambrose Lo, Zhaofeng Tang

constraints defies the direct application of Lo (2017a)’s Neyman-Pearson approach, which does not
apply to the two-constraint TVaR setting. The Pareto frontier, apart from being interesting in its
own right, is shown to be a useful device as it allows us to transform the constrained search of
Pareto-optimal policies into a two-dimensional constrained optimization problem on the real plane,
which can be solved graphically and easily. The search procedure is again illustrated in the VaR
and TVaR cases.

The remainder of this article is organized as follows. Section 2 presents the DRM-based reinsur-
ance model and formulates, in the language of multi-criteria optimization, the problem of identifying
Pareto-optimal reinsurance policies, the central theme of the entire article. In Section 3, we solve
the weighted sum functional minimization problem explicitly in the general framework of DRMs,
followed by the VaR and TVaR settings. The Pareto frontier is developed and interpreted in the
latter two cases. Section 4 revisits the weighted sum minimization problem with the insurer’s and
reinsurer’s risk constraints added and provides graphical solutions in the VaR and TVaR cases.
Finally, Section 5 concludes the article and summarizes its main contributions.

2 DRM-based optimal reinsurance model

In this section, we describe the key ingredients of the DRM-based reinsurance model and lay
the mathematical groundwork of the problem of identifying Pareto-optimal reinsurance policies,
paying special attention to the optimization criteria, reinsurance premium principle, and the class
of feasible decisions.

2.1 Distortion risk measures

In this paper, the risk faced by an agent is evaluated via distortion risk measures (DRMs), whose
definition requires the notion of a distortion function. A function g : [0, 1] → [0, 1] is said to be a
distortion function if g is a non-decreasing function, not necessarily convex, concave or (left- or
right-) continuous, such that g(0+) := limx↓0 g(x) = 0i and g(1) = 1. The DRM of a non-negative
random variable Y corresponding to a distortion function g is defined by the Lebesgue-Stieltjes
integral

ρg(Y ) :=

∫ ∞
0

g(SY (y)) dy, (2.1)

where SY (y) := P(Y > y) is the survival function of Y . In order that (2.1) makes sense, throughout
this article we tacitly assume that all random variables are sufficiently integrable in the sense of
possessing finite DRMs.

Several remarks pertaining to the use of DRMs are in order. First, by Fubini’s theorem, one
may writeii

ρg(Y ) =

∫ ∞
0

∫ ∞
t

d[−g(SY (y))] dt =

∫ ∞
0

∫ y

0

dtd[−g(SY (y))] =

∫ ∞
0

y d[−g(SY (y))].

This representation reveals the fundamental differences between Yaari’s dual theory of choice and
the classical expected utility theory in evaluating the riskiness of a loss random variable. Specifically,
distortion risk measures seek to distort the survival function of a loss variable Y from SY (·) to
g(SY (·)) while keeping the loss magnitude unchanged, in contrast to the use of utility functions
which distort the size of losses without altering the loss distribution. Second, due to the translation
invariance of distortion risk measures, i.e., ρg(Y + c) = ρg(Y ) + c for any constant c (see Equation
(54) of Dhaene et al. (2006)), non-random cash flows that are independent of the reinsurance

i This condition, which is stronger than the usual g(0) = 0, is a necessary condition for the finiteness of the
DRM of unbounded random variables, which are of particular relevance to reinsurance.

ii To ensure that the Lebesgue-Stieltjes integral with respect to g(SY (·)) is well-defined, the left- or right-
continuity of g is required. See the proof of Lemma 2.1 of Cheung and Lo (2017) about how general distortion
functions (not necessarily left-continuous or right-continuous) can be dealt with.
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arrangement, such as the premium that the insurer collects from its policyholders, do not affect
the optimizers of our optimization problems and can be safely neglected in the analysis. Third,
DRM as a risk quantification vehicle has proved to be a highly flexible modeling tool due to its
inclusion of a wide class of common risk measures, such as VaR and TVaR, which are arguably the
most popular DRMs in practice. Their definitions are recalled below. In the sequel, we denote by
1A the indicator function of a given event A, i.e., 1A = 1 if A is true, and 1A = 0 otherwise, and
write x ∧ y = min(x, y) and x ∨ y = max(x, y) for any real x and y.

Definition 2.1 (Definitions of VaR and TVaR) Let Y be a random variable whose distribution
function is FY .

(a) The generalized left-continuous inverse and generalized right-continuous inverse of FY are de-
fined respectively by

F−1
Y (p) := inf{y ∈ R | FY (y) ≥ p} and F−1+

Y (p) := inf{y ∈ R | FY (y) > p},

with the convention inf ∅ =∞. The Value-at-Risk (VaR) of Y at the probability level of p ∈ (0, 1]
is synonymous with the generalized left-continuous inverse of FY at p, i.e., VaRp(Y ) := F−1

Y (p).

(b) The Tail Value-at-Risk (TVaR)iii of Y at the probability level of p ∈ [0, 1) is defined by

TVaRp(Y ) :=
1

1− p

∫ 1

p

VaRq(Y ) dq.

The distortion functions that give rise to the p-level VaR and p-level TVaR are g(x) = 1{x>1−p}
and g(x) = x

1−p ∧ 1, respectively (see Equations (44) and (45) of Dhaene et al. (2006)).

In this article, both VaRp(Y ) and F−1
Y (p) will be used interchangeably. For later purposes, we point

out the useful equivalence

F−1
Y (p) ≤ y ⇔ p ≤ FY (y) for all p ∈ (0, 1). (2.2)

2.2 Model set-up

This article centers on a one-period reinsurance market comprising an insurer and a reinsurer, which
interact as follows. The insurer is faced with a ground-up loss modeled by a general non-negative
random variable X with a known distribution. To reduce its risk exposure quantified by the DRM,
the insurer can decide to purchase a reinsurance policy I from the reinsurer. When x is the realized
value of X, the reinsurer pays I(x) to the insurer, which in turn retains the residual loss x− I(x).
Terminology-wise, the function I is called the indemnity function (also known as the ceded loss
function) and is the linchpin of a reinsurance policy. In this paper, the feasible class of reinsurance
policies available for sale in the reinsurance market is confined to the set of non-decreasing and
1-Lipschitz functions null at zero, i.e.,

I =
{
I : [0, F−1

X (1))→ R+ | I(0) = 0, 0 ≤ I(t2)− I(t1) ≤ t2 − t1 for 0 ≤ t1 ≤ t2
}

=
{
I : [0, F−1

X (1))→ R+ | I(0) = 0, 0 ≤ I ′(t) ≤ 1 for t ≥ 0
}
.

Practically, the conditions imposed on the feasible set I are intended to alleviate the issue of ex
post moral hazard due to the manipulation of losses. As a matter of fact, for any reinsurance treaty
selected from I, both the insurer and reinsurer will be worse off as the ground-up loss becomes
more severe, thereby having no incentive to manipulate claims. Mathematically, the 1-Lipschitzity
condition does facilitate theoretical derivations, with I(X) and X − I(X) being comonotonic, and
with every I ∈ I being absolutely continuous with a derivative I ′ which exists almost everywhere
and is bounded between 0 and 1. As in Assa (2015) and Zhuang et al. (2016), we term I ′ the marginal

iii TVaR is also known variously as Average Value-at-Risk (AVaR), Conditional Value-at-Risk (CVaR), and
Expected Shortfall (ES), although there are subtle differences between these terms.
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indemnity function, which measures the rate of increase in the ceded loss with respect to the ground-
up loss. Moreover, because of the relationship I(x) =

∫ x
0
I ′(t) dt, each indemnity function enjoys a

one-to-one correspondence with its marginal counterpart. As will be shown later in this paper, it
will be much more convenient to express our results equivalently but more compactly in terms of
the marginal indemnity function.

In return for bearing the ceded loss, the reinsurer receives from the insurer the reinsurance
premium PI(X), which is a function of the ceded loss I(X). The net risk exposure of the insurer
is then changed from the ground-up loss X to X − I(X) + PI(X) and the reinsurer, as a result of
the reinsurance contract, bears I(X)− PI(X). For a given indemnity function I ∈ I, the reinsurer
calibrates the reinsurance premium by the formula

PI(X) :=

∫ ∞
0

h(SI(X)(t)) dt, (2.3)

where h : [0, 1]→ R+ is a non-decreasing function such that h(0+) = 0. This premium principle has
multi-fold desirable characteristics. First, this DRM-like premium principle does not require that
h(1) be 1, and is flexible enough to encompass a wide variety of safety loading structures desired
by the reinsurer. Second, analogous to the versatility of DRMs, a number of common premium
principles, such as the well-known expected value premium principle and Wang’s premium principle,
can be recovered from (2.3) by appropriate specifications of the function h (see Cui et al. (2013)).
Third, (2.3) is of the same structure as (2.1). Such symmetry, when put into perspective, will be
highly conducive to our subsequent theoretical derivations.

In the later part of this paper, there will be numerous instances in which the DRM of a
transformed random variable needs to be dealt with. To this end, the following transformation
lemma, which can be found in Lemma 2.1 of Cheung and Lo (2017), will prove invaluable. It places
the marginal indemnity function I ′ in the integrands of appropriate Lebesgue-Stieltjes integrals
and is central to the optimal selection of I ′ (equivalently, I).

Lemma 2.1 (Integral representations of risk and premium functions) For any distortion function
g and indemnity function I in I,

ρg(X − I(X) + PI(X)) = ρg(X) +

∫ ∞
0

[h(SX(t))− g(SX(t))]I ′(t) dt,

ρg(I(X)− PI(X)) =

∫ ∞
0

[g(SX(t))− h(SX(t))]I ′(t) dt,

PI(X) =

∫ ∞
0

h(SX(t))I ′(t) dt.

2.3 Pareto-optimal reinsurance policies

In this article, we take the possible tension between the insurer and reinsurer into account, factor
in their joint interests, and study Pareto-optimal reinsurance policies within the set I. In our DRM
context, a reinsurance policy I∗ in I is said to be Pareto-optimal (or Pareto-efficient) if there is no
I ∈ I such that

ρgi(X − I(X) + PI(X)) ≤ ρgi(X − I∗(X) + PI∗(X))

and
ρgr (I(X)− PI(X)) ≤ ρgr (I∗(X)− PI∗(X)),

with at least one inequality being strict. Here, gi and gr are the distortion functions adopted by the
insurer and reinsurer, respectively. In words, a Pareto-optimal policy is such that the risk borne
by one party cannot be lowered without making the other party worse off. In the wider context
of multi-criteria optimization, the search of Pareto-optimal policies is a two-criteria functional
minimization problem, in which the two criteria (or objectives) are the insurer’s risk and the
reinsurer’s risk quantified by DRMs and given respectively by

x(I) := ρgi(X − I(X) + PI(X)) and y(I) := ρgr (I(X)− PI(X)),
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the decision variable is the indemnity function I, and the feasible set is I. Informally, we may
represent the identification of Pareto-optimal reinsurance policies as

inf
I∈I

(x(I), y(I)) .

The images of all indemnity functions in I under the actions of x(·) and y(·) form the risk set
(not to be confused with the feasible set) in the x-y plane consisting of all possible pairs of risk
levels (x(I), y(I)) achieved by some I ∈ I. As will be shown in Section 3, the risk set in our DRM
framework is convex. This allows us to apply tools in convex analysis to transform the search of
Pareto-optimal solutions into a single-objective weighted sum functional minimization problem,
which can be solved analytically and readily. In addition to identifying all Pareto-optimal policies
algebraically, we will provide a geometric description of these solutions by portraying the Pareto
frontier, which is loosely speaking the southwest border of the risk set. It is a graphical device that
captures the set of risk levels all Pareto-optimal solutions give rise to and depicts the trade-off
made between the insurer and reinsurer.

3 Characterization of Pareto-optimal reinsurance policies

In this section, we examine the collection of Pareto-optimal reinsurance policies in two stages, first
in the general DRM framework, then specifically in the VaR and TVaR settings.

3.1 Pareto-optimal policies under general DRMs

The following proposition provides a recipe for constructing Pareto-optimal reinsurance policies by
pointing out their connections to a weighted sum functional minimization problem.

Proposition 3.1 (Pareto optimality and weighted DRM minimization problem) A reinsurance
policy I∗ ∈ I is Pareto-optimal if and only if it solves the weighted sum functional minimization
problem

inf
I∈I

[λx(I) + (1− λ)y(I)] ≡ inf
I∈I

[λρgi(X − I(X) + PI(X)) + (1− λ)ρgr (I(X)− PI(X))] (3.1)

for some λ ∈ [0, 1].

Proof Let I∗ ∈ I solve Problem (3.1) for some fixed λ ∈ [0, 1]. Assume by way of contradiction that
I∗ is not Pareto-optimal. Then there exists Ĩ ∈ I such that

x(Ĩ) = ρgi(X − Ĩ(X) + PĨ(X)) ≤ ρgi(X − I∗(X) + PI∗(X)) = x(I∗)

and
y(Ĩ) = ρgr (Ĩ(X)− PĨ(X)) ≤ ρgr (I∗(X)− PI∗(X)) = y(I∗),

where at least one of the inequalities is strict. It follows that

λx(Ĩ) + (1− λ)y(Ĩ) < λx(I∗) + (1− λ)y(I∗),

contradicting the minimality of I∗ for Problem (3.1) with the fixed λ.
To prove the reverse implication, we first show that the risk set is a convex set in the plane.

Let I1, I2 ∈ I. Define, for γ ∈ [0, 1], Iγ := γI1 + (1− γ)I2, which also lies in I because of the non-
decreasing monotonicity and 1-Lipschizity of I1 and I2. Appealing to the comonotonic additivity
and positive homogeneity of DRMs as well as Lemma 2.1 yields

x(Iγ) = ρgi(X − Iγ(X) + PIγ(X))

= ρgi
[
γ(X − I1(X) + PI1(X)) + (1− γ)(X − I2(X) + PI2(X))

]
= ρgi

[
γ(X − I1(X) + PI1(X))

]
+ ρgi

[
(1− γ)(X − I2(X) + PI2(X))

]
= γρgi(X − I1(X) + PI1(X)) + (1− γ)ρgi(X − I2(X) + PI2(X))

= γx(I1) + (1− γ)x(I2).
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(x∗, y∗)

{f = α}

Risk set

Figure 3.1 The function f used in the proof of Proposition 3.1.

Similarly,

y(Iγ) = γy(I1) + (1− γ)y(I2).

In other words, the entire line segment connecting (x(I1), y(I1)) and (x(I2), y(I2)) belongs to the
risk set, proving its convexity. Now let I∗ ∈ I be a Pareto-optimal policy. By the definition of Pareto
optimality, I∗ gives rise to a pair of points (x∗, y∗) := (x(I∗), y(I∗)) on the southwest boundary of the
risk set. Then by virtue of the convexity of the risk set and a version of the Hahn-Banach theorem
(see, e.g., Lemma 7.7 on page 259 of Aliprantis and Border (2006)), there exists a continuous linear
functional f : R2 → R defined by f(x, y) := a1x+ a2y, with a1, a2 non-negative and not both zero,
such that f supports the risk set at (x∗, y∗), meaning that

a1x∗ + a2y∗ = f(x∗, y∗) ≤ f(x, y) = a1x+ a2y

for all (x, y) lying in the risk set. Equivalently, with α = f(x∗, y∗), the set {f = α} is a tangent
at (x∗, y∗) always lying below the risk set (see Figure 3.1). Dividing both sides of the preceding
inequality by a1 + a2, which is non-zero, shows that I∗ solves Problem (3.1) with λ = a1/(a1 + a2).
ut

We remark that in the context of this article, the weighted sum scalarization illustrated in
Proposition 3.1 is equivalent to the ε-constraint method, which is another popular multi-criteria
decision-making tool involving the minimization of the insurer’s risk (resp. reinsurer’s risk) sub-
ject to the constraint that the reinsurer’s risk (resp. insurer’s risk) is below any arbitrarily fixed
level ε (see, e.g., Section 4.1 of Ehrgott (2005)). The application of the ε-constraint method is
technically much more challenging than the weighted sum scalarization due to the presence of the
additional constraint. Readers are referred to Lo (2017a) for a systematic approach based on the
Neyman–Pearson Lemma to tackling such a kind of constrained minimization problem.

The proof of Proposition 3.1 relies on the geometry of the feasible set and risk set, both of which
are convex, and is motivated from the ideas on page 90 of Gerber (1979). While a more general
version of this proposition can be found in Theorem 2.1 of Cai et al. (2017), the proof above is self-
contained and more elementary and germane to the context of this article. The significance of the
proposition lies in transforming the two-criteria functional minimization problem into the single-
objective Problem (3.1), which is amenable to contemporary techniques in the realm of optimal
reinsurance and is solved analytically in the following theorem. Here, λ is a parameter inherent
in the problem. Intuitively, as λ increases from 0 to 1, more and more weight is attached to the
interests of the insurer, and the solution of Problem (3.1) shall approach the optimal contract
designed from the sole perspective of the insurer. Unless otherwise specified, in the sequel γ∗ will
denote a generic unit-valued function.
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Theorem 3.1 (Solutions of Problem (3.1)) The solutions of Problem (3.1) are uniquely defined
by

I ′∗(t)
a.e.
=


1, if r(SX(t)) < 0,

γ∗(t), if r(SX(t)) = 0,

0, if r(SX(t)) > 0,

(3.2)

where “a.e.” means “almost everywhere,” and

r(SX(t)) := (2λ− 1)h(SX(t))− λgi(SX(t)) + (1− λ)gr(SX(t)). (3.3)

Proof By Lemma 2.1, the objective function of Problem (3.1), in integral form, is

ρgi(X) + λ

∫ ∞
0

[h(SX(t))− gi(SX(t))]I ′(t) dt+ (1− λ)

∫ ∞
0

[gr(SX(t))− h(SX(t))]I ′(t) dt

= ρgi(X) +

∫ ∞
0

[(2λ− 1)h(SX(t))− λgi(SX(t)) + (1− λ)gr(SX(t))]I ′(t) dt

= ρgi(X) +

∫ ∞
0

r(SX(t))I ′(t) dt,

where ρgi(X) does not depend on the indemnity function. Because I ′(t) ∈ [0, 1] for all t ≥ 0, the
preceding integral, for any I ∈ I, is in turn bounded from below by∫ ∞

0

r(SX(t))I ′(t) dt =

∫
{r◦SX<0}

r(SX(t))I ′(t) dt+

∫
{r◦SX=0}

r(SX(t))I ′(t) dt

+

∫
{r◦SX>0}

r(SX(t))I ′(t) dt

≥
∫
{r◦SX<0}

r(SX(t)) dt

=

∫
r(SX(t))I ′∗(t) dt,

where I ′∗ is given in (3.2). Moreover, equality prevails if and only if∫
{r◦SX<0}

r(SX(t))I ′(t) dt =

∫
{r◦SX<0}

r(SX(t)) dt and

∫
{r◦SX>0}

r(SX(t))I ′(t) dt = 0,

which are in turn equivalent to I ′ = 1 almost everywhere on {r ◦ SX < 0} and I ′ = 0 almost
everywhere on {r ◦ SX > 0} because I ′ is unit-valued. ut

Theorem 3.1 exhausts the solutions of Problem (3.1) analytically and demonstrates that the
design of Pareto-optimal reinsurance policies hinges upon the sign of the composite function r◦SX ,
which depends on λ, defined in (3.3). The optimal policy is constructed by setting the marginal
indemnity function I ′ to its maximum value of 1 (i.e., full coverage) when r◦SX is strictly negative,
to its minimum value of zero (i.e., no coverage) when r ◦ SX is strictly positive, and to any value
between 0 and 1 (i.e., arbitrary coverage) when r ◦ SX is zero. In particular, when λ = 1 (resp.
λ = 0), r ◦ SX = h ◦ SX − gi ◦ SX (resp. r ◦ SX = gr ◦ SX − h ◦ SX), and Theorem 3.1 retrieves the
solutions for the risk minimization problem from the sole perspective of the insurer (resp. reinsurer)
considered in Cheung and Lo (2017) and Lo (2017a).

Parenthetically, Problem (3.1) bears some resemblance to the problem of minimizing a linear
combination of Type I and Type II error probabilities of a statistical test in hypothesis testing
theory. In that context, the unit-valued function γ∗ is referred to as the randomized part of the
statistical test. For convenience, in the rest of this paper we shall refer to γ∗ generically as the
randomization function.
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The optimal solutions presented in Theorem 3.1 may appear abstract and esoteric. This is, in
fact, a merit stemming from the generality of our problem framework, which applies to any distor-
tion risk measure. To display a more concrete form of the solutions necessitates the prescriptions
of the specific functions gi, gr, and h. Only in this way can the three sets

{r ◦ SX < 0}, {r ◦ SX = 0}, and {r ◦ SX > 0}

be determined explicitly. The next two subsections successively study the cases when the insurer
and reinsurer are both VaR-adopters or TVaR-adopters together with the expected value premium
principle. Our choices of the risk measures and premium principle are motivated by the explicitness
of the resulting solutions, the prominence of VaR and TVaR in the insurance and banking industries,
as well as the popularity of the expected value premium principle in reinsurance studies. We
specialize Theorem 3.1 to these specific choices, describe the Pareto-optimal policies analytically,
and illustrate our results geometrically by portraying the insurer-reinsurer Pareto frontier. Even for
these simple choices of gi, gr, and h, it turns out that the determination of Pareto-optimal solutions
is a highly nontrivial task.

3.2 Pareto-optimal policies under VaR

When the insurer and reinsurer both adopt VaR as their risk measurement vehicles and the rein-
surance premium is calibrated by the expected value premium principle with a safety loading of θ
(i.e., h(x) = (1 + θ)x), Problem (3.1) becomes

inf
I∈I

[
λVaRα(X − I(X) + PI(X)) + (1− λ)VaRβ(I(X)− PI(X))

]
, (3.4)

where α and β are the probability levels of the insurer and reinsurer, respectively, and the function
r ◦ SX reduces to

r(SX(t)) = (2λ− 1)(1 + θ)SX(t)− λ1{SX(t)>1−α} + (1− λ)1{SX(t)>1−β}.

3.2.1 Explicit solutions

The VaR-based Pareto-optimal reinsurance Problem (3.4) was considered in Jiang et al. (2017) and
solved by distinguishing a series of cases involving the range of values of various model parameters
(see Subsections 4.1 and 4.2 therein). With the aid of Theorem 3.1, we provide a much more
systematic proof which dispenses with the lengthy derivations in Jiang et al. (2017) and, more
importantly, provides full characterizations of the Pareto-optimal reinsurance policies. As noted
earlier and will be shown in Subsection 3.2.3, the ability to exhaust the entire set of Pareto-optimal
solutions is central to developing the Pareto frontier.

Theorem 3.2 (Solutions of Problem (3.4)) Assume that θ/(θ + 1) < α ∧ β.

(a) If 0 ≤ λ < 1/2, then Problem (3.4) is solved by

I ′∗(t)
a.e.
=


1, if t < F−1

X (θ/(θ + 1)) or t ≥ F−1
X (β),

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t ≤ F−1+

X (θ/(θ + 1)),

0, if F−1+
X (θ/(θ + 1)) < t < F−1

X (β).

(b) If λ = 1/2, then Problem (3.4) is solved byiv

I ′∗(t)
a.e.
=


1, if F−1

X (β) ≤ t < F−1
X (α),

γ∗(t), if 0 ≤ t < F−1
X (α ∧ β) or t ≥ F−1

X (α ∨ β),

0, elsewhere.

iv Note that [F−1
X (β), F−1

X (α)) is the empty set when α ≤ β.
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(c) If 1/2 < λ ≤ 1, then Problem (3.4) is solved by

I ′∗(t)
a.e.
=


1, if F−1+

X (θ/(θ + 1)) ≤ t < F−1
X (α),

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t < F−1+

X (θ/(θ + 1)),

0, elsewhere.

Proof With a slight abuse of notation, we write“
<
or
≤

”and“
>
or
≥

”while translating different inequalities

into equivalent inequalities for t if both strict and weak inequalities are possible, depending on the
nature (e.g. existence of jumps) of the distribution function FX . Note that the choice of strict or
weak inequalities does affect the definition of the optimal I ′, but has no effect on the optimal I
at all because I(x) =

∫ x
0
I ′(t) dt and that functions which are almost everywhere equal share the

same Lebesgue integral.
To apply Theorem 3.1, it suffices to determine the sets {t ∈ [0, F−1

X (1)) | r(SX(t)) < 0} and
{t ∈ [0, F−1

X (1)) | r(SX(t)) = 0} for each λ ∈ [0, 1]. To this end, consider the strict inequality

r(SX(t)) = (2λ− 1)(1 + θ)SX(t)− λ1{SX(t)>1−α} + (1− λ)1{SX(t)>1−β} < 0 (3.5)

over t ∈ [0, F−1
X (1)). Due to (2.2), we have

SX(t) > 1− α ⇔ t < F−1
X (α) and SX(t) > 1− β ⇔ t < F−1

X (β).

We consider four ranges of values of t.

Case 1. If 0 ≤ t < F−1
X (α ∧ β), then (3.5) becomes

(2λ− 1)(1 + θ)SX(t) < 2λ− 1,

which is equivalent to t < F−1
X (θ/(θ + 1)) for 0 ≤ λ < 1/2, and to t

>
or
≥
F−1+
X (θ/(θ + 1))

for 1/2 < λ ≤ 1. When λ = 1/2, both sides of the inequality are zero and (3.5) does not
hold.

Case 2. If β ≤ α and F−1
X (β) ≤ t < F−1

X (α), then (3.5) is identical to

(2λ− 1)(1 + θ)SX(t) < λ,

which is always true regardless of the value of λ. This is because

(2λ− 1)(1 + θ)SX(t)


< 0 ≤ λ, when 0 ≤ λ < 1/2,

= 0 < λ, when λ = 1/2,

< 2λ− 1 ≤ λ, when 1/2 < λ ≤ 1.

Case 3. If α < β and F−1
X (α) ≤ t < F−1

X (β), then (3.5) reduces to

(2λ− 1)(1 + θ)SX(t) < λ− 1,

which is not satisfied by any value of λ. This is because

(2λ− 1)(1 + θ)SX(t)


> 2λ− 1 ≥ λ− 1, when 0 ≤ λ < 1/2,

= 0 > λ− 1, when λ = 1/2,

> 0 ≥ λ− 1, when 1/2 < λ ≤ 1.

Case 4. If F−1
X (α ∨ β) ≤ t < F−1

X (1), then (3.5) becomes

(2λ− 1)(1 + θ)SX(t) < 0,

which is satisfied when and only when 0 ≤ λ < 1/2.
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Range of λ Solutions of r(SX(t)) < 0 Solutions of r(SX(t)) = 0

0 ≤ λ < 1/2 t < F−1
X (θ/(θ + 1)) or t ≥ F−1

X (β) F−1
X (θ/(θ + 1)) ≤ t

<
or
≤
F−1+
X (θ/(θ + 1))

λ = 1/2 F−1
X (β) ≤ t < F−1

X (α) 0 ≤ t < F−1
X (α ∧ β) or t ≥ F−1

X (α ∨ β)

1/2 < λ ≤ 1 F−1+
X (θ/(θ + 1))

<
or
≤
t < F−1

X (α) F−1
X (θ/(θ + 1)) ≤ t

<
or
≤
F−1+
X (θ/(θ + 1))

Table 3.1 The solutions of r(SX(t)) < 0 and r(SX(t)) = 0 over t for different values of λ.

Upon the combination of the four cases, we conclude that the solutions of inequality (3.5) and,
analogously, the equality r(SX(t)) = 0, in t classified according to different values of λ are as given
in Table 3.1. Inserting these results into (3.2) in Theorem 3.1 completes the proof of Theorem 3.2.
ut

We remark that the assumption θ/(θ + 1) < α ∧ β is an innocuous one and, for all intents and
purposes, satisfied in practice, because the profit loading θ charged by the reinsurer usually takes a
small positive value whereas the probability levels α and β that define the VaR risk measure tend
to approach one in practice.

3.2.2 Discussions

While the explicit expressions of the Pareto-optimal reinsurance policies I∗ are given in Theorem
3.2, more insights into their structure can be acquired via examining the qualitative behavior of
the objective function in integral form. We begin by observing that the weight λ plays its role in
the design of I∗ only through classifying their construction into three cases, (a), (b), and (c); the
precise value of λ does not enter the expression of I ′∗ in any case. In other words, Problem (3.4)
with λ ∈ [0, 1/2) (Case (a)) admits exactly the same set of solutions as Problem (3.4) when λ = 0,
which is the reinsurer’s risk minimization problem

inf
I∈I

VaRβ(I(X)− PI(X)).

Likewise, Problem (3.4) for λ ∈ (1/2, 1] (Case (c)) is essentially equivalent to Problem (3.4) when
λ = 1, which is the risk minimization problem from the sole perspective of the insurer:

inf
I∈I

VaRα(X − I(X) + PI(X)).

Theorem 3.2 therefore mathematically expresses the peculiarity that the Pareto-optimal reinsur-
ance policies in the VaR setting are designed from the sole perspective of one party, depending on
whether λ < 1/2 (from the reinsurer’s point of view) or λ > 1/2 (from the insurer’s point of view).
This phenomenon may run counter to intuition given that Problem (3.4) is designed to accommo-
date the joint interests of the insurer and reinsurer in the first place, and that some compromise
between the insurer and reinsurer should have been anticipated. When λ = 1/2, meaning that equal
weight is attached to the insurer and reinsurer, any reinsurance policy that entails full coverage on
the set [F−1

X (β), F−1
X (α)) is Pareto-optimal.

The anomalous reduction of Problem (3.4) to a one-party risk minimization problem can be
heuristically understood taking into account the behavior of the integrands that constitute the
insurer’s and reinsurer’s VaR. In integral form, we have

x(I) = VaRα(X − I(X) + PI(X)) = VaRα(X) +

∫ ∞
0

fVaR
i (t)I ′(t) dt,

y(I) = VaRβ(I(X)− PI(X)) =

∫ ∞
0

fVaR
r (t)I ′(t) dt,

where

fVaR
i (t) := (1 + θ)SX(t)− 1{SX(t)>1−α} and fVaR

r (t) := 1{SX(t)>1−β} − (1 + θ)SX(t). (3.6)
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Note that fVaR
i and fVaR

r simultaneously take negative values on [F−1
X (β), F−1

X (α)) and positive
values on [F−1

X (α), F−1
X (β)). This suggests that the optimal marginal indemnity function I ′∗, regard-

less of the value of λ, must be set to 1 on [F−1
X (β), F−1

X (α)) and to 0 on [F−1
X (α), F−1

X (β)) to achieve
the greatest reduction in the objective function of Problem (3.4). Outside [F−1

X (α∧β), F−1
X (α∨β)),

fVaR
i and fVaR

r always differ in sign but share the same magnitude. It follows that ceding an ad-
ditional unit of loss on (F−1+

X (θ/(θ + 1)), F−1
X (α)), where fVaR

i is negative, generates a decrease
in the insurer’s risk level x that is exactly offset by the increase in the reinsurer’s risk level y. If
λ > 1/2, this leads to an overall decrease in the objective function λx+ (1−λ)y. This explains why
when λ > 1/2, Problem (3.4) is solved by solely minimizing x(I) over I ∈ I, which is Problem (3.4)
with λ = 1. Analogous explanations can be applied to justify the reduction of Problem (3.4) to
the reinsurer’s risk minimization problem when λ < 1/2 as well as the diversity of optimal policies
when λ = 1/2.

3.2.3 Pareto frontier

Armed with Theorem 3.2, we are in a position to give a pictorial description of the insurer-reinsurer
Pareto frontier in the VaR framework. Geometrically, each Pareto-optimal reinsurance policy I in
I gives rise to a pair of points capturing the insurer’s risk level and the reinsurer’s risk level.
Collectively, these (x, y)’s constitute the Pareto frontier, which is traced out as the weight λ ranges
from 0 to 1 and when the randomization function γ∗ varies from the constant zero function to the
constant one function. This is a continuous (because the risk set is convex) curve in the x-y plane
that visualizes the insurer-reinsurer trade-off structure as far as Pareto optimality is concerned.

Exhibited in Figure 3.2, the Pareto frontier in the VaR case is a downward tilting straight line
with a slope of −1. The practical implication is that subject to Pareto optimality, the insurer and
reinsurer trade risk linearly, in a one-to-one manner. To understand the geometry of the frontier, we
first observe that when 0 ≤ λ < 1/2 or 1/2 < λ ≤ 1, the specification of the randomization function
γ∗ does not affect the risk levels of the insurer and reinsurer. This is because γ∗ is defined only on a
subset on which fVaR

i and fVaR
r defined in (3.6) are zero. These two cases correspond respectively

to points A and B in Figure 3.2. When λ = 1/2, the selection of γ∗ does affect the individual values
of x and y. As fVaR

i and fVaR
r satisfy fVaR

i (t) = −fVaR
r (t) for all t /∈ [F−1

X (α ∧ β), F−1
X (α ∨ β)), the

change in x as a result of perturbing γ∗ coincides with the change in y of an opposite sign. As γ∗
varies from the constant zero function to the constant one function, a downward tilting straight
line with a slope of −1 connecting points A and B is traced out. It should be noted that although
different points on this straight line share different values of x and y, they all give rise to the same
value of the objective function, which is (x+ y)/2.

3.3 Pareto-optimal policies under TVaR

In the same spirit as the preceding subsection, we now investigate the TVaR-based Pareto-optimal
reinsurance problem with the expected value premium principle:

inf
I∈I

[λTVaRα(X − I(X) + PI(X)) + (1− λ)TVaRβ(I(X)− PI(X))] (3.7)

with

r(SX(t)) = (2λ− 1)(1 + θ)SX(t)− λ
(
SX(t)

1− α ∧ 1

)
+ (1− λ)

(
SX(t)

1− β ∧ 1

)
.

3.3.1 Explicit solutions

Compared to their VaR counterparts, it turns out that the solutions of Problem (3.7) differ in
structure depending on whether β ≤ α or α < β and are considerably more involved. The solutions
for the case when β ≤ α are presented in Theorem 3.3 below, and those for the complementary
case when α < β are collected in Theorem 3.4, followed by a unifying proof that covers both cases.
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Insurer’s VaR (x)

Reinsurer’s VaR (y)

slope
=
−
1

λ
=

1/2

B

λ ∈ (1/2, 1]

A

λ ∈ [0, 1/2)

Figure 3.2 The insurer-reinsurer Pareto frontier (in bold) in the VaR case. The shaded region represents the
risk set.

Theorem 3.3 (Solutions of Problem (3.7) with β ≤ α) Assume that θ/(θ + 1) < β ≤ α, and let

c =
1/(1− β)− (1 + θ)

1/(1− β) + 1/(1− α)− 2(1 + θ)
∈ (0, 1/2],

d1 = 1− λ

[2(1 + θ)− 1/(1− β)]λ+ [1/(1− β)− (1 + θ)]
.

(a) If 0 ≤ λ < c, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=


1, if t < F−1

X (θ/(θ + 1)),

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t ≤ F−1+

X (θ/(θ + 1)),

0, if t > F−1+
X (θ/(θ + 1)).

(b) If λ = c, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=


1, if t < F−1

X (θ/(θ + 1)),

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t ≤ F−1+

X (θ/(θ + 1)) or t ≥ F−1
X (α),

0, if F−1+
X (θ/(θ + 1)) < t < F−1

X (α).

(c) If c < λ < 1/2, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=


1, if t < F−1

X (θ/(θ + 1)) or t > F−1+
X (d1),

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t ≤ F−1+

X (θ/(θ + 1)) or F−1
X (d1) ≤ t ≤ F−1+

X (d1),

0, if F−1+
X (θ/(θ + 1)) < t < F−1

X (d1).

(d) If λ = 1/2, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=

{
1, if t > F−1+

X (β),

γ∗(t), if 0 ≤ t ≤ F−1+
X (β).

(e) If 1/2 < λ ≤ 1, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=


1, if t > F−1+

X (θ/(θ + 1)),

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t ≤ F−1+

X (θ/(θ + 1)),

0, if t < F−1
X (θ/(θ + 1)).
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Since a typical reinsurer is less risk-averse than a typical insurer because of a larger business capacity
and greater geographical diversification, the case when β ≤ α is of higher practical interest than
the complementary case when α < β. For completeness, the next theorem deals with the solutions
of Problem (3.7) in the latter case.

Theorem 3.4 (Solutions of Problem (3.7) with α < β) Assume that θ/(θ + 1) < α < β, and let

c =
1/(1− β)− (1 + θ)

1/(1− β) + 1/(1− α)− 2(1 + θ)
∈ (1/2, 1),

d2 = 1− 1− λ
(1 + θ) + [1/(1− α)− 2(1 + θ)]λ

.

(a) If 0 ≤ λ < 1/2, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=


1, if t < F−1

X (θ/(θ + 1)),

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t ≤ F−1+

X (θ/(θ + 1)),

0, if t > F−1+
X (θ/(θ + 1)).

(b) If λ = 1/2, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=

{
γ∗(t), if t ≤ F−1+

X (α),

0, if t > F−1+
X (α).

(c) If 1/2 < λ < c, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=


1, if F−1+

X (θ/(θ + 1)) < t < F−1
X (d2),

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t ≤ F−1+

X (θ/(θ + 1)) or F−1
X (d2) ≤ t ≤ F−1+

X (d2),

0, elsewhere.

(d) If λ = c, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=


1, if F−1+

X (θ/(θ + 1)) < t < F−1
X (β),

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t ≤ F−1+

X (θ/(θ + 1)) or F−1
X (β) ≤ t,

0, if t < F−1
X (θ/(θ + 1)).

(e) If c < λ ≤ 1, then Problem (3.7) is solved by

I ′∗(t)
a.e.
=


1, if F−1+

X (θ/(θ + 1)) < t,

γ∗(t), if F−1
X (θ/(θ + 1)) ≤ t ≤ F−1+

X (θ/(θ + 1)),

0, if t < F−1
X (θ/(θ + 1)).

Proof (for Theorems 3.3 and 3.4.) The proof parallels that of Theorem 3.2. Again, we solve the
strict inequality

r(SX(t)) = (2λ− 1)(1 + θ)SX(t)− λ
[
SX(t)

1− α ∧ 1

]
+ (1− λ)

[
SX(t)

1− β ∧ 1

]
< 0 (3.8)

over four ranges of values of t.

Case 1. If 0 ≤ t < F−1
X (α ∧ β), then (3.8) becomes

(2λ− 1)(1 + θ)SX(t) < 2λ− 1,

which is the same as Case 1 in the proof of Theorem 3.2. Thus (3.8) is equivalent to

t < F−1
X (θ/(θ + 1)) for 0 ≤ λ < 1/2 and to t

>
or
≥
F−1+
X (θ/(θ + 1)) for 1/2 < λ ≤ 1. The

inequality does not hold when λ = 1/2.
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Case 2. If β ≤ α and F−1
X (β) ≤ t < F−1

X (α), then (3.8) is the same as[
(2λ− 1)(1 + θ) +

1− λ
1− β

]
SX(t)

=

[(
2(1 + θ)− 1

1− β

)
λ+

(
1

1− β − (1 + θ)

)]
SX(t) < λ.

As[
2(1 + θ)− 1

1− β

]
λ+

[
1

1− β − (1 + θ)

]
≥

{
1

1−β − (1 + θ) > 0, if 2(1 + θ)− 1
1−β ≥ 0,

1 + θ > 0, if 2(1 + θ)− 1
1−β < 0,

it follows that (3.8) can be further written as

SX(t) <
λ

[2(1 + θ)− 1/(1− β)]λ+ [1/(1− β)− (1 + θ)]
,

which is equivalent to

t
>
or
≥
F−1+
X

(
1− λ

[2(1 + θ)− 1/(1− β)]λ+ [1/(1− β)− (1 + θ)]

)
= F−1+

X (d1).

Observe that d1 is non-increasing in λ, equal to α when λ = c and β when λ = 1/2.
Case 3. If α < β and F−1

X (α) ≤ t < F−1
X (β), then (3.8) reduces to[

(2λ− 1)(1 + θ)− λ

1− α

]
SX(t) =

[(
2(1 + θ)− 1

1− α

)
λ− (1 + θ)

]
SX(t) < λ− 1.

Since(
2(1 + θ)− 1

1− α

)
λ− (1 + θ) ≤

{
(1 + θ)− 1

1−α < 0, if 2(1 + θ)− 1
1−α ≥ 0,

−(1 + θ) < 0, if 2(1 + θ)− 1
1−α < 0,

it follows that (3.8) is equivalent to

SX(t) >
1− λ

(1 + θ) + [1/(1− α)− 2(1 + θ)]λ
,

or to

t < F−1
X

(
1− 1− λ

(1 + θ) + [1/(1− α)− 2(1 + θ)]λ

)
= F−1

X (d2).

Note that d2 is strictly increasing in λ, equal to α when λ = 1/2 and β when λ = c.
Case 4. If F−1

X (α ∨ β) ≤ t < F−1
X (1), then (3.8) is identical to[
(2λ− 1)(1 + θ)− λ

1− α +
1− λ
1− β

]
SX(t) < 0,

which, because SX(t) is strictly positive on [F−1
X (α∨ β), F−1

X (1)) (if non-empty), is the
same as

(2λ− 1)(1 + θ)− λ

1− α +
1− λ
1− β =

[
2(1 + θ)− 1

1− α −
1

1− β

]
λ− (1 + θ) +

1

1− β < 0.

Since 2(1 + θ) − 1/(1 − α) − 1/(1 − β) < 0 by hypothesis, the preceding inequality is
equivalent to

λ >
1/(1− β)− (1 + θ)

1/(1− α) + 1/(1− β)− 2(1 + θ)
= c.

Combining the four cases, we deduce that the solutions of (3.8) arranged according to the relative
values of α and β and various values of λ are given in Tables 3.2 and 3.3. The use of Theorem 3.1
along with the results in the two tables proves Theorems 3.3 and 3.4. ut
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Case I: β ≤ α
Range of λ Solutions of r(SX(t)) < 0 Solutions of r(SX(t)) = 0

0 ≤ λ < c t < F−1
X (θ/(θ + 1)) F−1

X (θ/(θ + 1)) ≤ t
<
or
≤
F−1+
X (θ/(θ + 1))

λ = c t < F−1
X (θ/(θ + 1)) F−1

X (θ/(θ + 1)) ≤ t
<
or
≤
F−1+
X (θ/(θ + 1)) or

t ≥ F−1
X (α),

c < λ < 1/2 t < F−1
X (θ/(θ + 1)) or t

>
or
≥
F−1+
X (d1) F−1

X (θ/(θ + 1)) ≤ t
<
or
≤
F−1+
X (θ/(θ + 1)) or

F−1
X (d1) ≤ t

<
or
≤
F−1+
X (d1)

λ = 1/2 t
>
or
≥
F−1+
X (β) t

<
or
≤
F−1+
X (β)

1/2 < λ ≤ 1 t
>
or
≥
F−1+
X (θ/(θ + 1)) F−1

X (θ/(θ + 1)) ≤ t
<
or
≤
F−1+
X (θ/(θ + 1))

Table 3.2 The solutions of r(SX(t)) < 0 and r(SX(t)) = 0 over t for different values of λ when β ≤ α.

Case II: α < β
Range of λ Solutions of r(SX(t)) < 0 Solutions of r(SX(t)) = 0

0 ≤ λ < 1/2 t < F−1
X (θ/(θ + 1)) F−1

X (θ/(θ + 1)) ≤ t
<
or
≤
F−1+
X (θ/(θ + 1))

λ = 1/2 No solution t
<
or
≤
F−1+
X (α)

1/2 < λ < c F−1+
X (θ/(θ + 1))

<
or
≤
t < F−1

X (d2) F−1
X (θ/(θ + 1)) ≤ t

<
or
≤
F−1+
X (θ/(θ + 1)) or

F−1
X (d2) ≤ t

<
or
≤
F−1+
X (d2)

λ = c F−1+
X (θ/(θ + 1))

<
or
≤
t < F−1

X (β) F−1
X (θ/(θ + 1)) ≤ t

<
or
≤
F−1+
X (θ/(θ + 1)) or

t ≥ F−1
X (β)

c < λ ≤ 1 t
>
or
≥
F−1+
X (θ/(θ + 1)) F−1

X (θ/(θ + 1)) ≤ t
<
or
≤
F−1+
X (θ/(θ + 1))

Table 3.3 The solutions of r(SX(t)) < 0 and r(SX(t)) = 0 over t for different values of λ when α < β.

It would be remiss not to point out that a version of Theorems 3.3 and 3.4 without assuming
that θ/(θ + 1) < α ∧ β has been independently and recently established in Cai et al. (2017) by
means of some sophisticated algebraic arguments (see Theorems 3.1 and 3.2 therein). We remark
that although Theorems 3.3 and 3.4 in this article presuppose that θ/(θ + 1) < α ∧ β, which is the
scenario of predominant practical interest, the techniques used in our proofs can be easily modified
to deal with the case of θ/(θ + 1) ≥ α ∧ β; the solutions of inequality (3.8) will differ. Combining
the two cases into a single theorem will substantially complicate the presentation of the results for
a minimal gain in generality and applicability (note that Theorems 3.1 and 3.2 of Cai et al. (2017)
are divided into 10 and 12 cases, respectively). Methodology-wise, it also merits mention that the
proofs of Theorems 3.3 and 3.4, which are radically different from the algebraic proofs of Cai et al.
(2017), not only are more systematic and transparent, but also allow us to formulate the optimal
reinsurance policies as a ready by-product of solving the inequality r(SX(t)) ≤ 0. The need for a
preconception about the shape of the solution and justifying its optimality a posteriori is obviated.

3.3.2 Discussions

In the remainder of this article, we will concentrate on the practically more important case when
β ≤ α.

A comparison of Theorems 3.2 and 3.3 reveals that the solutions of the TVaR-based Problem
(3.7) with β ≤ α share some common features as those of the VaR-based Problem (3.4), yet possess
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some distinct and striking features. Again, the behavior of the integrands that constitute the
insurer’s and reinsurer’s TVaR is highly conducive to understanding the structure of the optimal
solutions. The integrands in the TVaR setting are

fTVaR
i (t) = (1 + θ)SX(t)− SX(t)

1− α ∧ 1 and fTVaR
r (t) =

SX(t)

1− β ∧ 1− (1 + θ)SX(t).

First, Problem (3.7), in parallel with Problem (3.4), is essentially equivalent to the reinsurer’s
TVaR minimization problem and the insurer’s TVaR minimization problem when λ is small enough
(Case (a) with λ ∈ [0, c)) and when λ is large enough (Case (e) with λ ∈ (1/2, 1]), respectively. It
is interesting that the two cutoff values for λ, namely c and 1/2, are asymmetric about 1/2, the
midpoint of 0 and 1. Moreover, in Cases (b) and (d), the randomization function γ∗ is again defined
on subsets on which fTVaR

i is directly proportional to fTVaR
r . In Case (b), we have

cfTVaR
i (t) + (1− c)fTVaR

r (t) =

[
1/(1− β)− (1 + θ)

1/(1− β) + 1/(1− α)− 2(1 + θ)

] [
(1 + θ)− 1

1− α

]
SX(t)

+

[
1/(1− α)− (1 + θ)

1/(1− β) + 1/(1− α)− 2(1 + θ)

] [
1

1− β − (1 + θ)

]
SX(t)

= 0

for all t ≥ F−1
X (α). Thus the design of γ∗ on [F−1

X (α),∞) does not affect the value of the objective
function, although it does alter the individual values of x and y linearly. Explanations in the same
vein apply to Case (d).

Among the five cases identified in Theorem 3.3, Case (c) is the most intriguing and of greatest
theoretical and practical importance. It is a mathematical manifestation of the compromise between
the insurer and reinsurer in their quest for Pareto optimality, as Problem (3.7) is designed to capture
in the first place. For a range of intermediate values of λ, it is found that the solutions of Problem
(3.7) are neither optimal to the insurer nor to the reinsurer, but are optimal to both of them on
a conciliatory basis. In fact, the precise value of λ enters the expression of I ′∗ through d1 ∈ (β, α)
when λ ∈ (c, 1/2). To understand the design of I∗(t) over t ∈ [F−1

X (β), F−1
X (α)) in this case, observe

that when t ∈ (F−1+
X (d1), F−1

X (α)), we have

λfTVaR
i (t) + (1− λ)fTVaR

r (t) = λ[(1 + θ)SX(t)− 1] + (1− λ)

[
1

1− β − (1 + θ)

]
SX(t)

< λ [(1 + θ)(1− d1)− 1] + (1− λ)

[
1

1− β − (1 + θ)

]
(1− d1)

= 0,

This suggests full reinsurance on the set (F−1+
X (d1), F−1

X (α)). Furthermore, due to the absence of

a proportional relationship between fTVaR
i and fTVaR

r on [F−1
X (β), F−1

X (α)), the values of x and y

evolve non-linearly as λ varies from c to 1/2, as opposed to Cases (b) and (d).

3.3.3 Pareto frontier

Figure 3.3 exhibits the typical insurer-reinsurer Pareto frontier in the TVaR framework when the
distribution function of the ground-up loss X is strictly increasing on its support, so that sets of the
form [F−1

X (p), F−1+
X (p)) are always empty for any p ∈ (0, 1). It consists of two downward sloping

straight lines corresponding to λ ∈ [0, c] and λ ∈ [1/2, 1] connected by a convex curve indexed by
λ ∈ (c, 1/2). Arguments analogous to those in the VaR setting presented in Subsection 3.2.3 can
be readily applied to justify the construction of lines AB and CD, whose slopes are c/(c − 1) and
−1, respectively. The distinguishing feature of the TVaR Pareto frontier as compared to the linear
frontier in the VaR setting is the middle piece which is a convex curve emanating from point B to
point C with a continuously changing slope as λ varies from c to 1/2. This reflects the non-linear
negotiation between the insurer and reinsurer over this intermediate range of values of λ. In general,
for ground-up loss distributions that are not necessarily strictly increasing, the convex curve BC is
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Figure 3.3 The insurer-reinsurer Pareto frontier (in bold) in the TVaR case when the distribution function of
X is strictly increasing.

replaced by an at most countable (because the set of flat parts of FX corresponds to the set where
the non-decreasing function F−1

X is discontinuous, which in turn is at most countable) collection of
downward sloping straight lines joined by convex curves. The straight lines arise from the selection
of γ∗ on [F−1

X (d1), F−1+
X (d1)] (if non-empty), where fTVaR

i is negative while fTVaR
r is positive, the

two functions are proportional to each other.

4 Pareto-optimal reinsurance policies subject to individual risk constraints

Building upon the development in Section 3, in this section we identify the set of Pareto-optimal
reinsurance policies that satisfy the individual risk constraints, which include individual rationality
constraints as special cases, prescribed by the insurer and reinsurer. Whereas the imposition of these
constraints guarantees that the Pareto-optimal reinsurance contracts are simultaneously acceptable
to both the insurer and reinsurer, their presence also raises the technical sophistication of the
resulting optimization problem in the sense that only part of the Pareto frontier may become
feasible, and that the specification of the randomization function γ∗ has to take into account
the two additional risk constraints. Nevertheless, the Pareto frontier derived in the unconstrained
setting of Section 3 remains as a valuable device that is highly conducive to the search of Pareto-
optimal reinsurance policies even in the presence of individual risk constraints. Most strikingly,
the Pareto frontier allows us to transform the constrained functional minimization problem into a
two-variable constrained minimization problem on the real plane, which can be solved via a swift,
geometric approach. As soon as the optimal point (x∗, y∗) on the plane is identified, so can the
optimal reinsurance policy I∗ by virtue of the correspondence between the Pareto frontier and the
set of (unconstrained) Pareto-optimal solutions. As in Section 3, we illustrate our search procedure
by means of the VaR and TVaR cases, where results can be made much more explicit, although
the same techniques can carry over to the general DRM framework.

4.1 Constrained Pareto-optimal policies under VaR

The constrained counterpart to the VaR-based Pareto-optimal reinsurance problem takes the fol-
lowing form:
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
inf
I∈I

λVaRα(X − I(X) + PI(X)) + (1− λ)VaRβ(I(X)− PI(X))

s.t.
VaRα(X − I(X) + PI(X)) ≤ Li

VaRβ(I(X)− PI(X)) ≤ Lr

, (4.1)

where Li and Lr are the maximum levels of risk the insurer and reinsurer are willing to bear,
respectively. To ensure that the solution set of Problem (4.1) is nonempty, it is necessary and
sufficient that (Li, Lr) lies in the risk set, or equivalently,

Li ≥ xB , Lr ≥ yA, and Li + Lr ≥ F−1
X (α ∧ β), (4.2)

where xj and yj are respectively the x-coordinate and y-coordinate of point j for j = A,B in Figure
3.2. Note that setting Li = VaRα(X) and Lr = 0, which satisfy (4.2), imposes the insurer’s and
reinsurer’s individual rationality constraints into the Pareto-optimal policies search problem. Our
solutions to be shown below, however, hold true for any (Li, Lr) fulfilling (4.2).

Problem (4.1) was first considered in Cai et al. (2016) via some convoluted algebraic arguments
and later revisited in Lo (2017a) and solved more transparently from a Neyman-Pearson perspec-
tive. With the Pareto frontier developed in Subsection 3.2.3, Problem (4.1) now admits a geometric
proof which not only renders the optimal solutions self-explanatory, but can also be applied to the
much more intractable TVaR setting (see Subsection 4.2). The precise steps are as follows.

Step 1. We first observe that Problem (4.1) is equivalent to
inf
I∈I∗

λVaRα(X − I(X) + PI(X)) + (1− λ)VaRβ(I(X)− PI(X))

s.t.
VaRα(X − I(X) + PI(X)) ≤ Li

VaRβ(I(X)− PI(X)) ≤ Lr

, (4.3)

where I∗ is the set of Pareto-optimal reinsurance policies. The restriction of the feasible
set from I to I∗ does not alter the minimization problem because the minimum point
of Problem (4.1) must be attained at a Pareto-optimal policy by the very definition of
Pareto optimality. Here the results in Theorem 3.2 derived in the unconstrained VaR
setting will be instrumental in describing I∗. Do note, however, that the value of λ to
which the solution(s) of Problem (4.3) correspond(s) in the Pareto frontier may or may
not coincide with the value of λ specified a priori in the objective function of Problem
(4.3) due to the presence of the two risk constraints. We will elaborate on this towards
the end of this section.

Step 2. On the basis of Problem (4.3), we label, for I ∈ I∗,

x = x(I) = VaRα(X − I(X) + PI(X)) and y = y(I) = VaRβ(I(X)− PI(X))

and perform the following two-variable constrained minimization on the plane:
inf

(x,y)∈Pareto frontier
λx+ (1− λ)y

s.t.
x ≤ Li
y ≤ Lr

. (4.4)

Due to the simplicity of the objective and constraint functions coupled with the regular
structure of the Pareto frontier developed in Subsection 3.2.3, Problem (4.4) can be
solved graphically and almost effortlessly.

Step 3. Finally, it remains to translate the optimal solution(s) (x∗, y∗) of Problem (4.4) on the
Pareto frontier into the optimal solution(s) I∗ of Problem (4.1) via the correspondence
between the Pareto frontier and the set of Pareto-optimal policies.

This three-step solution scheme for Problem (4.1) is accomplished in the following theorem.
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Theorem 4.1 (Solutions of Problem (4.1)) Assume that θ/(θ + 1) < α ∧ β and (Li, Lr) satisfies
(4.2). Then Problem (4.1) is solved by

I ′∗(t) =


1, if F−1

X (β) ≤ t < F−1
X (α),

γ∗(t), if 0 ≤ t < F−1
X (α ∧ β) or t ≥ F−1

X (α ∨ β),

0, elsewhere,

for any unit-valued function γ∗ such that:

(a) If 0 ≤ λ < 1/2:
x(I∗) = Li ∧ xA.

(b) If λ = 1/2:
x(I∗) ≤ Li ∧ xA and y(I∗) ≤ Lr ∧ yB .

(c) If 1/2 < λ ≤ 1:
y(I∗) = Lr ∧ yB .

Proof Without loss of generality, we assume that Li ∈ [xB , xA] and Lr ∈ [yA, yB ], so that the two
risk constraints restrict the Pareto frontier from line AB to line A′B′ (see Figure 4.1). To solve
Problem (4.4) graphically, we fix λ ∈ [0, 1] and introduce the level curves of the objective function
(x, y) 7→ λx+ (1− λ)y, namely {(x, y) ∈ R2 | λx+ (1− λ)y = z} for z ∈ R. For each fixed z ∈ R, the
set {(x, y) ∈ R2 | λx+ (1− λ)y = z} corresponds to all (x, y) ∈ R2 giving rise to the same value of
the objective function and is a straight line in the x-y plane with a slope of λ/(λ− 1). As z varies,
a family of parallel lines is generated, and the optimal (x, y) is obtained by the level curve with
the lowest value of z intersecting with the restricted Pareto frontier. For different values of λ, the
point(s) of intersection also differ(s).

– Case 1: If λ < 1/2, then λ/(λ− 1) > −1, and the level curve with the lowest value of z touches
the Pareto frontier at point A′, at which the insurer’s risk constraint is binding.

– Case 2: If λ = 1/2, then λ/(λ− 1) = −1, and the level curve with the least value of z overlaps
with the entire restricted Pareto frontier, namely line A′B′, which carries all (x, y) satisfying
the insurer’s and reinsurer’s risk constraints.

– Case 3: If λ > 1/2, then λ/(λ − 1) < −1, and the level curve with the minimum value of z
intersects the Pareto frontier at point B′, at which the reinsurer’s risk constraint is binding.

See Figure 4.1 for an illustration of Case 3. By Theorem 3.2 (b), the solutions of Problem (4.1)
are defined by

I ′∗(t) =


1, if F−1

X (β) ≤ t < F−1
X (α),

γ∗(t), if 0 ≤ t < F−1
X (α ∧ β) or t ≥ F−1

X (α ∨ β),

0, elsewhere,

with the unit-valued function γ∗ selected to bind the insurer’s risk constraint (i.e., x(I∗) = Li) in
Case 1, bind the reinsurer’s risk constraint (i.e., y(I∗) = Lr) in Case 3, and to satisfy both the
insurer’s risk constraint and reinsurer’s risk constraint in Case 2 (i.e., x(I∗) ≤ Li and y(I∗) ≤ Lr).
ut

We note in passing that Theorem 4.1 (a) and (c) are indications of the equivalence between
Problem (4.1) and the reinsurer’s VaR minimization problem subject to the insurer’s risk constraint:{

inf
I∈I

VaRβ(I(X)− PI(X))

s.t. VaRα(X − I(X) + PI(X)) ≤ Li
,

when 0 ≤ λ < 1/2, and the equivalence between Problem (4.1) and the insurer’s VaR minimization
problem subject to the reinsurer’s risk constraint:{

inf
I∈I

VaRα(X − I(X) + PI(X))

s.t. VaRβ(I(X)− PI(X)) ≤ Lr
,
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Figure 4.1 Illustration of the solution of Problem (4.1) when λ > 1/2. The shaded region represents the
constrained risk set and the four dashed lines are four level curves of the objective function.

when 1/2 < λ ≤ 1. Arguments in Subsection 3.2.2 can be easily adapted to explain such a reduction
of a two-constraint problem to a one-constraint problem. See also Remark 4.7 of Lo (2017a). When
λ = 1/2, any policy on the restricted Pareto frontier is a solution of Problem (4.1). The geometric
proof of Theorem 4.1 above, based on the Pareto frontier in the VaR setting, has reduced the
algebraic proof of Proposition 4.6 of Lo (2017a) to an almost self-explanatory graphical search
process and made the solution of Problem (4.1) considerably more transparent. This speaks to
the virtues of visualizing the insurer-reinsurer trade-off structure by fully developing the Pareto
frontier.

4.2 Constrained Pareto-optimal policies under TVaR

We now turn our attention to the constrained TVaR-based Pareto-optimal reinsurance problem:
inf
I∈I

λTVaRα(X − I(X) + PI(X)) + (1− λ)TVaRβ(I(X)− PI(X))

s.t.
TVaRα(X − I(X) + PI(X)) ≤ Li

TVaRβ(I(X)− PI(X)) ≤ Lr

, (4.5)

where (Li, Lr) resides in the risk set depicted in Figure 3.3. Due to the complexity of the geometry
of the Pareto frontier in the TVaR framework relative to that in the VaR case, especially when
λ takes intermediate values, representing the solutions of Problem (4.5) for all possible pairs of
(Li, Lr) can be unwieldy. Although our graphical search procedure works in all possible scenarios,
to demonstrate the fundamental ideas we present a concrete numerical illustration in which the
ground-up loss is exponentially distributed with a mean of 1000, α = 0.95, β = 0.9, θ = 0.1, and
(Li, Lr) = (3500, 650). Then F−1

X (p) = F−1+
X (p) = −1000 ln(1 − p) for all p ∈ [0, 1), c = 0.3201,

and the horizontal line y = Lr = 650 intersects the middle piece of the Pareto frontier at a unique
point C′ corresponding to λ = 0.4160. The restricted Pareto frontier is exhibited in Figure 4.2.
Specializing Theorem 3.3 to these values and applying the graphical techniques illustrated in the
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proof of Theorem 4.1, we can formulate the solutions of Problem (4.5) for different values of λ as
follows:

Case 1. If 0 ≤ λ < 0.3201, then the optimal (x, y) is given by point A′ in Figure 4.2. The
corresponding optimal I is defined by

I ′∗(t) =


1, if t < 95.3102,

γ∗(t), if t ≥ 2995.7323,

0, if 95.3102 ≤ t < 2995.7323,

for any unit-valued function γ∗ such that∫ ∞
2995.7323

fTVaR
i (t)γ∗(t) dt = −500.4221.

Case 2. If λ = 0.3201, then any (x, y) on line A′B gives rise to the same minimum objective
value. The corresponding optimal I is defined by

I ′∗(t) =


1, if t < 95.3102,

γ∗(t), if t ≥ 2995.7323,

0, if 95.3102 ≤ t < 2995.7323,

for any unit-valued function γ∗ such that∫ ∞
2995.7323

fTVaR
i (t)γ∗(t) dt ≤ −500.4221.

Case 3. If 0.3201 < λ < 0.4160, then the optimal solution is

I ′∗(t) =

{
1, if t < 95.3102 or t > −1000 ln(1− d1),

0, if 95.3102 ≤ t ≤ −1000 ln(1− d1),

where

d1 = 1− λ

[2(1 + θ)− 1/(1− β)]λ+ [1/(1− β)− (1 + θ)]
=

8.9− 8.8λ

8.9− 7.8λ
.

Case 4. If 0.4160 ≤ λ ≤ 1, then optimum is achieved at point C′, with the optimal I given by

I ′∗(t) =

{
1, if t < 95.3102 or t > 2609.6450,

0, if 95.3102 ≤ t ≤ 2609.6450.

The optimal solutions for other choices of (Li, Lr) and ground-up loss distributions can be
deduced in a completely analogous fashion. We observe from the solutions of Problems (4.1) and
(4.5) that the effect of the two individual risk constraints is to constrain the range of values of λ
indexing the Pareto frontier to a subset of [0, 1], say [λL, λU ] with 0 ≤ λL ≤ λU ≤ 1. In the proof
of Theorem 4.1 in Subsection 4.1, we have λL = λU = 1/2, whereas λL = 0.3201 and λU = 0.4160
in the current TVaR-based subsection. In both cases, the Pareto frontier proves useful in finding
λL and λU . A general phenomenon is that when the value of λ that enters the objective function
λx + (1 − λ)y is greater than λU (resp. less than λL), the optimal (x, y) must be attained at the
leftmost (resp. rightmost) end point of the constrained Pareto frontier.
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Figure 4.2 The insurer-reinsurer Pareto frontier in the TVaR case when the ground-up loss is exponentially
distributed with a mean of 1000, α = 0.95, β = 0.9, θ = 0.1, and (Li, Lr) = (3500, 650).

5 Concluding remarks

In this paper, we undertake a comprehensive analysis of Pareto-optimal reinsurance policies in the
general realm of DRMs and in the specific contexts of VaR and TVaR. Via translating the search
problem into a weighted sum functional minimization problem, analytic solutions are derived,
the insurer-reinsurer Pareto frontier is developed and the connections between its shape and the
properties of the prescribed risk measures are elucidated. With the aid of the Pareto frontier, we also
develop a simple geometric approach to determining the Pareto-optimal reinsurance arrangements
that satisfy the risk constraints imposed by the insurer and reinsurer. All in all, our results not
only generalize and clarify existing results in the literature of Pareto-optimal risk sharing, but
also shed light on the economics of Pareto-optimal reinsurance through algebraic and geometric
representations.

Because the emphasis of this article is laid on the trade-off of risk made between insurers and
reinsurers in the sense of Pareto optimality, we have focused on a one-period two-party reinsurance
market, which is mathematically tractable, geometrically simple, yet adequately rich in structure to
showcase the theory of Pareto-optimal reinsurance. While extending our analysis to a multi-party
setting is technically feasible, this will obscure the focus of our analysis and substantially complicate
the presentation of our results for a minimal gain in insights. Moreover, the Pareto frontier will
become a multi-dimensional surface, which does not lend itself to visual comprehension.
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