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Abstract

Consider an insurer who makes risky investments and hence faces both insurance
and financial risks. The insurance business is described by a discrete-time risk model
modulated by a stochastic environment that poses systemic and systematic impacts
on both the insurance and financial markets. This paper endeavors to quantitatively
understand the interplay of the two risks in causing ruin of the insurer. Under the
bivariate regular variation framework, we obtain an asymptotic formula to describe the
impacts on the insurer’s solvency of the two risks and of the stochastic environment.
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1 Introduction

Since insurers make investments, when conducting an assessment of solvency for insurance

business, we need to address two fundamental risks, which are insurance risk that is caused by

insurance claims and financial risk that is due to risky investments. The reader is referred to

Norberg (1999) and Kalashnikov and Norberg (2002) for related discussions. In this paper,

we study the interplay of the insurance and financial risks in causing ruin of an insurer.

Ruin theory as a classical research topic has been playing an important role in risk theory

and other related fields such as risk management and mathematical finance. In particular,

under modern insurance regulatory frameworks, ruin theory has immediate implications on

important issues such as solvency capital requirement and insurance risk management; for

related discussions, see Nyrhinen (2010) and Trufin et al. (2011), among others.

Throughout the paper, all random variables are assumed to be defined on a common

probability space (Ω,F , P ). We employ a discrete-time risk model to accommodate the two
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risks. Precisely, for each period i ∈ N, denote by Xi the insurance risk, quantified as the

insurer’s net loss equal to the total amount of claims less premiums within the period, and

denote by Yi the financial risk quantified as the stochastic present value factor over the same

period. In this way, the aggregate stochastic present values of insurance losses become

S0 = 0, Sn =
n∑
i=1

Xi

i∏
j=1

Yj, n ∈ N. (1.1)

Denote their running maximum by

Mn = max
0≤k<n+1

Sk, n ∈ N ∪ {0} ∪ {∞}. (1.2)

In the tradition of ruin theory, the insurer holding an initial capital x > 0 is regarded as

ruined when its wealth becomes negative, or equivalently, when the running maximum Mn

upcrosses level x. Thus, the probability of ruin in either a finite-time or infinite-time horizon

is defined by

ψ(x;n) = P (Mn > x) , n ∈ N ∪ {∞}.

Except for few cases under ideal distributional assumptions, a closed-form expression for

the ruin probability ψ(x;n) is not available. Thus, the mainstream of the study focuses

on characterizing its asymptotic behavior. For example, under this setup, Nyrhinen (1999,

2001) and Tang and Tsitsiashvili (2003, 2004) respectively obtained some crude and precise

asymptotic estimates for the ruin probability ψ(x;n) as x becomes large. The reader is

referred to Paulsen (2008) and Asmussen and Albrecher (2010) for reviews of early works

on this study in both discrete-time and continuous-time models. Recent works under more

practical settings include Chen (2011), Fougeres and Mercadier (2012), Yang and Konstan-

tinides (2015), Li and Tang (2015), Lehtomaa (2015), Tang and Yuan (2016), Nyrhinen

(2016), Yang et al. (2016), Chen and Yuan (2017), and Chen (2017).

Loosely speaking, most of these works are restricted to a standard framework in which

(Xi, Yi), i ∈ N, form a sequence of independent and identically distributed (i.i.d.) copies

of a generic pair (X, Y ) with heavy tails, and a main discovery is that for asymptotically

independent X and Y the decay rate of the ruin probability ψ(x;n) as x→∞ is dominated

by whichever tail of X and Y is heavier than the other, while for asymptotically dependent

X and Y the decay rate can be much slower, indicating a much more dangerous scenario of

the insurance business.

Remarkably, under the i.i.d. assumption above, if E [ln(|X| ∨ 1)] < ∞ and −∞ ≤
E [lnY ] < 0, then as n→∞, the sum Sn in (1.1) converges almost surely to

S =
∞∑
i=1

Xi

i∏
j=1

Yj,

the maximum Mn in (1.2) converges almost surely to

M = max
0≤k<∞

Sk,
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and the limits S and M satisfy the stochastic fixed point equations, respectively,{
S =d (X + S)Y, with S independent of (X, Y ),
M =d (X +M)+Y, with M independent of (X, Y ),

(1.3)

where =d denotes equal in distribution and x+ = x ∨ 0 denotes the positive part of a real

number x. See Vervaat (1979) for these statements. Note that these are slightly different

from ones often appearing in the literature:{
S =d X + SY, with S independent of (X, Y ),
M =d (X +MY )+, with M independent of (X, Y ).

(1.4)

See Grey (1994), Buraczewski et al. (2016a, b), and Dyszewski (2016), among many others,

for the study of the stochastic fixed point equations (1.4). Under our setting (1.3), a certain

restriction on the dependence structure between X and Y usually has to be imposed in order

to deal with the products XY , X1Y1, . . . , while under the setting (1.4) such a restriction is

often not needed.

Clearly, the i.i.d. assumption on the sequence {(Xi, Yi), i ∈ N} is highly impractical,

especially for analyzing a business in a relatively long time horizon. In reality, both in-

surance and financial risks coexist in a stochastic environment that is composed of both

changes in the nature such as seasonal effects and global warming, and evolutions of certain

macroeconomic factors such as inflation, bank base rate, a country’s gross domestic product,

and unemployment rate. Thus, it is important to take into account this external stochastic

environment when modeling insurance business, and to capture its impact on the insurer’s

solvency. A natural idea is to assume that the sequence {(Xi, Yi), i ∈ N} is modulated

by an underlying stochastic process, say, Θ = {θi, i ∈ N}, that summarizes the stochastic

environment. Indeed, this idea has been extensively employed in the mainstream study of

insurance and finance since the pioneering works by Asmussen (1989) and Asmussen et al.

(1994, 1995). Some recent works in ruin theory along this trend are Lu and Li (2005), Foss

et al. (2007), Foss and Richards (2010), and Elliott et al. (2011), among many others. It is

discovered that the insurer’s solvency is significantly affected by the presence of the external

stochastic environment. In the literature, models that incorporate such a stochastic envi-

ronment Θ are often called regime-switching models and Θ is often assumed to be a Markov

process for mathematical tractability.

We continue the study of the asymptotic behavior of the ruin probability by taking

into consideration such a stochastic environment quantified by a general stochastic process

Θ = {θi, i ∈ N}. Note that this stochastic environment poses systemic and systematic

impacts on both the insurance and financial markets and hence introduces dependence among

the insurance and financial risks across consecutive years, which makes the risk model more

practical on the one hand but leads to some technical issues to the study on the other. In this

paper, we assume that conditional on Θ the random pairs (Xi, Yi), i ∈ N, are independent but

not identically distributed, each possessing a bivariate regular variation structure governed

by two regularly varying tails F and G with negative indices −α and −β, respectively. As

the main result, we obtain an asymptotic estimate

ψ(x;∞) = (c+ o(1))x−(αβ)/(α+β)l(x), x→∞,
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where the constant c is strictly positive for most cases and l(·) is a slowly varying function;

see relations (3.2) and (3.4) below. Not surprisingly, the representation for the constant c

given on the right-hand side of (3.4) is rather intricate, but it captures the impacts of the

two risks and of the stochastic environment, and is still explicit and readily computable.

The rest of this paper consists of four sections. Section 2 collects necessary preliminaries

on the stochastic environment and the concept of bivariate regular variation, Section 3

presents our main result after introducing two assumptions, Section 4 constructs an example

to illustrate the feasibility of the assumptions and the computability of the obtained formula,

and finally Section 5 proves the main result after preparing several lemmas.

2 Preliminaries

2.1 Notational conventions

Throughout this paper, for x, y ∈ R = (−∞,∞), we write x ∨ y = max{x, y}, x ∧ y =

min{x, y}, and x+ = x ∨ 0. For x,y ∈ R2, we write [x,y] = [x1, y1] × [x2, y2], [x,∞) =

[x1,∞)×[x2,∞), and so on. For a setB, denote byBc its complement, and by 1B its indicator

function, which is equal to 1 if B occurs and 0 otherwise. We sometimes abbreviate ν(B),

the ν-measure of a set B, to νB as long as no confusion arises.

All limit relationships hold for x→∞ unless otherwise stated. For two positive functions

h1(·) and h2(·), we write h1(·) ∼ h2(·) if limh1(·)/h2(·) = 1. For a non-decreasing function

h : R→ R, denote by h← and h→ its càglàd and càdlàg inverses, defined by, respectively,

h←(y) = inf{x ∈ R : h(x) ≥ y} and h→(y) = sup{x ∈ R : h(x) ≤ y}, y ∈ R,

where inf ∅ =∞ and sup ∅ = −∞. Note that h← and h→ are equal almost everywhere with

respect to Lebesgue measure. It is easy to see that

h← ◦ h(x) ≤ x and h→ ◦ h(x) ≥ x, x ∈ R. (2.1)

Moreover, if h is right continuous, then

h←(y) > x⇐⇒ y > h(x). (2.2)

See Section A.1.2 of McNeil et al. (2015) for related discussions.

For two random pairs ξ = (ξ1, ξ2) and η = (η1, η2), we say that ξ is stochastically

dominated by η, written as ξ ≤st η, if

E [φ(ξ)] ≤ E [φ(η)]

for every component-wise increasing function φ : R2 → R for which the expectations exist.

See Section 17.A of Marshall et al. (2011) and references therein for this concept and related

discussions. In particular, ξ ≤st η if and only if

P (ξ ∈ ∆) ≤ P (η ∈ ∆)

holds for every increasing set ∆ ⊂ R2 (namely, a set whose indicator function is component-

wise increasing). Restated in the univariate case, ξ ≤st η if and only if P (ξ > x) ≤ P (η > x)

for every x ∈ R. Clearly, if ξ ≤st η, then ξ1 ≤st η1 and ξ2 ≤st η2.
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2.2 The stochastic environment

As mentioned in Section 1, we assume the presence of an external stochastic environment

that poses systemic and systematic impacts on both the insurance and financial markets.

To quantify this stochastic environment, introduce a general discrete-time stochastic process

Θ = {θi, i ∈ N} on (Ω,F , P ), which is not necessarily a Markov process, with each θi
taking values in R. For each i ∈ N, let FΘi be the σ-field generated by Θi = {θ1, . . . , θi},
representing the history of the stochastic environment up to time i. In this way, {FΘi , i ∈ N}
forms the natural filtration of the stochastic process Θ.

We say that the sequence of random pairs {(Xi, Yi), i ∈ N} is modulated by the stochastic

process Θ if

(i) conditional on Θ the random pairs (Xi, Yi), i ∈ N, are mutually independent, and

(ii) for each i ∈ N, the conditional distributions of (X1, Y1), . . . , (Xi, Yi) on Θ and on Θi

are equal almost surely.

Verbally, item (ii) means that the insurance and financial risks incurred up to now are not

affected by future developments of the stochastic environment, which sounds very natural.

2.3 Bivariate regular variation

We start with the concept of regular variation. A positive function h on R+ = [0,∞) is said

to be regularly varying at ∞ with index α ∈ R, written as h ∈ RVα, if

lim
x→∞

h(xy)

h(x)
= yα, y > 0.

When α = 0, this defines a slowly varying function at ∞. See Bingham et al. (1987)

and Resnick (1987) for textbook treatments of regular variation. Distributions with tail

F = 1 − F ∈ RV−α for some α > 0 form a useful class for modeling heavy-tailed risks in

insurance and finance.

The concept of multivariate regular variation, which was first introduced by de Haan and

Resnick (1981) as a natural extension of univariate regular variation, provides an integrated

framework for modeling extreme risks with both heavy tails and asymptotic (in)dependence.

One often finds its use in insurance, finance, and risk management when extreme risks are

concerned. Recent works in this direction include Embrechts et al. (2009), Mainik and

Rüschendorf (2010), Fougeres and Mercadier (2012), Part IV of Rüschendorf (2013), and

Tang and Yuan (2013), among many others. We briefly introduce here the two-dimensional

version of this concept, and refer the reader to Chapter 6 of Resnick (2007) for more details.

A random pair (X, Y ) taking values in R2
+ is said to follow a distribution with a bi-

variate regularly varying (BRV) tail if there exist two distribution functions F,G and a

non-degenerate (i.e., not identically 0) limit measure ν such that

xP

((
X

(1/F )←(x)
,

Y

(1/G)←(x)

)
∈ ·
)

v→ ν(·) on [0,∞]\{0}. (2.3)
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For simplicity, for a distribution F , we abbreviate the càglàd inverse of 1/F to χF , i.e.,

χF (x) =

(
1

F

)←
(x), x ∈ R+.

In (2.3) the notation
v→ denotes vague convergence, meaning that the relation

lim
x→∞

xP

((
X

χF (x)
,

Y

χG(x)

)
∈ B

)
= ν(B)

holds for every Borel set B ⊂ [0,∞] that is away from 0 and ν-continuous (namely, its

boundary ∂B has ν-measure 0). Discussions on vague convergence can be found in, e.g.,

Section 3.3.5 of Resnick (2007). Necessarily, both F and G are regularly varying. Assume

that F ∈ RV−α and G ∈ RV−β for some α, β > 0, for which case we write (X, Y ) ∈
BRV−α,−β(ν, F ,G). This is actually a non-standard version of bivariate regular variation,

but it reduces to a standard one if G(x) ∼ λF (x) for some λ > 0. By definition, for a

random pair (X, Y ) ∈ BRV−α,−β(ν, F ,G), its marginal tails satisfy

lim
x→∞

FX(x)

F (x)
= ν((1, 0),∞] and lim

x→∞

GY (x)

G(x)
= ν((0, 1),∞].

Thus, the tails F and G appearing in the definition (2.3) represent, though not necessarily

identical to, the marginal tails of (X, Y ).

3 The main result

Our main result is established under the following two assumptions. The first one requires

that each pair of insurance and financial risks conditional on the stochastic environment Θ

possesses a BRV structure.

Assumption 3.1 For each i ∈ N, almost surely the modulated pair (X+
i , Yi)|Θi possesses

BRV−α,−β(νΘi , F ,G) for some non-degenerate measure νΘi and common representing tails

F ∈ RV−α and G ∈ RV−β for some α, β > 0.

The following second assumption requires that each pair of insurance and financial risks

conditional on Θ is stochastically dominated by a random pair that possesses a BRV struc-

ture.

Assumption 3.2 There exists a nonnegative random pair (X∗, Y ∗) ∈ BRV−α,−β(ν∗, F ,G)

for some non-degenerate measure ν∗ and some α, β > 0, such that, for each i ∈ N, almost

surely,

(X+
i , Yi)|Θi ≤st (X∗, Y ∗). (3.1)
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Without loss of generality we can assume that ν∗(1,∞] > 0 because otherwise we can

modify ν∗ by adding mass to the first quadrant.

Recalling (2.3), for any x ∈ R, define

y(x) = (χFχG)← (x) and z(x) =
1

y(x)
.

If F ∈ RV−α and G ∈ RV−β for some α, β > 0, then by Proposition 0.8(v) of Resnick (1987),

it is easy to check that χF ∈ RV1/α and χG ∈ RV1/β and hence that z(·) ∈ RV−(αβ)/(α+β).

This means that there exists some slowly varying function l(·) such that

z(x) ∼ x−(αβ)/(α+β)l(x). (3.2)

In particular, if F ∈ RV−α and G(x) ∼ λF (x) for some λ > 0, then it is not difficult to

check that

z(x) ∼ λ1/2F (x1/2).

Now we are ready to state our main result:

Theorem 3.1 Consider the discrete-time risk model introduced through (1.1) and (1.2) in

which the sequence of random pairs {(Xi, Yi), i ∈ N} is modulated by the stochastic process

Θ as described in Subsection 2.2.

(i) Under Assumptions 3.1 and 3.2, it holds for every n ∈ N that

lim
x→∞

ψ(x;n)

z(x)
=

n∑
i=1

E

[
νΘi(A)

i−1∏
j=1

Y
(αβ)/(α+β)
j

]
, (3.3)

where A = {(s, t) ∈ [0,∞] : st > 1}.
(ii) If further E

[
(Y ∗)(αβ)/(α+β)

]
< 1, then relation (3.3) holds uniformly for all n ∈ N and,

in particular,

lim
x→∞

ψ(x;∞)

z(x)
=
∞∑
i=1

E

[
νΘi(A)

i−1∏
j=1

Y
(αβ)/(α+β)
j

]
. (3.4)

The sum on the right-hand side of (3.4) is finite. This can be justified by relation

(4.7) below and the almost sure inequalities νΘi(A) ≤ ν∗(A) and E
[
Y

(αβ)/(α+β)
i |Θi

]
≤

E
[
(Y ∗)(αβ)/(α+β)

]
for each i ∈ N, which are implied by Assumption 3.2. Moreover, this

sum is strictly positive unless all limit measures νΘi , i ∈ N, assign no mass to the first

quadrant, namely, they yield asymptotic independence of the corresponding random pairs

(Xi, Yi), i ∈ N.

The following is an immediate corollary of Theorem 3.1, showing that under the standard

i.i.d. framework relations (3.3) and (3.4) can be greatly simplified:

Corollary 3.1 Consider the discrete-time risk model in which (Xi, Yi), i ∈ N, form a se-

quence of i.i.d. copies of a generic pair (X, Y ) ∈ BRV−α,−β(ν, F ,G) for some non-degenerate

measure ν and marginal tails F ∈ RV−α and G ∈ RV−β for some α, β > 0.
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(i) It holds for every n ∈ N that

lim
x→∞

ψ(x;n)

z(x)
= ν(A)

1−
(
E
[
Y (αβ)/(α+β)

])n
1− E [Y (αβ)/(α+β)]

,

where A = {(s, t) ∈ [0,∞] : st > 1}.
(ii) If further E

[
Y (αβ)/(α+β)

]
< 1, then this relation holds uniformly for all n ∈ N and, in

particular,

lim
x→∞

ψ(x;∞)

z(x)
=

ν(A)

1− E [Y (αβ)/(α+β)]
.

We would like to point out that, following the proof of Theorem 3.1, the same tail asymp-

totics as in Theorem 3.1 and Corollary 3.1 can be established for the randomly weighted

sums Sn in (1.1) subject to a minor condition on the left tails of the insurance risks Xn.

Under the setting (1.4) and in a profound style, Buraczewski et al. (2016a, b) obtained

sharp asymptotic estimates for ψ(x; bτ lnxc) for some constant τ > 0, where b·c denotes the

floor function. As our study is carried out under the different setting (1.3), leaving alone

our introduction of a stochastic environment, connection between their works and ours is

not clear. Nevertheless, the uniformity achieved by us allows the horizon n to vary with x;

for example, under Corollary 3.1(ii), it holds for any positive function n(x)→∞ that

lim
x→∞

ψ(x; bn(x)c)
z(x)

=
ν(A)

1− E [Y (αβ)/(α+β)]
.

4 Discussions on Theorem 3.1

In this section, we construct an example to illustrate the feasibility of the two assumptions

of Theorem 3.1 and the computability of the obtained formula (3.3).

We first show that a random pair with an Archimedean copula and regularly varying

marginal tails follows the BRV structure (2.3). Recall an Archimedean copula of the form

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v)) , (u, v) ∈ [0,1], (4.1)

where ϕ : (0, 1) 7→ (0,∞), called the generator, is a strictly decreasing and convex function

with ϕ(0+) =∞ and ϕ(1−) = 0, and the function ϕ−1 is the usual inverse of ϕ. The following

lemma is a slight extension of Lemma 5.2 of Tang and Yuan (2013) to non-standard BRV

and we omit its proof here:

Lemma 4.1 Consider a nonnegative random pair (X, Y ) with marginal distribution func-

tions FX and GY and possessing an Archimedean copula C of form (4.1). Assume that

lim
s↓0

ϕ(1− st)
ϕ(1− s)

= tr, t > 0,

for some 1 ≤ r ≤ ∞ (where t∞ equals 0 when 0 < t < 1, 1 when t = 1, and ∞ when t > 1),

and that

FX(x) ∼ cF (x) and GY (x) ∼ dG(x)
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for some constants c, d > 0, and some representing tails F ∈ RV−α and G ∈ RV−β for

α, β > 0. Then (X, Y ) ∈ BRV−α,−β(ν, F ,G) with ν defined by

ν[0, (s, t)]c =
((
cs−α

)r
+
(
dt−β

)r)1/r
, (s, t) > 0.

We now construct our example. As before, we use a discrete-time stochastic process

Θ = {θi, i ∈ N} to quantify the external stochastic environment to which the insurance

business is exposed. Suppose that Θ affects both the marginal distributions of and the

dependence structure between the insurance and financial risks. For each i ∈ N, denote

by FΘi and GΘi the conditional distribution functions of X+
i and Yi given Θi, respectively.

Assume that there exist two representing tails F ∈ RV−α and G ∈ RV−β for some α, β > 0

and a sequence of nonnegative random pairs {(cΘi , dΘi), i ∈ N}, adapted to {FΘi , i ∈ N} and

uniformly bounded from above, such that both limit relations

lim
x→∞

FΘi(x)

F (x)
= cΘi and lim

x→∞

GΘi(x)

G(x)
= dΘi (4.2)

hold almost surely and uniformly for i ∈ N. Taking the first one as an example, its precise

meaning is that

lim
x→∞

sup
i∈N

∣∣∣∣∣FΘi{ω}(x)

F (x)
− cΘi{ω}

∣∣∣∣∣ = 0

holds for all ω ∈ Ω\O for some null set O. Furthermore, for each i ∈ N, assume that the

modulated pair (X+
i , Yi)|Θi almost surely possesses a bivariate Gumbel copula of the form

CΘi(u, v) = exp
{
− ((− log u)γΘi + (− log v)γΘi )1/γΘi

}
, (u, v) ∈ [0,1], (4.3)

with an FΘi-measurable random parameter γΘi ≥ 1.

For each i ∈ N, by Lemma 4.1, almost surely the modulated pair (X+
i , Yi)|Θi possesses

BRV−α,−β(νΘi , F ,G) with νΘi satisfying

νΘi [0, (s, t)]
c =

(
(cΘis

−α)γΘi + (dΘit
−β)γΘi

)1/γΘi , (s, t) > 0.

This verifies Assumption 3.1.

To check Assumption 3.2, we need to construct a dominating random pair (X∗, Y ∗) ∈
BRV−α,−β(ν∗, F ,G) such that the stochastic ordering (3.1) holds for each i ∈ N. Let c and

d be two positive constants greater than the uniform upper bounds of {cΘi , i ∈ N} and

{dΘi , i ∈ N}, respectively. By (4.2), there exists some large x0 such that, almost surely and

uniformly for all i ∈ N and x ≥ x0,

FΘi(x) ≤ cF (x) ≤ 1 and GΘi(x) ≤ dG(x) ≤ 1.

Introduce two distribution functions Fc and Gd on R+ with respective tails

Fc(x) = 1(x<x0) + cF (x)1(x≥x0) and Gd(x) = 1(x<x0) + dG(x)1(x≥x0). (4.4)
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Clearly, it holds almost surely that

FΘi(x) ≤ Fc(x) and GΘi(x) ≤ Gd(x), i ∈ N, x ∈ R+. (4.5)

We are satisfied with this general description of the two distribution functions Fc and Gd, but

would like to point out that the construction can be made more precise if more information

about the conditional distribution functions FΘi and GΘi , i ∈ N, is available.

We separate the following two cases of the dependence structure:

(i) Consider a special but still important case that the dependence structure of each pair

(X+
i , Yi) is not affected by Θi. In this case, the copula CΘi(u, v) in (4.3) is reduced to

C(u, v) = exp
{
− ((− log u)γ + (− log v)γ)1/γ

}
, (u, v) ∈ [0,1], (4.6)

for some deterministic γ ≥ 1. We construct the dominating random pair (X∗, Y ∗) to be

X∗ = F←c (U) and Y ∗ = G←d (V ),

where (U, V ) is a uniform pair distributed by the copula C(u, v) in (4.6).

(ii) Consider the general case as described by (4.3) with a random parameter γΘi ≥ 1.

In this case, choose r ∈ [1, 2] to be the uniform upper bound of {21/γΘi , i ∈ N} and then

construct the two dominating random variables X∗ and Y ∗ to be

X∗ = F←c (Ur) and Y ∗ = G←d (Ur),

where Ur is a random variable distributed by P (Ur ≤ u) = ur on [0, 1].

The verification of the BRV structure of (X∗, Y ∗) for case (i) is given by applying Lemma

4.1. The verification for case (ii) is also easy. Actually, for any (s, t) > 0, it follows that

xP

((
X∗

χF (x)
,
Y ∗

χG(x)

)
∈ [0, (s, t)]c

)
= xP (Ur > Fc (sχF (x)) ∧Gd (tχG(x)))

∼ rx
(
Fc(sχF (x))∨Gd(tχG(x))

)
→ r

(
(cs−α) ∨ (dt−β)

)
,

where the first step can be explained by (2.2) and the last step by (4.4) and the assumed

regular variation of F and G. Thus, (X∗, Y ∗) follows BRV−α,−β(ν∗, F ,G) with ν∗ defined by

ν∗[0, (s, t)]c = r
(
(cs−α) ∨ (dt−β)

)
for (s, t) > 0.

Next we verify that (X∗, Y ∗) can indeed serve as the dominating pair described by (3.1).

For any increasing set ∆, define

∆̃i =
⋃

(x,y)∈∆

[FΘi(x), 1]× [GΘi(y), 1], i ∈ N,

∆̂ =
⋃

(x,y)∈∆

[Fc(x), 1]× [Gd(y), 1],

all being increasing sets restricted to [0,1]. Moreover, by (4.5), ∆̃i ⊂ ∆̂ for each i ∈ N.
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For case (i), we have

P
(
(X+

i , Yi) ∈ ∆|Θi

)
≤ P

(
(FΘi(X

+
i ), GΘi(Yi)) ∈ ∆̃i

∣∣∣Θi

)
≤ P

(
(U, V ) ∈ ∆̂

)
≤ P ((F→c (U), G→d (V )) ∈ ∆)

= P ((X∗, Y ∗) ∈ ∆) ,

where the first step is due to the increase of ∆ in R2, the second step due to ∆̃i ⊂ ∆̂ and

the fact that both (FΘi(X
+
i ), GΘi(Yi)) and (U, V ) correspond to the same copula (4.6), the

third step due to the second inequality in (2.1), and the last step due to the almost sure

equalities F←c (U) = F→c (U) and G←d (V ) = G→d (V ).

For case (ii), similarly,

P
(

(X+
i , Yi) ∈ ∆

∣∣Θi

)
≤ P

(
(FΘi(X

+
i ), GΘi(Yi)) ∈ ∆̃i

∣∣∣Θi

)
≤ P

(
(FΘi(X

+
i ) ∨GΘi(Yi), FΘi(X

+
i ) ∨GΘi(Yi)) ∈ ∆̂

∣∣∣Θi

)
≤ P

(
FΘi(X

+
i ) ∨GΘi(Yi) ≥ u0

∣∣Θi

)
,

where the second step is due to ∆̃i ⊂ ∆̂ and the increase of the set ∆̂ and in the last step

u0 = inf{u ∈ [0, 1] : (u, u) ∈ ∆̂}. Thus,

P
(

(X+
i , Yi) ∈ ∆

∣∣Θi

)
≤ 1− CΘi(u0, u0)

= 1− u2
1/γΘi

0

≤ 1− ur0
= P ((Ur, Ur) ∈ ∆̂)

≤ P ((F→c (Ur), G
→
d (Ur)) ∈ ∆)

= P ((X∗, Y ∗) ∈ ∆) .

This verifies Assumption 3.2 for both cases.

To make Theorem 3.1(ii) applicable, we also need to impose the condition that

E
[
(Y

∗
)(αβ)/(α+β)

]
=

∫ ∞
0

(1−Gr
d(y))dy(αβ)/(α+β) < 1,

where r = 1 for case (i). This may represent a restriction on how much the distributions of

the financial risks can be affected by the stochastic environment Θ. As an illustration, assume

that each Yi is independent of Θ (but the copula of each pair (Xi, Yi) can still be affected by

Θ), and that Yi, i ∈ N, are stochastically dominated by some nonnegative random variable

Y distributed by G. Then the distribution Gd in (4.4) can be simply specified to G. In

this way, the condition above reduces to E
[
(Y

∗
)(αβ)/(α+β)

]
= rE

[
Y (αβ)/(α+β)Gr−1(Y )

]
< 1.

We remark that the assumption of independence between {Yi, i ∈ N} and Θ would be

reasonable if the stochastic environment does not count information of the financial market

and if natural events do not pose systemic risk to the financial market.
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Finally, we illustrate the computability of the representation obtained in (3.3). Rewrite

each summand on the right-hand side of (3.3) as

E

[
νΘi(A)

i−1∏
j=1

Y
(αβ)/(α+β)
j

]
= E

[
νΘi(A)E

[
i−1∏
j=1

Y
(αβ)/(α+β)
j

∣∣∣∣∣Θi

]]

= E

[
νΘi(A)

i−1∏
j=1

E
[
Y

(αβ)/(α+β)
j

∣∣∣Θj

]]
. (4.7)

If, as assumed above, each Yi is independent of Θ (but the copula of each pair (Xi, Yi)

can still be affected by Θ), then the expectation above is decomposed into the product of

individual expectations. If we restrict the study to a Markov-modulated risk model, then

the formula in (4.7) can be further simplified in an obvious way. Moreover, νΘi(A) can be

calculated as

νΘi(A) = −
∫
A

dνΘi [0, (s, t)]
c

= αβ(γΘi − 1)(cΘidΘi)
γΘi

×
∫∫

st>1

(
(cΘis

−α)γΘi + (dΘit
−β)γΘi

)1/γΘi
−2
s−αγΘi

−1t−βγΘi
−1dsdt,

which is explicit and computable, though a bit tedious.

5 Proof of Theorem 3.1

5.1 Lemmas

The first lemma below shows a certain homogeneity property of the limit measure ν in the

BRV structure (2.3).

Lemma 5.1 Let a nonnegative random pair (X, Y ) possess BRV−α,−β(ν, F ,G) for some

non-degenerate measure ν and some representing tails F ∈ RV−α and G ∈ RV−β for α, β > 0.

Then for any λ > 0 and any Borel set B ⊂ [0,∞]\{0}, we have

ν(Bλ) = λ−1ν(B), (5.1)

where Bλ = {(λ1/αs, λ1/βt) : (s, t) ∈ B}.

Proof. For any λ > 0 and any pair (s, t) ∈ [0,∞]\{0}, write

ν[0,
(
λ1/αs, λ1/βt

)
]c = lim

x→∞
xP

((
X

χF (x)
,

Y

χG(x)

)
∈ [0,

(
λ1/αs, λ1/βt

)
]c
)

= lim
x→∞

xP

((
X

λ1/αχF (x)
,

Y

λ1/βχG(x)

)
∈ [0, (s, t)]c

)
.
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For any 0 < ε < 1, by χF ∈ RV1/α and χG ∈ RV1/β, the right-hand side above is not greater

than

lim
x→∞

xP

((
X

χF ((1− ε)λx)
,

Y

χG((1− ε)λx)

)
∈ [0, (s, t)]c

)
= ((1− ε)λ)−1ν[0, (s, t)]c.

The other inequality can be established in the same way, and we obtain

((1 + ε)λ)−1ν[0, (s, t)]c ≤ ν[0,
(
λ1/αs, λ1/βt

)
]c ≤ ((1− ε)λ)−1ν[0, (s, t)]c.

This, upon ε ↓ 0, shows that relation (5.1) holds for any set B of the form [0, (s, t)]c. Then

following an argument using Dynkin’s π − λ theorem, relation (5.1) holds for any Borel set

B ⊂ [0,∞]\{0}; see Page 178 of Resnick (2007).

The second lemma below rewrites Lemma A.1 of Shi et al. (2017) in terms of non-

standard BRV, which is useful for verifying that ν assigns no mass to the boundary of a

set when applying vague convergence. This lemma can be proven by following the proof of

Lemma A.1 of Shi et al. (2017) and using Lemma 5.1.

Lemma 5.2 Consider the BRV structure (2.3) with a limit measure ν and indices α, β > 0.

For a Borel set B ⊂ [0,∞]\{0}, if Bλ ∩B = ∅ for every λ > 1 then ν(B) = 0.

The well-known Breiman’s theorem states that for two independent nonnegative random

variables ξ and η, if ξ has a tail Fξ ∈ RV−α for some α > 0, and E
[
ηβ
]
<∞ for some β > α,

then

lim
x→∞

P (ξη > x)

Fξ(x)
= E [ηα] .

See Cline and Samorodnitsky (1994), who attributed the result to Breiman (1965); see also

Denisov and Zwart (2007) and Fougeres and Mercadier (2012) for some enhanced versions

or extensions of Breiman’s theorem. Now we prepare another enhanced version of Breiman’s

theorem, which will be used in the proof of Theorem 3.1 but may be interesting in its own

right.

Let ξ be a nonnegative random variable with distribution function Fξ. Given a nonnega-

tive random variable η∗ independent of ξ, denote by D(η∗) = {η} a family of all nonnegative

random variables η that are independent of ξ and stochastically dominated by η∗, namely,

η ≤st η∗ for all η ∈ D(η∗).

Lemma 5.3 If there is some distribution function F with tail F ∈ RV−α for some α > 0

such that

lim
x→∞

Fξ(x)

F (x)
= r

for some r ≥ 0, and E
[
(η∗)β

]
<∞ for some β > α, then it holds uniformly for all η ∈ D(η∗)

that

lim
x→∞

P (ξη > x)

F (x)
= rE [ηα] . (5.2)
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Proof. For r = 0, choose some small ε > 0 and large x1 > 0 such that Fξ(x) ≤ εF (x) ≤ 1

for all x ≥ x1. Let ξ∗ be a random variable, independent of D(η∗) and with tail

F ∗(x) = 1(x<x1) + εF (x)1(x≥x1).

Then F ∗ ∈ RV−α and ξ ≤st ξ∗. Hence, by Breiman’s theorem,

P (ξη > x)

F (x)
≤ F ∗(x)

F (x)
· P (ξ∗η∗ > x)

F ∗(x)
→ εE [(η∗)α] ,

which, by the arbitrariness of ε > 0, results in (5.2) with r = 0.

For r > 0, we have Fξ ∈ RV−α, and in this case it suffices to prove that, uniformly for

all η ∈ D(η∗),

lim
x→∞

P (ξη > x)

Fξ(x)
= E [ηα] . (5.3)

For arbitrarily chosen c > 1 and 0 < ε < (β − α) ∧ α, by Potter’s bounds there exists some

x2 > 0 such that, uniformly for all x, y ≥ x2,

1

c

((y
x

)−α+ε

∧
(y
x

)−α−ε)
≤ Fξ(y)

Fξ(x)
≤ c

((y
x

)−α+ε

∨
(y
x

)−α−ε)
.

For the upper bound, we derive

P (ξη > x) ≤ P

(
ξη > x, η ≤ x

x2

)
+ P

(
η >

x

x2

)
= I1 + I2.

For I1, with 0 < δ < 1 and M > 1 arbitrarily fixed, we have

I1

Fξ(x)
=

1

Fξ(x)

∫ x/x2

0

Fξ(x/y)P (η ∈ dy)

≤ c

∫ x/x2

0

(
yα−ε ∨ yα+ε

)
P (η ∈ dy)

≤ c

(∫ δ

0

+

∫ M

δ

+

∫ ∞
M

)(
yα−ε ∨ yα+ε

)
P (η ∈ dy)

≤ c

(
δα−ε +

(
δ−ε ∨M ε

) ∫ M

δ

yαP (η ∈ dy) +

∫ ∞
M

yα+εP (η ∈ dy)

)
≤ c

(
δα−ε +

(
δ−ε ∨M ε

)
E [ηα] + E

[
(η∗)α+ε1(η∗>M)

])
,

where in the second step we applied Potter’s upper bound and in the last step the replacement

in the last term is because η ≤st η∗. By letting ε ↓ 0, δ ↓ 0, M ↑ ∞, and c ↓ 1, in turn, the

right-hand side above converges to E [ηα] uniformly for η ∈ D(η∗). For I2, we have

I2

Fξ(x)
≤ P (η∗ > x/x2)

Fξ(x/x2)
· Fξ(x/x2)

Fξ(x)
→ 0
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because Fξ ∈ RV−α and E
[
(η∗)β

]
< ∞ for some β > α. Simply combining these two

estimates together yields that, uniformly for all η ∈ D(η∗),

lim sup
x→∞

P (ξη > x)

Fξ(x)
≤ E [ηα] ,

giving the upper-bound version of (5.3). Noting that P (ξη > x) ≥ I1, the corresponding

lower-bound version of (5.3) can be derived similarly and we omit it here.

5.2 Proof of Theorem 3.1(i)

We start with a claim that, for each i ∈ N and almost surely,

lim
x→∞

P (X+
i Yi > x|Θi)

z(x)
= νΘi(A). (5.4)

For this purpose, first observe that

x ≥ (χF · χG) (y(x)) ∼ x, (5.5)

where the first step is due to the definition of y(x) and the second step due to the regular

variation of χF and χG. By (5.5) and Assumption 3.1 we have, almost surely,

P
(
X+
i Yi > x|Θi

)
≤ P

(
X+
i Yi > (χF · χG) (y(x))

∣∣Θi

)
= P

(
X+
i

χF (y(x))
· Yi
χG(y(x))

> 1

∣∣∣∣Θi

)
∼ νΘi(A)z(x),

where νΘi(∂A) = 0 is verified by Lemma 5.2. On the other hand, by (5.5) again, it holds for

any ε > 0 and all large x that x ≤ (χF · χG) (y((1 + ε)x)). Thus, almost surely,

P
(
X+
i Yi > x

∣∣Θi

)
≥ P

(
X+
i Yi > (χF · χG) (y((1 + ε)x))

∣∣Θi

)
= P

(
X+
i

χF (y((1 + ε)x))
· Yi
χG(y((1 + ε)x))

> 1

∣∣∣∣Θi

)
∼ νΘi (A) z((1 + ε)x)

∼ (1 + ε)−(αβ)/(α+β)νΘi(A)z(x),

where the last step is due to the regular variation of z(·). The two estimates above lead to

(5.4), as claimed.

Since (X∗, Y ∗) ∈ BRV−α,−β(ν∗, F ,G) with ν∗(1,∞] > 0, similarly to (5.4),

P (X∗Y ∗ > x) ∼ ν∗(A)z(x). (5.6)

Thus, both X∗Y ∗ and Y ∗ have regularly varying tails with indices −(αβ)/(α + β) and −β,

respectively, and therefore Y ∗ has a finite moment of order higher than (αβ)/(α + β).
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Let (X∗i , Y
∗
i ), i ∈ N, be i.i.d. copies of the random pair (X∗, Y ∗) and independent of all

other sources of randomness. Then by Lemma 5.3 and relation (5.4), for each 1 ≤ i ≤ n, it

holds that, almost surely,

lim
x→∞

1

z(x)
P

(
X+
i

i∏
j=1

Yj > x

∣∣∣∣∣Θn

)
= lim

x→∞

1

z(x)
P

(
(X+

i Yi)
i−1∏
j=1

Yj > x

∣∣∣∣∣Θi

)

= lim
x→∞

P
(
X+
i Yi > x

∣∣Θi

)
z(x)

E

[
i−1∏
j=1

Y
(αβ)/(α+β)
j

∣∣∣∣∣Θi−1

]

= νΘi(A)
i−1∏
j=1

E
[
Y

(αβ)/(α+β)
j

∣∣∣Θj

]
. (5.7)

In the derivation above, the applicability of Lemma 5.3 is justified by the fact that, given Θi,

the product
∏i−1

j=1 Yj is conditionally independent of X+
i Yi and stochastically dominated by∏i−1

j=1 Y
∗
j that has a finite moment of order higher than (αβ)/(α+β). For each 1 ≤ i < k ≤ n,

it is easy to see that, almost surely,

P

(
X+
k

k∏
j=1

Yj > x,X+
i

i∏
j=1

Yj > x

∣∣∣∣∣Θn

)
≤ P

(
X∗k

k∏
j=1

Y ∗j > x,X∗i

i∏
j=1

Y ∗j > x

)
= o(1)P (X∗kY

∗
k > x)

= o(z(x)). (5.8)

Actually, in the first step of (5.8) we applied Assumption 3.2, whose applicability can be

justified by the facts that the intersection of xk
∏k

j=1 yj > x and xi
∏i

j=1 yj > x increases in

each of (x1, y1), . . . , (xk, yk), and that the random pairs (X1, Y1), . . . , (Xk, Yk) are condi-

tionally independent given Θn. Moreover, in the second step of (5.8), we applied Lemma 7

of Tang and Yuan (2014).

After these preparations, we start to derive upper and lower bounds for the finite-time

ruin probability ψ(x;n). First consider the upper bound. For any 0 < ε < 1, according to

whether or not there is a term X+
i

∏i
j=1 Yj larger than (1− ε)x, we do the split

P

(
n∑
i=1

X+
i

i∏
j=1

Yj > x

∣∣∣∣∣Θn

)
= I1 + I2.

For I1, by (5.7) and z(x) ∈ RV−(αβ)/(α+β), we have, almost surely,

I1

z(x)
=

1

z(x)
P

(
n∑
i=1

X+
i

i∏
j=1

Yj > x,
n∨
i=1

X+
i

i∏
j=1

Yj > (1− ε)x

∣∣∣∣∣Θn

)

≤ z((1− ε)x)

z(x)

1

z((1− ε)x)

n∑
i=1

P

(
X+
i

i∏
j=1

Yj > (1− ε)x

∣∣∣∣∣Θn

)

→ (1− ε)−(αβ)/(α+β)

n∑
i=1

νΘi(A)
i−1∏
j=1

E
[
Y

(αβ)/(α+β)
j

∣∣∣Θj

]
.
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For I2, we derive

I2 = P

(
n∑
i=1

X+
i

i∏
j=1

Yj > x,

n∨
i=1

X+
i

i∏
j=1

Yj ≤ (1− ε)x

∣∣∣∣∣Θn

)

= P

(
n∑
i=1

X+
i

i∏
j=1

Yj > x,

n∨
i=1

X+
i

i∏
j=1

Yj ≤ (1− ε)x,
n∨
k=1

X+
k

k∏
j=1

Yj >
x

n

∣∣∣∣∣Θn

)

≤
n∑
k=1

P

(
n∑

i=1,i 6=k

X+
i

i∏
j=1

Yj > εx,X+
k

k∏
j=1

Yj >
x

n

∣∣∣∣∣Θn

)

≤
n∑
k=1

n∑
i=1,i 6=k

P

(
X+
i

i∏
j=1

Yj >
εx

n− 1
, X+

k

k∏
j=1

Yj >
x

n

∣∣∣∣∣Θn

)
.

Hence, by (5.8) we have, almost surely,

lim
x→∞

I2

z(x)
= 0.

Putting these together, upon ε ↓ 0, gives that, almost surely,

lim sup
x→∞

1

z(x)
P

(
n∑
i=1

X+
i

i∏
j=1

Yj > x

∣∣∣∣∣Θn

)
≤

n∑
i=1

νΘi(A)
i−1∏
j=1

E
[
Y

(αβ)/(α+β)
j

∣∣∣Θj

]
.

Therefore, applying the dominated convergence theorem we obtain

lim sup
x→∞

ψ(x;n)

z(x)
≤ lim sup

x→∞
E

[
1

z(x)
P

(
n∑
i=1

X+
i

i∏
j=1

Yj > x

∣∣∣∣∣Θn

)]

≤ E

[
n∑
i=1

νΘi(A)
i−1∏
j=1

E
[
Y

(αβ)/(α+β)
j

∣∣∣Θj

]]

=
n∑
i=1

E

[
νΘi(A)

i−1∏
j=1

Y
(αβ)/(α+β)
j

]
,

which establishes the upper bound for ψ(x;n). In the derivation above, the applicability

of the dominated convergence theorem can be justified as follows. As done in (5.8), by

Assumption 3.2 we have, almost surely,

1

z(x)
P

(
n∑
i=1

X+
i

i∏
j=1

Yj > x

∣∣∣∣∣Θn

)
≤ 1

z(x)
P

(
n∑
i=1

X∗i

i∏
j=1

Y ∗j > x

)

∼ 1

z(x)

n∑
i=1

P

(
X∗i

i∏
j=1

Y ∗j > x

)

→ ν∗(A)
n∑
i=1

(
E
[
(Y ∗)(αβ)/(α+β)

])i−1
,
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where in the second step we used Theorem 3.1 of Chen and Yuen (2009) by noticing the fact

that X∗i
∏i

j=1 Y
∗
j , i ∈ N, are pairwise quasi-asymptotically independent as shown in (5.8),

and in the last step we used Breiman’s theorem and (5.6).

For the lower bound, introduce the time of ruin

T (x) = inf

{
k ∈ N :

k∑
i=1

Xi

i∏
j=1

Yj > x

}
,

so that

ψ(x;n) =
n∑
l=1

P (T (x) = l). (5.9)

For any ε > 0 and 1 ≤ i ≤ n,

P (T (x) = l)

= P

(
l−1∨
k=1

k∑
i=1

Xi

i∏
j=1

Yj ≤ x,
l∑

i=1

Xi

i∏
j=1

Yj > x

)

≥ P

(
l−1∨
k=1

k∑
i=1

Xi

i∏
j=1

Yj ≤ x,
l−1∑
i=1

Xi

i∏
j=1

Yj > −εx,Xl

l∏
j=1

Yj > (1 + ε)x

)

≥ P

(
X+
l

l∏
j=1

Yj > (1 + ε)x

)

−P

(
X+
l

l∏
j=1

Yj > (1 + ε)x,
l−1∑
i=1

Xi

i∏
j=1

Yj ≤ −εx

)

−P

(
X+
l

l∏
j=1

Yj > (1 + ε)x,
l−1∨
k=1

k∑
i=1

Xi

i∏
j=1

Yj > x

)
= J1 − J2 − J3.

Applying the dominated convergence theorem and relation (5.7) we obtain

lim
x→∞

J1

z(x)
= lim

x→∞

z((1 + ε)x)

z(x)

1

z((1 + ε)x)
E

[
P

(
X+
l

l∏
j=1

Yj > (1 + ε)x

∣∣∣∣∣Θl

)]

= (1 + ε)−(αβ)/(α+β)E

[
νΘl(A)

l−1∏
j=1

Y
(αβ)/(α+β)
j

]
.

For J2, as done in (5.8), by Assumption 3.2 we have

J2 = E

[
P

(
X+
l

l∏
j=1

Yj > (1 + ε)x,
l−1∑
i=1

Xi

i∏
j=1

Yj ≤ −εx

∣∣∣∣∣Θl

)]

≤ E

[
P

(
(X∗l Y

∗
l )

l−1∏
j=1

Yj > (1 + ε)x,
l−1∑
i=1

Xi

i∏
j=1

Yj ≤ −εx

∣∣∣∣∣Θl−1

)]
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= P

(
(X∗l Y

∗
l )

l−1∏
j=1

Yj > (1 + ε)x,
l−1∑
i=1

Xi

i∏
j=1

Yj ≤ −εx

)
,

where the last step is due to the fact that (X∗l , Y
∗
l ) is independent of Θl−1 and all other

random variables involved. To deal with the last probability above, we observe thatX∗l Y
∗
l has

a tail in RV−(αβ)/(α+β), that the product
∏l−1

j=1 Yj is independent of X∗l Y
∗
l and stochastically

dominated by
∏l−1

j=1 Y
∗
j that has a finite moment of order higher than (αβ)/(α+β), and that

the second event is independent of X∗l Y
∗
l and vanishes as x→∞. Thus, applying Lemma 7

of Tang and Yuan (2014) again,

lim
x→∞

J2

z(x)
= 0.

Similarly,

lim
x→∞

J3

z(x)
= 0.

Putting these together yields that

lim inf
x→∞

P (T (x) = l)

z(x)
≥ (1 + ε)−(αβ)/(α+β)E

[
νΘl(A)

l−1∏
j=1

Y
(αβ)/(α+β)
j

]
.

Plugging these estimates into (5.9) and noticing the arbitrariness of ε > 0, we obtain the

desired lower bound

lim
x→∞

ψ(x;n)

z(x)
≥

n∑
l=1

E

[
νΘl(A)

l−1∏
j=1

Y
(αβ)/(α+β)
j

]
.

5.3 Proof of Theorem 3.1(ii)

By Assumption 3.2, it holds for each i ∈ N that, almost surely, νΘi(A) ≤ ν∗(A) and

E
[
Y

(αβ)/(α+β)
i |Θi

]
≤ E

[
(Y ∗)(αβ)/(α+β)

]
. Thus,

∞∑
i=1

E

[
νΘi(A)

i−1∏
j=1

Y
(αβ)/(α+β)
j

]
≤ ν∗(A)

∞∑
i=1

E

[
E

[
i−1∏
j=1

Y
(αβ)/(α+β)
j

∣∣∣∣∣Θi

]]

= ν∗(A)
∞∑
i=1

E

[
i−1∏
j=1

E
[
Y

(αβ)/(α+β)
j

∣∣∣Θj

]]

≤ ν∗(A)
∞∑
i=1

(
E
[
(Y ∗)(αβ)/(α+β)

])i−1

=
ν∗(A)

1− E [(Y ∗)(αβ)/(α+β)]
<∞.

To establish the uniformity of relation (3.3) for n ∈ N, basing on Theorem 3.1(i) and following

a standard procedure in the literature (see, e.g., Tang and Yuan (2016)), it suffices to prove
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that

lim
n→∞

lim sup
x→∞

1

z(x)
P

(
∞∑

i=n+1

X+
i

i∏
j=1

Yj > x

)
= 0. (5.10)

Actually, as done in the first step of (5.8), for each n ∈ N we have

P

(
∞∑

i=n+1

X+
i

i∏
j=1

Yj > x

)
≤ P

(
∞∑

i=n+1

X∗i

i∏
j=1

Y ∗j > x

)
.

Note that (X∗i , Y
∗
i ), i ∈ N, are i.i.d. random pairs with common BRV structure. The proof

of Theorem 20.3.1 of Tang and Yuan (2016) readily shows that

lim
n→∞

lim sup
x→∞

1

z(x)
P

(
∞∑

i=n+1

X∗i

i∏
j=1

Y ∗j > x

)
= 0.

Thus, relation (5.10) follows.
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