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Abstract

We study the asymptotic behavior of the loss from defaults of a large portfolio.
Inspired by the work of Bassamboo, Juneja, and Zeevi (2008, Operations Research),
we consider a static structural model in which latent variables governing individual de-
faults follow a mixture structure incorporating idiosyncratic risk, systematic risk, and
common shock. In our setting, the portfolio effect, namely the decrease in overall risk
due to the portfolio size increase, is taken into account by assuming that the individual
default thresholds are proportional to a positive deterministic function diverging to
infinity. Furthermore, the obligor-specific variables form a sequence of independent
and identically distributed vectors, which still allows heterogeneity of the portfolio
though. We derive sharp asymptotics for the tail probability of the portfolio loss as
the portfolio size becomes large under the assumption, among others, that either the
common shock variable or the systematic risk factor has a regularly varying tail. Our
main finding is that the occurrence of large losses can be attributed to either the
common shock variable or the systematic risk factor, whichever has a heavier tail.

Subject classifications: risk management; portfolio loss; default; sharp asymptotics;
common shock; systematic risk; regular variation; law of large numbers.

Area of review : Financial Engineering.

1 Introduction

We are concerned with the loss from defaults of a large credit portfolio of defaultable oblig-

ors. As a lesson from the financial crisis of 2007–2009, modeling credit portfolio losses must

carefully address extreme risks, which result from the marginal tails of and the tail depen-

dence between individual obligors. It is in general a challenging task to model the intangible

tail dependence because it can hardly be perceived under usual economic conditions, but
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suddenly becomes apparent and constitutes a main cause for clustered defaults as the econ-

omy deteriorates. In the current state of credit risk management, obligors are assumed to

be subject to multi-level risks, roughly categorized as idiosyncratic risk, systematic risk,

and common shock. In particular, the common shock symbolizes certain external events,

e.g., the collapse of Lehman Brothers, that cause widespread failures and losses of financial

institutions and eventually endanger the stability of the financial system. For such cases

those Gaussian models become inadequate due to their failure to capture tail dependence

resulting from the common shock.

Bassamboo et al. (2008) employ a static structural model for portfolio losses in which

each obligor is characterized by a latent variable governing its rating migration and default

so that the obligor defaults if the latent variable exceeds a given threshold. Motivated

by the multivariate t structure, they propose a mixture structure for the latent variables,

which effectively puts idiosyncratic risk, systematic risk, and common shock together and

can easily incorporate extremes, extremal dependence, and asymmetry. The individual

thresholds are assumed to be proportional to a positive deterministic function diverging to

infinity at a subexponential rate in the portfolio size. Under a further assumption, among

others, that the common shock variable is regularly varying and dominates the other risk

factors, they derive sharp asymptotics, in contrast to existing logarithmic (hence, rough)

asymptotics, for the tail probability of portfolio losses. An implication of their result is

that large portfolio losses occur primarily due to large values of the common shock variable,

while the systematic and idiosyncratic risk factors play a relatively less important role.

Nevertheless, as the authors point out, there can be situations where the other risk factors

play a dominating role in causing large portfolio losses.

Inspired by the work of Bassamboo et al. (2008), we study the asymptotic behavior

of the loss from defaults of a large portfolio. We make some meaningful adjustments and

extensions on their model, significantly refine and generalize their theoretical result, and, in

particular, complement the asymptotic study by also considering the opposite case that the

systematic risk factor is regularly varying and dominates the common shock variable. Our

main finding is that the occurrence of large losses can be attributed to either the common

shock variable or the systematic risk factor, whichever has a heavier tail. In particular, this

implies that, under certain market conditions (e.g., during recessions), the systematic risk

inherent in the market may override the exogenous shock to the market in causing credit

risk deterioration, which is in sharp contrast to the main finding of Bassamboo et al. (2008).

First, as we target a large credit portfolio, the portfolio effect, namely the decrease in

overall risk due to the portfolio size increase, becomes significant and must be appropriately

addressed. To feature this, we assume that the individual default thresholds equal `ifn
for i = 1, . . . , n, where fn is a positive deterministic function diverging to ∞ and `i’s

are positive random variables accounting for variations in the portfolio effect on different

obligors. Second, we allow those obligor-specific variables, namely the risk exposures θi, the

idiosyncratic risk factors ηi, and the aforementioned variation factors `i, to be random and
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assume that they form a sequence of independent and identically distributed (i.i.d.) vectors

with a generic copy (θ, η, `). This amounts to identifying a continuum to underlie a large

number of obligors of different risk types (hence, a potentially heterogeneous portfolio). For

a large portfolio, the cardinality of (θ, η, `) as a continuum follows from the law of large

numbers.

The portfolio loss distribution is at the heart of credit risk management, and the asymp-

totic study has an immediate implication for economic capital assessment, in particular

under the current prudent regulatory frameworks. When determining the economic capital

requirement, Basel II considers the Asymptotic Single Risk Factor (ASRF) model and stip-

ulates that the economic capital is estimated to guarantee the solvency of the bank over a

one-year horizon at a 99.9% confidence level.1 In practice, many banks select an even more

conservative confidence level between 99.96% and 99.98% in economic capital models.2 Es-

sentially, in assessing the economic capital, high-level quantiles of the portfolio loss are of

considerable interest, for which case our sharp asymptotic estimates become powerful.

We end this section with a brief literature review on the asymptotic study of large

portfolio losses. For conditionally independent credit risk models, either static or dynamic,

either structural or reduced-form, a usual procedure in the literature is to first condition

on common risk factors, then employ standard approaches in limit theory including the law

of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle

(LDP), and finally integrate out the conditioning risk factors.

Among early works on this topic, Vasicek (1987, 1991) studies the loss of a large homoge-

neous loan portfolio, implicitly assumes a Gaussian copula between different borrowers, and

derives a simple closed-form limiting distribution for the loss. Lucas et al. (2001) and Gordy

(2003) study the loss distribution of a large heterogeneous portfolio and obtain LLN-type

limiting distributions in the form of conditional expectation given common factors. The

former work also examines the portfolio size required to render the asymptotic loss distri-

bution a good approximation to the actual loss distribution. Dembo et al. (2004) employ

the LDP approach to derive a precise approximation for the portfolio loss of a static model

in which the exposures and defaults are independent conditional on a macro-environmental

variable. Schloegl and O’Kane (2005) extend Vasicek’s work to the case of t copula, derive

closed-form solutions for the portfolio loss distribution, and compare the Value-at-Risk im-

plied by the t copula to that by the Gaussian, Clayton, and Gumbel copulas. Glasserman

et al. (2007) analyze the tail behavior of the portfolio loss in the Gaussian copula setting

and establish logarithmic limits (hence, rough estimates) for the tail of the loss distribution

in two limiting regimes, namely the small default probability regime and the large portfolio

loss threshold regime. Pra et al. (2009) consider large homogeneous portfolios within the

1See, e.g., An Explanatory Note on the Basel II IRB Risk Weight Functions released in 2005 by the
Bank for International Settlements (BIS) available at https://www.bis.org/bcbs/irbriskweight.htm.

2See, e.g., Economic Capital and the Assessment of Capital Adequacy released in 2004 by the Federal
Deposit Insurance Corporation (FDIC) available at https://www.fdic.gov/regulations/examinations/
supervisory/insights/siwin04/siwinter04-article1.pdf.
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class of reduced-form models based on interacting intensities, and they conduct a compre-

hensive asymptotic study of portfolio losses by employing all of the LLN, CLT, and LDP

approaches. Bush et al. (2011) consider a large portfolio in a structural model under a

dynamic setting and study the loss function of the portfolio through a stochastic partial

differential equation. Cvitanić et al. (2012) and Giesecke et al. (2013, 2015) consider large

portfolios of interacting obligors in reduced-form models with a self-exciting common factor,

and establish LLN-type results for portfolio losses.

As the portfolio size increases, the decrease in overall risk makes large portfolio losses

become rarer and, hence, more difficult to observe under the naive Monte Carlo method.

In this regard, importance sampling becomes a commonly used alternative to increase the

efficiency of simulation. A desired importance sampling algorithm is the one under which

the importance sampling estimator possesses either bounded relative error or asymptotic

optimality. Asymptotic tail estimates for portfolio losses can usually serve as a key input

in constructing an importance sampling distribution to fulfill the requirement. For general

introductions to importance sampling and rare-event simulation, see Heidelberger (1995),

Juneja and Shahabuddin (2006), and Asmussen and Glynn (2007). For applications of

importance sampling to large portfolio losses, see Glasserman and Li (2005), Bassamboo et

al. (2008), Glasserman et al. (2008), Chan and Kroese (2010), Brereton et al. (2012), and

Liu (2015), among others.

The rest of the paper is organized as follows. Section 2 elaborates on the modeling of

large portfolio losses. Section 3 prepares some preliminaries including a primary observation

on a simplified case where individual default thresholds do not vary with the portfolio size.

Section 4 exhibits the main results for the cases of a regularly varying common shock variable

or a regularly varying systematic risk factor. Section 5 conducts some numerical studies to

check the accuracy of the obtained formulas and compute the Value-at-Risk of the portfolio

loss at high levels. Section 6 makes some concluding remarks. All proofs are relegated to

Appendix.

2 Modeling large portfolio losses

Consider a large credit portfolio of n defaultable obligors. For each obligor i, we introduce

a latent variable Zi that summarizes the determinants of the obligor’s rating migration and

default. Denote by xni the individual default threshold of obligor i, which can be exogenously

given and related to the portfolio size n. Similarly to Bassamboo et al. (2008), assume that

xni = `ifn, i = 1, . . . , n,

where fn is a positive deterministic function diverging to ∞ as n → ∞ and each variation

factor `i is a positive random variable.

As explained by Bassamboo et al. (2008), introducing a diverging function fn to indi-

vidual default thresholds ensures that the probability of large portfolio losses diminishes as
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n increases, which is true for low-default portfolios. Moreover, such a specification of indi-

vidual default thresholds allows us to account for the portfolio effect, namely the decrease

in overall risk as the portfolio size increases. To explain this, assume that as the portfolio

expands each latent variable Zi is modified to Zi
ιifn

, where the positive diverging function

fn is used to reflect an overall improvement on the credit quality, while a positive random

variable ιi to reflect a minor variation in portfolio effect on obligor i. Denote by ai > 0 the

endogenously determined default threshold of obligor i, and write `i = aiιi. In this way,

obligor i defaults if and only if Zi
ιifn

> ai if and only if Zi > `ifn.

Confined to this static structural model, the loss given default of obligor i is described

as

θi1(Zi>`ifn),

where θi is a positive random variable denoting the risk exposure at default and 1A is the

indicator function of an event A. Such a loss model descends from Merton’s firm-value

model and has been commonly used in the literature. The exposure at default appearing

above is another key parameter in modeling portfolio losses; see Hon and Bellotti (2016),

Leow and Crook (2016), and Tong et al. (2016) for recent discussions on its randomness.

We follow the work of Bassamboo et al. (2008) to employ a mixture model for the

underlying latent variables:

Zi = S
(
ρξ +

√
1− ρ2ηi

)
, i = 1, . . . , n, (2.1)

where each ηi is a real-valued random variable interpreted as an idiosyncratic risk factor

that affects obligor i only, ξ is a real-valued random variable interpreted as a systematic

risk factor inherent in the entire market, S is a positive random variable to capture a

common shock, while 0 < ρ < 1 is a coefficient to adjust the roles of the systematic and

idiosyncratic risk factors. Thus, this is a conditionally independent model in the sense that

defaults of obligors conditional on S and ξ are independent, consistent with many existing

works in credit risk modeling. See Frey and McNeil (2003) and McNeil et al. (2015) for

related discussions and for a number of conditionally independent models that are in spirit

similar to (2.1). The well-known Gaussian and t models can easily be retrieved from the

mixture model (2.1) by suitably specifying the distributions of these risk factors. Moreover,

it is straightforward to extend this model to the case of a vector ξ so as to accommodate

multiple systematic risk factors; see, e.g., Kostadinov (2005), who conducts research under

the multivariate elliptical framework.

In the mixture model (2.1), the common shock variable S refers to a stylized represen-

tation of unpredictable changes in certain exogenous factors that create an economy-wide

shock on all obligors. This is closely related to the concept of systemic risk, which has

become a hot topic of paramount importance for financial stability in the post financial

crisis era. For related discussions on this topic, see Elsinger et al. (2006), Tarashev et al.

(2010), Giesecke and Kim (2011), Ang and Longstaff (2013), and Acharya et al. (2017),

some of whom argue coexistence of systematic risk and systemic risk under extreme market
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conditions. Now that the common shock variable S is introduced as a mixing variable in

(2.1), in certain circumstances it may represent a main driving force for systemic risk.

Collectively, the portfolio loss from defaults is modeled as

Ln =
n∑
i=1

θi1(S(ρξ+√1−ρ2ηi
)
>`ifn

). (2.2)

In this model, each individual loss contains five variables, θi, S, ξ, ηi, and `i, among which

those indexed by i are obligor-specific variables while the other two impact on the whole

portfolio. We assume that (θi, ηi, `i), i = 1, . . . , n, form a sequence of i.i.d. random vectors

with a generic copy (θ, η, `), and that {(θi, ηi, `i), i = 1, . . . , n}, S, and ξ are mutually

independent. Subsequently, the latent variables Z1, . . . , Zn are identical to

Z = S
(
ρξ +

√
1− ρ2η

)
.

Note that among the five random variables, θ, S, and ` take values from R+ = (0,∞) while

ξ and η take values from R = (−∞,∞).

In their Assumption 1, Bassamboo et al. (2008) assume that the sequence {(θi, `i), i =

1, . . . , n} is deterministic and takes values in a finite set of elements and that the proportion

of each element, namely, the ratio of the number of pairs (θi, `i) equal to the element over

the portfolio size n, converges to a positive number. This amounts to assuming that (θi, `i),

i = 1, 2, . . ., are i.i.d. random pairs with a common distribution over a finite set (hence, a

special case of ours). A similar assumption is made by Glasserman et al. (2007). Since we

consider a large portfolio, our idea is to introduce a continuum of obligors, which naturally

follows from the LLN. Consider a special case that the cardinality of (θ, η, `), namely the

support set of its joint distribution, is a finite set. This becomes similar to, but is still more

general than, the one considered by Bassamboo et al. (2008). Such a special case can be

interpreted as a heterogeneous credit portfolio consisting of a finite number of homogeneous

sub-portfolios, each comprising obligors of the same risk type. Therefore, even under the

i.i.d. assumption we are dealing with a large, potentially heterogeneous, portfolio.

It is important to note that the risk embodied in the idiosyncratic risk factors is subject

to the diversification effect, but not the risk embodied in the systematic risk factor and the

common shock variable, as examined by Sicking et al. (2018) in a numerical study. This

motivates us to take conditional expectation given S and ξ in establishing our main results.

Following this procedure, however, the impact of the idiosyncratic risk factors turns out to

be neglected.

Our main results are sharp asymptotics for the tail probability of the portfolio loss Ln
as n → ∞. For an arbitrarily fixed number b ∈ (0, Eθ), under the assumption that the

common shock variable S has a regularly varying tail FS = 1− FS dominating that of the

systematic risk factor ξ, we establish a sharp asymptotic formula

P (Ln > nb) = (C1 + o(1))FS(fn),
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while under the assumption that ξ has a regularly varying tail Fξ dominating that of S, we

establish another sharp asymptotic formula

P (Ln > nb) = (C2 + o(1))Fξ(fn),

where C1 and C2 are two positive constants expressed in explicit forms, and each o(1) stands

for a function of n which tends to 0 as n → ∞; see Theorems 4.1 and 4.2 below. These

results offer a new insight that the occurrence of large losses is determined by whichever one

of S and ξ has a heavier tail. Intuitively, in the mixture model (2.1), the idiosyncratic risk

factor ηi vanishes when applying the LLN, leaving the common shock S and the systematic

risk factor ξ to roughly play a symmetric role.

3 Preliminaries

3.1 Notational conventions

Throughout the paper, all limit relations without specifications are according to n → ∞.

For any x, y ∈ R, write x ∨ y = max{x, y}, x ∧ y = min{x, y}, and x+ = x ∨ 0. Denote

by FX the distribution of a random variable X, by FX,Y the joint distribution of a random

vector (X, Y ), and so on, letting the notation speak for itself. For two positive functions g1
and g2, we write g1 ∼ g2 if lim g1/g2 = 1, write g1 . g2 or g2 & g1 if lim sup g1/g2 ≤ 1, write

g1 = o(g2) if lim g1/g2 = 0, and write g1 = O(g2) if lim sup g1/g2 < ∞. For a real function

g, we denote its left and right limits at x by g(x−) and g(x+), respectively, which exist if

g is monotone. For a non-decreasing function g : R → R, denote by g← and g→ its càglàd

and càdlàg inverses; that is, for y ∈ R,{
g←(y) = inf{x ∈ R : g(x) ≥ y},
g→(y) = sup{x ∈ R : g(x) ≤ y},

where inf ∅ = ∞ and sup ∅ = −∞ by convention. In particular, if the level y corresponds

to the value of x at which g(·) strictly increases, then the two inverses g← and g→ coincide,

for which case we record this unique inverse as g←.

3.2 A primary observation

To gain some hints for the study, we explore a simplified case with fn ≡ f > 0 being fixed.

Due to the independence between the sequence {(θi, ηi, `i), i = 1, . . . , n} and the vector

(S, ξ), by conditioning on (S, ξ) we write

P (Ln > nb) =

∫∫
R+×R

P

(
Ln
n
> b

∣∣∣∣S = s, ξ = t

)
P (S ∈ ds, ξ ∈ dt) . (3.1)

Under P ( ·|S = s, ξ = t), by the LLN it holds that, almost surely,

Ln
n

=
1

n

n∑
i=1

θi1(s(ρt+√1−ρ2ηi
)
>`if

)
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→ E

[
θ1(

s
(
ρt+
√

1−ρ2η
)
>`f

)]
= r0(s, t), (3.2)

where we assume Eθ < ∞. Thus, for any b ∈ (0, Eθ), it holds for arbitrarily fixed small

ε, δ > 0 and all large n, say, n ≥ n0(ε, δ, s, t), that

1(r0(s,t)>b+δ) − ε ≤ P

(
Ln
n
> b

∣∣∣∣S = s, ξ = t

)
≤ 1(r0(s,t)>b−δ) + ε.

Applying Fatou’s lemma to the right-hand side of (3.1), we obtain∫∫
r0(s,t)>b+δ

P (S ∈ ds, ξ ∈ dt)− ε . P (Ln > nb) .
∫∫

r0(s,t)>b−δ
P (S ∈ ds, ξ ∈ dt) + ε.

Letting ε ↓ 0 and δ ↓ 0, it follows that∫∫
r0(s,t)>b

P (S ∈ ds, ξ ∈ dt) . P (Ln > nb) .
∫∫

r0(s,t)≥b
P (S ∈ ds, ξ ∈ dt) . (3.3)

It is noteworthy that the derivation above does not require S and ξ to be independent.

Clearly, if P (r0(S, ξ) = b) = 0, then both bounds in (3.3) coincide, yielding a precise

limit

lim
n→∞

P (Ln > nb) =

∫∫
r0(s,t)>b

P (S ∈ ds, ξ ∈ dt) . (3.4)

This condition holds under some additional mild assumptions. For this purpose, first assume

that (S, ξ) is jointly continuously distributed. Next, note that, since θ is strictly positive,

the function r0(s, t) exhibits exactly the same positivity, continuity, and monotonicity as

the probability function

p0(s, t) = P
(
s
(
ρt+

√
1− ρ2η

)
> `f

)
. (3.5)

Define the set

D0 = {(s, t) ∈ R+ × R : 0 < r0(s, t) < Eθ} = {(s, t) ∈ R+ × R : 0 < p0(s, t) < 1},

where the second equality is still due to the strict positivity of θ. If D0 = ∅, which happens

in case both η and ` are degenerate, then P (r0(S, ξ) = b) = 0 automatically holds. Now

consider D0 6= ∅, for which case D0 does not reduce to a singleton due to the left-continuity

of p0(s, t) in both s and t. Obviously, p0(s, t) is non-decreasing in both s ∈ R+ and t ∈
R. We strengthen it to that p0(s, t) strictly increases over the set D0 in the sense that

p0(s1, t1) < p0(s2, t2) for all (s1, t1) and (s2, t2) from D0 with s1 < s2 and t1 < t2, and so

does r0(s, t). This guarantees that r0(s, t) = b does not allow a rectangle for (s, t), and thus

P (r0(S, ξ) = b) = 0.

We conclude the following:
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Proposition 3.1 Consider the portfolio loss (2.2) with fn ≡ f > 0 fixed and Eθ < ∞.

Assume that (S, ξ) is jointly continuously distributed and that the function p0(s, t) defined

by (3.5) strictly increases over the set D0 when D0 6= ∅. Then relation (3.4) holds for any

fixed b ∈ (0, Eθ), where the function r0(s, t) is defined by (3.2).

In this paper, however, we consider the case that fn diverges to ∞, which, as explained

before, is to reflect the rarity of large losses or to account for the portfolio effect. For this

case, relation (3.4) becomes trivial since Ln
n

under P ( ·|S = s, ξ = t) converges to 0 almost

surely and, hence, the set (r0(s, t) > b) is empty. In order to capture the sharp asymptotic

behavior of the tail probability P (Ln > nb), we need to assume that either FS or Fξ is

regularly varying.

3.3 Regular variation

Recall that a positive function g on R+ is said to be regularly varying at ∞ with index

α ∈ R, written as g ∈ RVα, if

lim
x→∞

g(xy)

g(x)
= yα, y > 0.

When α = 0, this defines a slowly varying function at ∞. See Bingham et al. (1987) and

Resnick (1987) for textbook treatments of regular variation. Consider a real-valued random

variable X having a regularly varying tail FX ∈ RV−α for some α > 0. Then FX(x) is a

power-like function in the sense that it differs from the power function x−α by up to a slowly

varying function at ∞. The regular variation of FX can be restated as follows: There exists

a Radon measure ν non-degenerate on R+ such that

lim
x→∞

P
(
X
x
∈ A

)
FX(x)

= ν(A) (3.6)

holds for every interval A ⊂ R+ away from 0. This measure ν is actually given by

ν(s,∞) = s−α for s > 0. (3.7)

As a typical example, let X be a random variable following the Pareto distribution of

type I,

FX(x) = 1−
( c
x

)α
, x > c, (3.8)

with parameters α, c > 0 (hence, FX ∈ RV−α). Then we have

P
(
X
x
∈ ds

)
FX(x)

= ν(ds) over s >
c

x
, (3.9)

which is consistent with relation (3.6).
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4 Main results

4.1 Under a regularly varying common shock variable

Let us first conduct a heuristic analysis on a special case that the common shock variable

S follows the Pareto distribution (3.8), and then rigorize the finding by establishing a

theorem. Motivated by the primary observation in Subsection 3.2, we expand the probability

P (Ln > nb) for b ∈ (0, Eθ) by conditioning on
(
S
fn
, ξ
)

, where S is scaled by fn to make Ln
n

conditionally have a proper limit. Precisely,

P (Ln > nb) =

∫∫
R+×R

P

(
Ln
n
> b

∣∣∣∣ Sfn = s, ξ = t

)
P

(
S

fn
∈ ds

)
P (ξ ∈ dt) .

Then by (3.9), we have

P (Ln > nb)

FS(fn)
=

∫∫
( c
fn
,∞)×R

P

(
Ln
n
> b

∣∣∣∣ Sfn = s, ξ = t

)
ν(ds)P (ξ ∈ dt) . (4.1)

For any s ∈ R+ and t ∈ R, the conditional expectation of an individual loss is

r1(s, t) = E

[
θ1(Z>`fn)

∣∣∣∣ Sfn = s, ξ = t

]
= E

[
θ1(

s
(
ρt+
√

1−ρ2η
)
>`
)] , (4.2)

which takes values in [0, Eθ] and is non-decreasing in both s ∈ R+ and t ∈ R. Similarly

to the derivation in Subsection 3.2, under P
(
·
∣∣∣ Sfn = s, ξ = t

)
, by the LLN it holds that,

almost surely,
Ln
n

=
1

n

n∑
i=1

θi1(s(ρt+√1−ρ2ηi
)
>`i

) → r1(s, t).

This urges us to replace Ln
n

by r1(s, t) in (4.1). Then following the analysis in Subsection

3.2, it is plausible to obtain that∫∫
r1(s,t)>b

ν(ds)P (ξ ∈ dt) . P (Ln > nb)

FS(fn)
.
∫∫

r1(s,t)≥b
ν(ds)P (ξ ∈ dt) . (4.3)

We remark that this heuristics can be validated by applying Fatou’s lemma subject to a

suitable moment condition on ξ, but we omit details here since we are going to establish a

more general result and give it a rigorous proof.

Clearly, if ∫∫
r1(s,t)=b

ν(ds)P (ξ ∈ dt) = 0, (4.4)

then both bounds in (4.3) coincide, yielding a precise limit relation

lim
n→∞

P (Ln > nb)

FS(fn)
=

∫∫
r1(s,t)>b

ν(ds)P (ξ ∈ dt) . (4.5)
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For this purpose, note that, as in Subsection 3.2, the function r1(s, t) exhibits exactly the

same positivity, continuity, and monotonicity as the probability function

p1(s, t) = P
(
s
(
ρt+

√
1− ρ2η

)
> `
)
. (4.6)

Then define the set

D1 = {(s, t) ∈ R+ × R : 0 < r1(s, t) < Eθ} = {(s, t) ∈ R+ × R : 0 < p1(s, t) < 1}.

If D1 = ∅, which happens in case both η and ` are degenerate, then r1(s, t) = b defines an

empty set for (s, t) and thus relation (4.4) holds. Now consider D1 6= ∅. Since ν(ds) defined

by (3.7) is continuous over R+, for relation (4.4) to hold, it suffices to assume that r1(s, t),

or equivalently p1(s, t), strictly increases in s over the set D1. For this purpose, Lemma A.1

below shows several sufficient conditions on Fη,`, which essentially encompass all cases of

(η, `) of practical interest.

Below is our first main result in which we consider the case of a general regularly varying

tail FS and show that, upon some technical conditions, relation (4.5) is indeed valid.

Theorem 4.1 Consider the portfolio loss (2.2) and assume the following:

• FS ∈ RV−α for some α > 0;

• Eξβ+ <∞ for some β > α;

• xFθ(x) = o
(
FS(x)

)
as x→∞ (hence, Eθ <∞);

• p1(s, t) defined by (4.6) strictly increases in s over the set D1 when D1 6= ∅.
Then relation (4.5), with the right-hand side finite, holds for any fixed b ∈ (0, Eθ) and

fn = O(n).

The first two conditions together mean that the common shock variable has a heavier

tail than the systematic risk factor; in other words, they describe the situation that, as

during the financial crisis of 2007–2009, the exogenous shock to the market overrides the

systematic risk inherent in the market. Thus, our Theorem 4.1 offers the same insight as

Theorem 1 of Bassamboo et al. (2008) into the different roles of the three risk sources.

Precisely, the tail behavior of the portfolio loss Ln is approximated by that of the common

shock variable S, while the systematic and idiosyncratic risk factors ξ and ηi contribute

to the prefactor in the approximation only. It is noteworthy that, in order to gain this

insight, Bassamboo et al. (2008) assume, among others, that both Fξ and Fη are bounded

by an exponentially decaying term and that η possesses a probability density function. In

establishing our Theorem 4.1, such technical assumptions are largely avoided or significantly

weakened.

Example 4.1 Assume that Fη has a support set to be a finite or infinite interval and that `

is degenerate at a positive constant l, so that according to Lemma A.1(a) the last condition

of Theorem 4.1 is fulfilled. This can also be verified directly by observing the function

r1(s, t) = E

[
θ1(

ρt+
√

1−ρ2η> l
s

)] , (s, t) ∈ R+ × R.

11



In particular, if further θ and η are independent then

r1(s, t) = Eθ · Fη

(
l
s
− ρt√
1− ρ2

)
.

We are going to convert the double integral on the right-hand side of (4.5) into an iterated

integral. Define

r̃1(t) = r1(∞, t) = Eθ · Fη

(
− ρt√

1− ρ2

)
;

see also relation (A.3) below. Then for any b ∈ (0, Eθ), the function r̃1(t) has a unique

inverse

t(b) = −
√

1− ρ2
ρ

F←η

(
1− b

Eθ

)
,

where F←η denotes the unique inverse of Fη. Furthermore, for any b ∈ (0, Eθ) and t > t(b),

the function r1(·, t) has a unique inverse as

st(b) = l

(
ρt+

√
1− ρ2F←η

(
1− b

Eθ

))−1
.

To convert the double integral on the right-hand side of (4.5) into an iterated integral,

further assume that ξ is continuously distributed. Then using (3.7) we obtain

lim
n→∞

P (Ln > nb)

FS(fn)
=

∫ ∞
t(b)

∫ ∞
st(b)

ν(ds)P (ξ ∈ dt)

=
1

lα

∫ ∞
−
√

1−ρ2
ρ

F←η (1− b
Eθ )

(
ρt+

√
1− ρ2F←η

(
1− b

Eθ

))α
P (ξ ∈ dt) .

4.2 Under a regularly varying systematic risk factor

Similarly to Subsection 4.1, let us first conduct a heuristic analysis on another special case

that the systematic risk factor ξ follows the Pareto distribution (3.8), and then rigorize the

finding by establishing another theorem. In this case, we expand the probability P (Ln > nb)

for b ∈ (0, Eθ) by conditioning on
(
S, ξ

fn

)
instead, where the purpose of scaling ξ by fn is

still to make Ln
n

conditionally have a proper limit. Precisely,

P (Ln > nb) =

∫∫
R+×R

P

(
Ln
n
> b

∣∣∣∣S = s,
ξ

fn
= t

)
P (S ∈ ds)P

(
ξ

fn
∈ dt

)
.

Then by (3.9), we have

P (Ln > nb)

Fξ(fn)
=

∫∫
R+×( c

fn
,∞)

P

(
Ln
n
> b

∣∣∣∣S = s,
ξ

fn
= t

)
P (S ∈ ds) ν(dt).

12



We are going to derive upper and lower bounds of the conditional probability above. For

this purpose, define the function

r2(u) = E
[
θ1(`<ρu)

]
, u ∈ R+, (4.7)

which is left continuous. Under P
(
·
∣∣∣S = s, ξ

fn
= t
)

, by the LLN, it holds for any M > 0

and all large n that, almost surely,

Ln
n

=
1

n

n∑
i=1

θi1(s(ρt+√1−ρ2 ηi
fn

)
>`i

)

≤ 1

n

n∑
i=1

θi1(s(ρt+√1−ρ2 |ηi|
M

)
>`i

)

→ E

[
θ1(

s
(
ρt+
√

1−ρ2 |η|
M

)
>`
)]

↓ r2(st+) as M ↑ ∞,

and

Ln
n
≥ 1

n

n∑
i=1

θi1(s(ρt−√1−ρ2 |ηi|
M

)
>`i

)

→ E

[
θ1(

s
(
ρt−
√

1−ρ2 |η|
M

)
>`
)]

↑ r2(st) as M ↑ ∞.

Following the analysis in Subsection 3.2, it is plausible to obtain that∫∫
r2(st)>b

P (S ∈ ds) ν(dt) .
P (Ln > nb)

Fξ(fn)
.
∫∫

r2(st+)≥b
P (S ∈ ds) ν(dt). (4.8)

Indeed, subject to a suitable moment condition on S, this heuristics can be validated by

applying Fatou’s lemma, but we omit details here since we are going to establish a more

general result and give it a rigorous proof.

To pursue equality of both bounds in (4.8), define the set

D2 = {u ∈ R+ : 0 < r2(u) < Eθ}.

If D2 = ∅, which happens in case ` is degenerate at l > 0, say, then the restrictions r2(st) > b

and r2(st+) ≥ b in (4.8) are equivalent to ρst > l and ρst ≥ l, respectively. Hence it follows

from (4.8) that

lim
n→∞

P (Ln > nb)

Fξ(fn)
=

∫∫
ρst≥l

P (S ∈ ds) ν(dt) =
(ρ
l

)α
ESα, (4.9)
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where the last step is due to (3.7). Now consider D2 6= ∅. Note that, as in Subsections 3.2

and 4.1, the function r2(u) exhibits the same positivity, continuity, and monotonicity as the

probability function P (` < ρu). Also note that

D2 = {u ∈ R+ : 0 < P (` < ρu) < 1} =
1

ρ
{u ∈ R+ : 0 < F`(u−) < 1}.

Assume that F`(u) strictly increases in u over the set {u ∈ R+ : 0 < F`(u) < 1}, so does

F`(u−) over the set {u ∈ R+ : 0 < F`(u−) < 1}. Then P (` < ρu) and, hence, r2(u) strictly

increase in u over D2. Thus for any b ∈ (0, Eθ), the function r2(u) has a unique inverse

r←2 (b). By the left continuity and strict monotonicity of r2(u) over D2, it is easy to check

the following: for b ∈ (0, Eθ),

r2(u) > b⇐⇒ u > r←2 (b), r2(u+) ≥ b⇐⇒ u ≥ r←2 (b).

Then rewrite the regions of the two double integrals in (4.8) and convert each double integral

into an iterated integral. Using (3.7) we obtain

lim
n→∞

P (Ln > nb)

Fξ(fn)
=

ESα

(r←2 (b))α
. (4.10)

By the way, this result actually allows a degenerate ` as a special case because for this case

relation (4.10) reduces to relation (4.9).

The following is our second main result in which we consider the case of a general

regularly varying tail Fξ and show that, upon some technical conditions, relation (4.10) is

indeed valid.

Theorem 4.2 Consider the portfolio loss (2.2) and assume the following:

• Fξ ∈ RV−α for some α > 0;

• ESβ <∞ for some β > α;

• xFθ(x) = o
(
Fξ(x)

)
as x→∞ (hence, Eθ <∞);

• F`(u) strictly increases in u over the set {u ∈ R+ : 0 < F`(u) < 1} if it is nonempty.

Then relation (4.10) holds for any fixed b ∈ (0, Eθ) and fn = O(n).

The first two conditions together mean that the systematic risk factor has a heavier

tail than the common shock variable; in other words, they describe the situation that, as

during recessions, the systematic risk inherent in the market overrides the exogenous shock

to the market. Compared to Theorem 4.1, Theorem 4.2 shows that the tail behavior of

the portfolio loss Ln is approximated by that of the systematic risk factor ξ, while the

common shock variable S contributes to the prefactor in the approximation only and the

idiosyncratic risk factors ηi even completely disappear. This finding is in sharp contrast to

that of Bassamboo et al. (2008).
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Example 4.2 Assume ` = leUσ , where l is a positive constant and Uσ is a random variable

independent of θ and uniformly distributed over (−σ, σ) for some σ > 0. We have

r2(u) = Eθ ·

[(
log
(
ρu
l

)
+ σ

2σ

)
+

∧ 1

]
, u ∈ R+,

which strictly increases from 0 to Eθ as u increases from l
ρ
e−σ to l

ρ
eσ. Thus, for any

b ∈ (0, Eθ), its unique inverse is

r←2 (b) =
l

ρ
exp

{
2σ

b

Eθ
− σ

}
,

and relation (4.10) becomes

lim
n→∞

P (Ln > nb)

Fξ(fn)
=
(ρ
l

)α
exp

{
ασ − 2ασ

b

Eθ

}
ESα.

By the way, letting σ ↓ 0, which leads to the case that ` is degenerate at l, the relation

above is further simplified to (4.9).

5 Numerical studies

In this section, we perform numerical studies to check the accuracy of approximations given

by formulas (4.5) and (4.10) by Monte Carlo simulation and conduct a sensitivity analysis

on the Value-at-Risk of the portfolio loss to key model parameters including the adjusting

coefficient ρ and the regular variation index α.

For simplicity, obligor-specific variables θ, η, and ` are assumed to be mutually inde-

pendent, though this is not required by the two theorems. Moreover, θ is specified to be

an exponential random variable with mean 800, the portfolio size n varies from 10 to 1000,

and the sample size for the simulation is set to N = 108.

5.1 A numerical study of Theorem 4.1

We first check the accuracy of the approximation given by formula (4.5) under a regularly

varying common shock variable S. Other model specifications for this numerical study are

listed below:

• S follows a Pareto distribution of type II, with tail

FS(s) =

(
1

s+ 1

)1.5

, s > 0,

so that FS ∈ RV−α with α = 1.5;

• ξ and η are i.i.d. normal variables with mean 2 and variance 1;
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• ρ = 0.6;

• ` follows a three-point distribution, with P (` = 2) = 0.1, P (` = 2.75) = 0.5, and

P (` = 3.5) = 0.4;

• fn = 10 + n0.4.

Under these specifications, the individual default probability when the portfolio size n equals

10, 100, 1000 is computed to be 2.0%, 1.4%, 0.7%, respectively, each of which indicates a

low-default credit portfolio. It is easy to check that all conditions required by Theorem 4.1

are fulfilled. For example, since supp(Fη,`) = R× {2, 2.75, 3.5}, by Lemma A.1(b), the last

condition of Theorem 4.1 holds.

Recall the function r1(s, t) defined in (4.2) and its limit function r̃1(t) defined by (A.3).

Similarly to Example 4.1, we convert the double integral on the right-hand side of (4.5) into

an iterated integral as

lim
n→∞

P (Ln > nb)

FS(fn)
=

∫ ∞
t(b)

(st(b))
−αP (ξ ∈ dt), (5.1)

where t(b) with b ∈ (0, Eθ) given denotes the unique solution to the equation r̃1(t) = b,

and st(b) with b ∈ (0, Eθ) and t ∈ R given denotes the unique solution to the equation

r1(s, t) = b. The existence and uniqueness of the solutions to these equations can easily be

verified under the current model specifications.

Figure 5.1 compares the simulated P (Ln>nb)

FS(fn)
with the limit given by (5.1) on the left and

shows their ratio on the right, where b varies from 50 to 750. We observe that the simulated

values converge to the limit as n increases, and that when n = 1000 the approximation error

is less than 5%. Although Theorem 4.1 claims that the limit relation (4.5) holds for any

b ∈ (0, 800), Figure 5.1 shows that the approximation error increases when b approaches

0 or 800. The poor performance when b approaches 0 should be due to the rarity of the

event (Ln ≤ nb), while the poor performance when b approaches 800 should be due to the

rarity of the event (Ln > nb). For these two extreme scenarios, special treatments such as

deriving second-order asymptotics may help improve the quality of the approximation.

Value-at-Risk (VaR) is one of the primary risk measures employed by financial institu-

tions to determine the amount of economic capital for unexpected losses. We conduct a

sensitivity analysis on the VaR of the portfolio loss Ln estimated from formula (5.1) with

respect to the adjusting coefficient ρ and the regular variation index α. By (5.1), for a given

confidence level q ∈ (0, 1), VaRq(Ln) = nVaRq

(
Ln
n

)
can be approximated by

V̂aRq(Ln) = nb∗(q),

where b∗(q) denotes the unique solution to the equation

FS(fn)

∫ ∞
t(b)

(st(b))
−αP (ξ ∈ dt) = 1− q. (5.2)
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Figure 5.1: Comparison between the simulated P (Ln>nb)

FS(fn)
and its limit given by Theorem 4.1.

To see the existence and uniqueness of the solution to equation (5.2), we observe that,

under the model specifications above, the right-hand side of (4.5) is continuous and strictly

decreasing in b, and so is the left-hand side of equation (5.2).

For a fixed portfolio size n = 1000, Table 5.1 summarizes percentage changes in V̂aRq(Ln)

with respect to percentage changes in ρ and α, for q = 99.4%, 99.5%, and 99.6%, respectively.

It shows that V̂aRq(Ln) increases as ρ increases, which is anticipated because a higher value

of ρ means more systematic risk the portfolio is exposed to, and hence higher likelihood

of simultaneous defaults. It also shows that V̂aRq(Ln) increases when α decreases, which

is also anticipated because a smaller value of α means a heavier tail of the common shock

variable, and hence higher likelihood of simultaneous defaults. We observe that V̂aRq(Ln)

is much more sensitive to α than to ρ, which is due to the dominance of the common shock

variable S over the whole portfolio. Moreover, as the confidence level q increases, which

indicates that the financial institution becomes more prudent, the sensitivity of V̂aRq(Ln)

to α decreases noticeably, while the sensitivity to ρ almost remains unchanged.

5.2 A numerical study of Theorem 4.2

We first check the accuracy of the approximation given by formula (4.10) under a regularly

varying systematic risk factor ξ. Other model specifications for this numerical study are

listed below:

• S follows a Gamma(2, 1) distribution with density se−s for s > 0;

• ξ and η are i.i.d. following a common Pareto distribution of type II, with tail

Fξ(t) =

(
1

t+ 1

)1.6

, t > 0,

so that Fξ ∈ RV−α with α = 1.6;

17



Model
parameters

V̂aRq(Ln)
q = 99.4% q = 99.5% q = 99.6%

% change
in ρ

+2% +0.6% +0.6% +0.5%
+1% +0.3% +0.3% +0.3%

(ρ = 0.6) (4.66× 105) (5.70× 105) (6.64× 105)
−1% −0.3% −0.3% −0.3%
−2% −0.7% −0.6% −0.6%

% change
in α

+2% −13.6% −9.8% −6.1%
+1% −6.8% −4.8% −2.9%

(α = 1.5) (4.66× 105) (5.70× 105) (6.64× 105)
−1% +6.7% +4.5% +2.7%
−2% +13.2% +8.8% +5.0%

Table 5.1: Sensitivity testing for VaR of Ln on ρ and α using Theorem 4.1.

• ρ = 0.85;

• ` = 0.5 + 6B, where B follows a Beta(0.9, 3) distribution with density

2.4795x−0.1(1− x)2, 0 < x < 1;

• fn = 10 log n.

Under these specifications, the individual default probability when the portfolio size n equals

10, 100, 1000 is computed to be 2.0%, 0.7%, 0.4%, respectively, which reflects a more

significant portfolio effect than in Subsection 5.1. It is easy to check that all conditions

required by Theorem 4.2 are fulfilled.

The accuracy of the approximation given by formula (4.10) is examined in Figure 5.2.

Similarly to the previous numerical study in Subsection 5.1, for n = 1000 and for inter-

mediate values of b, the simulated values for P (Ln>nb)

Fξ(fn)
are within 3% of the limit, but as b

approaches 0 or 800 the performance of the estimation becomes poor.

Again, we conduct a sensitivity analysis on the VaR of the portfolio loss Ln estimated

from formula (4.10) with respect to ρ and α. By (4.10), for a given confidence level q ∈ (0, 1),

we have the approximation

V̂aRq(Ln) = nb∗(q),

where b∗(q) denotes the unique solution to the equation

Fξ(fn)ESα

(r←2 (b))α
= 1− q.

Under the model specifications above, the solution b∗(q) assumes an analytical expression

b∗(q) = Eθ · F`

(
ρ

(
Fξ(fn)ESα

1− q

) 1
α

)
.
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Figure 5.2: Comparison between the simulated P (Ln>nb)

Fξ(fn)
and its limit given by Theorem 4.2.

The same as the previous numerical study in Subsection 5.1, for a fixed portfolio size n =

1000, Table 5.2 summarizes percentage changes in V̂aRq(Ln) with respect to percentage

changes in ρ and α, for q = 99.4%, 99.5%, and 99.6%, respectively. Similarly, it shows that

V̂aRq(Ln) increases as ρ increases or as α decreases. However, the sensitivity of V̂aRq(Ln)

to ρ, though still much less than that to α, becomes much more significant than in Table

5.1. This is anticipated because in the current situation the systematic risk factor ξ plays a

more dominating role in the whole portfolio. Moreover, as the confidence level q increases,

the sensitivity of V̂aRq(Ln) to both ρ and α decreases noticeably.

Model
parameters

V̂aRq(Ln)
q = 99.4% q = 99.5% q = 99.6%

% change
in ρ

+2% +6.7% +5.1% +3.9%
+1% +3.4% +2.5% +2.0%

(ρ = 0.85) (0.89× 105) (1.24× 105) (1.69× 105)
−1% −3.4% −2.5% −2.0%
−2% −6.8% −5.1% −4.0%

% change
in α

+2% −18.8% −14.7% −12.0%
+1% −9.6% −7.5% −6.1%

(α = 1.6) (0.89× 105) (1.24× 105) (1.69× 105)
−1% +9.9% +7.7% +6.3%
−2% +20.1% +15.8% +12.9%

Table 5.2: Sensitivity testing for VaR of Ln on ρ and α using Theorem 4.2.
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6 Concluding remarks

We study the loss from defaults of a large, potentially heterogeneous, portfolio in a static

structural model in which the latent variables governing individual defaults follow a mixture

structure, the portfolio effect is taken into account, and the obligor-specific variables consti-

tute a continuum. We derive sharp asymptotics for the tail probability of the portfolio loss,

showing that the occurrence of large losses can be attributed to either the common shock

variable or the systematic risk factor, whichever has a heavier tail.

Several extensions of our work are worthy of pursuit in the future. First, in our work we

follow the usual procedure to condition on the common shock variable and the systematic

risk factor and then employ the LLN approach. In doing so, the impact of the idiosyncratic

risk factors turns out to be neglected. However, there can be situations where idiosyncratic

risk plays a dominating role in causing large portfolio losses; see, e.g., Ang and Longstaff

(2013). Thus, it will be interesting to extend the asymptotic study to such situations and

capture the impact of idiosyncratic risk factors. Second, it is highly desirable to establish

CLT and LDP-type approximations for large portfolio losses in various situations, as such

approximations are anticipated to be more accurate than the ones obtained through the LLN

approach. Moreover, they may give a clue on how to capture the impact of idiosyncratic

risk factors and, hence, answer the first question. Third, the use of the indicator function

in the portfolio loss model (2.2) indicates that once an obligor defaults its loss rate is 100%,

which is impractical. To remedy this, we can follow Shi et al. (2017) to introduce a non-

decreasing function taking values in [0, 1] to link the loss rate to the severity of default.

Actually, there is a vast literature on modeling the loss rate; see, e.g., Calabrese and Zenga

(2010), Calabrese (2014), Yao et al. (2015, 2017), Betz et al. (2018), and Hurlin et al. (2018).

Even more realistically, we can follow this literature to model the exposure at default, the

loss rate, and the default in an integrated way that all of them share some common risk

factors and each has its own idiosyncratic risk factor. Finally, confined to the mixture

structure, the common shock, systematic risk, and idiosyncratic risk play different roles in

causing credit risk propagation and deterioration. By virtue of the asymptotic study, it is

possible to quantitatively analyze and distinguish the different roles of these risk factors.

Such a quantitative analysis is fascinating and has important implications for credit risk

management.
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Appendix Proofs of the main results

Lemmas

We firstly construct technical conditions to guarantee the monotonicity of the function

p1(s, t) defined in (4.6), as required in proving that the two bounds in (4.3) are equal.

Recall that the support set of a random vector X or its distribution function FX, denoted

by supp(FX), is the closure of the set of all possible values of X. In other words, x ∈
supp(FX) if and only if P (X ∈ ∆(x)) > 0 for any neighborhood of x. It turns out to be

crucial for our purpose to assume that a support set is connected; that is, it cannot be

partitioned into two nonempty subsets such that each subset has no points in common with

the closure of the other. It is easy to see that FX is strictly increasing in every dimension

over the interior of supp(FX) if the interior is nonempty, but not necessarily continuous even

if supp(FX) is connected.

Recall the probability function p1(s, t) defined in (4.6):

p1(s, t) = P
(
s
(
ρt+

√
1− ρ2η

)
> `
)
, (s, t) ∈ R+ × R.

We restrict it to the set D1 = {(s, t) ∈ R+ × R : 0 < p1(s, t) < 1}.

Lemma A.1 The probability function p1(s, t) strictly increases in s over the set D1 under

either of the following conditions:

(a) supp(Fη,`) is connected;

(b) supp(Fη,`) = R× supp(F`);

(c) supp(Fη,`) = supp(Fη)× R+.

Proof. Fix t ∈ R and denote by D̃1 the cross section of the set D1 at t. Necessarily,

P
(
ρt+

√
1− ρ2η > 0

)
> 0 (A.1)

because otherwise D̃1 = ∅. Then we need to prove that p1(s, t) strictly increases in s ∈ D̃1.

Define

Y =
1

`

(
ρt+

√
1− ρ2η

)
and denote by y∗ and y∗ the infimum and supremum, respectively, of

supp(FY ) =

{
1

l

(
ρt+

√
1− ρ2u

)
: (u, l) ∈ supp(Fη,`)

}
.

21



Since p1(s, t) = P (sY > 1), it suffices to prove that FY strictly increases at y = 1
s

for every

s ∈ D̃1. Furthermore, for every s ∈ D̃1, since (s, t) ∈ D we have 0 < P
(
Y > 1

s

)
= p1(s, t) <

1, which implies that y∗ ≤ 1
s
≤ y∗. Thus, for a fixed y ∈ (y∗ ∨ 0, y∗), it suffices to prove that

FY strictly increases at y. We are going to prove this in the three cases.

(a) Since supp(Fη,`) is connected and y ∈ (y∗, y
∗), we can always find (u, l) ∈ supp(Fη,`)

such that y = 1
l

(
ρt+

√
1− ρ2u

)
. Thus,

(Y ∈ dy) ⊃ (η ∈ du, ` ∈ dl) , (A.2)

which precisely means that, for any neighborhood ∆(y) of y, we can find a neighborhood

∆(u, l) of (u, l) such that (Y ∈ ∆(y)) ⊃ ((η, `) ∈ ∆(u, l)). Thus, FY strictly increases at y.

(b) Arbitrarily choose l ∈ supp(F`) and then let u = ly−ρt√
1−ρ2

∈ R, so that (A.2) still

holds. Since supp(Fη,`) = R × supp(F`), we have (u, l) ∈ supp(Fη,`) and hence FY strictly

increases at y.

(c) By (A.1), we can find u ∈ supp(Fη) such that ρt +
√

1− ρ2u > 0. Then let l =
ρt+
√

1−ρ2u
y

∈ R+, so that (A.2) still holds. Since supp(Fη,`) = supp(Fη) × R+, we have

(u, l) ∈ supp(Fη,`) and hence FY strictly increases at y.

We now prepare a series of lemmas for proving the two main results. The following is a

restatement of Theorem 1.2 of Nagaev (1979):

Lemma A.2 Let X1, . . . , Xn be i.i.d. copies of a real-valued random variable X. Then for

every 1 ≤ q ≤ 2, x > 0, and y > 0, it holds that

P

(
n∑
i=1

Xi > x

)
≤ nP (X > y)

+ exp

{
x

y
−
(
x

y
− n

y
E
[
X1(|X|≤y)

]
+
n

yq
E
[
|X|q1(|X|≤y)

])
log

(
1 +

xyq−1

nE
[
|X|q1(|X|≤y)

])}.
Recall the function r1(s, t) defined in (4.2),

r1(s, t) = E

[
θ1(

s
(
ρt+
√

1−ρ2η
)
>`
)] , (s, t) ∈ R+ × R.

Applying Lemma A.2, we obtain the following inequality:

Lemma A.3 If Eθq < ∞ for some 1 < q ≤ 2, then for any 0 < ε < 1, any λ > 0, all

sufficiently large n, and uniformly for all s ∈ R+ and t ∈ R,

P

(∣∣∣∣∣ 1n
n∑
i=1

θi1(s(ρt+√1−ρ2ηi
)
>`i

) − r1(s, t)
∣∣∣∣∣ > ε

)
≤ nP (θ > λn) + Cn−

ε(q−1)
2λ ,

where C is a positive constant irrespective of n.
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Proof. It is important to note that every step in this proof holds uniformly for all s ∈ R+

and t ∈ R. For brevity, write

X = θ1(
s
(
ρt+
√

1−ρ2η
)
>`
) and X̃ = X − EX = X − r1(s, t),

and introduce X̃1, . . . , X̃n to be i.i.d. copies of X̃. By Lemma A.2, we deal with the left-hand

side, denoted by Pn, of the inequality under proof as

Pn = P

(∣∣∣∣∣
n∑
i=1

X̃i

∣∣∣∣∣ > εn

)
≤ nP

(
X̃ > λn

)
+ nP

(
−X̃ > λn

)
+2 exp

 ε

λ
−
(
ε

λ
− 1

λ

∣∣∣E [X̃1(|X̃|≤λn)
]∣∣∣) log

1 +
ε(λn)q−1

E
[∣∣∣X̃∣∣∣q 1(|X̃|≤λn)

]
 .

Since X̃ ≥ X−Eθ ≥ −Eθ, the term nP (−X̃ > λn) vanishes for all large n. Since EX̃ = 0,

we have E
[
X̃1(|X̃|≤λn)

]
→ 0. In addition, E

[∣∣∣X̃∣∣∣q 1(|X̃|≤λn)
]
≤ E(θ+Eθ)q <∞. It follows

that, for sufficiently large n,

Pn ≤ nP (θ > λn) + 2 exp

{
ε

λ
− ε

2λ
log

(
1 +

ε(λn)q−1

E(θ + Eθ)q

)}
≤ nP (θ > λn) + Cn−

ε(q−1)
2λ .

This ends the proof.

Note that the function r1(s, t), which takes values in [0, Eθ], is non-decreasing in t ∈ R
and, under the last condition of Theorem 4.1, is strictly increasing in s over the range D1

specified by 0 < r1(s, t) < Eθ. Thus, for b ∈ (0, Eθ), the function r1(s, t) restricted to the

range D1 has a unique inverse with respect to s, denoted by st(b). Furthermore, write

r̃1(t) = r1(∞, t) = E

[
θ1(

ρt+
√

1−ρ2η>0
)] . (A.3)

Clearly, for any b ∈ (0, Eθ), both inverses r̃←1 (b) and r̃→1 (b) are finite. Since r̃1(t) is non-

decreasing and left-continuous in t, it is easy to see the following:

• r̃1(r̃←1 (b)) ≤ b,

• (r̃←1 (b),∞) ⊂ {t ∈ R : r̃1(t) ≥ b} ⊂ [r̃←1 (b),∞),

• {t ∈ R : r̃1(t) > b} = (r̃→1 (b),∞).

Lemma A.4 Assume Eθ < ∞ and the last condition of Theorem 4.1. Then for any fixed

b ∈ (0, Eθ) and any small δ > 0, there exists some small ε > 0 such that, for all t > r̃←1 (b),

st(b) ≥
ε

t− r̃←1 (b− δ)
.

23



Proof. For the given b and δ, choose some small ε > 0 such that E
[
θ1(0<`≤ε)

]
< δ. For

any t > r̃←1 (b), we derive

r1

(
ε

t− r̃←1 (b− δ)
, t

)
= E

θ1(
ε(ρt+

√
1−ρ2η)

(t−r̃←1 (b−δ))`
>1

) (1(`>ε) + 1(0<`≤ε)
)

< E

[
θ1(

ρt+
√

1−ρ2η
t−r̃←1 (b−δ) >1

)
]

+ δ

≤ E

[
θ1(

ρr̃←1 (b−δ)+
√

1−ρ2η>0
)]+ δ

= r̃1(r̃
←
1 (b− δ)) + δ

≤ b.

Thus, the desired inequality follows.

Recall the function r2(u) defined in (4.7). For convenience, we introduce a modified

version as follows: for any u ∈ R+ and any small h ∈ R, say |h| < 1, define

r2(u;h) = E
[
θ1( ρu` +h>1)

]
. (A.4)

It is easy to verify that limh↓0 r2(u;h) = r2(u+) and limh↑0 r2(u;h) = r2(u). Similarly to

Lemma A.3, the following lemma considers the probability that the average

Σn =
1

n

n∑
i=1

θi1( s
`i

(
ρt+
√

1−ρ2 ηi
fn

)
>1
)

positively deviates from r2(st; δ) or negatively deviates from r2(st;−δ) for any small δ > 0.

In this lemma, by saying a property holds uniformly for 0 < s� fn we mean that it holds

uniformly for 0 < s ≤ εnfn for any given positive sequence εn = o(1).

Lemma A.5 If Eθq < ∞ for some 1 < q ≤ 2, then for any 0 < δ < ε, any λ > 0, all

sufficiently large n, and uniformly for all 0 < s� fn and t ∈ R,

P (Σn − r2(st; δ) > ε) + P (Σn − r2(st;−δ) < −ε) ≤ nP (θ > λn) + Cn−
(ε−δ)(q−1)

2λ ,

where C is a positive constant irrespective of n.

Proof. It is important to note that every step in this proof holds uniformly for all 0 < s�
fn and t ∈ R. For brevity, write

X = θ1( s
`

(
ρt+
√

1−ρ2 η
fn

)
>1
) and X̃ = X − EX,
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and introduce X̃1, . . . , X̃n to be i.i.d. copies of X̃. For the given 0 < δ < ε, choose some

large M such that E
[
θ1( |η|` >M)

]
≤ δ. Then it holds for all large n that

EX ≤ E

[
θ1(

ρ st
`
+
√

1−ρ2 s
fn

|η|
`
>1
) (1( |η|` ≤M) + 1( |η|` >M)

)]
≤ E

[
θ1(

ρ st
`
+
√

1−ρ2 s
fn
M>1

)]+ E
[
θ1( |η|` >M)

]
≤ r2(st; δ) + δ

and that

EX ≥ E

[
θ1(

ρ st
`
−
√

1−ρ2 s
fn

|η|
`
>1
)1( |η|` ≤M)

]
≥ E

[
θ1(

ρ st
`
−
√

1−ρ2 s
fn
M>1

)]− E [θ1( |η|` >M)

]
≥ r2(st;−δ)− δ.

It follows that

P (Σn − r2(st; δ) > ε) + P (Σn − r2(st;−δ) < −ε)

≤ P

(
1

n

n∑
i=1

X̃i > ε− δ

)
+ P

(
1

n

n∑
i=1

(
−X̃i

)
> ε− δ

)
.

We follow the proof of Lemma A.3 to derive similar upper bounds for the last two proba-

bilities above. Finally, putting these two upper bounds together and keeping in mind that

−X̃ ≤ Eθ, we conclude the proof.

Proof of Theorem 4.1

We aim to establish the two-sided inequality (4.3). First we derive the corresponding upper

bound for P (Ln > nb). For any small δ > 0, in terms of r1(s, t) defined in (4.2) and r̃1(t)

defined in (A.3), we decompose it into three terms as

P (Ln > nb) = P (Ln > nb, ξ ≤ r̃←1 (b− δ))

+P

(
Ln > nb, r1

(
S

fn
, ξ

)
< b− δ, ξ > r̃←1 (b− δ)

)
+P

(
Ln > nb, r1

(
S

fn
, ξ

)
≥ b− δ, ξ > r̃←1 (b− δ)

)
= I1 + I2 + I3.

Note that, for all s > 0 and t ≤ r̃←1 (b− δ),

r1(s, t) ≤ r̃1(r̃
←
1 (b− δ)) ≤ b− δ. (A.5)

25



Moreover, by the conditions on S and θ, we have Eθq < ∞ for 1 < q < 1 + α. Thus, by

inequality (A.5) and Lemma A.3, it holds for some small λ > 0 and some large C > 0 that

I1 ≤
∫∫

R+×(−∞, r̃←1 (b−δ)]
P

(
S

fn
∈ ds

)
P (ξ ∈ dt)

×P

(
1

n

n∑
i=1

θi1( s
`i

(
ρt+
√

1−ρ2ηi
)
>1
) − r1(s, t) > δ

)
≤ nP (θ > λn) + Cn−

δ(q−1)
2λ .

Similarly,

I2 ≤ nP (θ > λn) + Cn−
δ(q−1)

2λ .

Choose some small λ > 0 such that δ(q−1)
2λ

> α. Then by the conditions on S, θ and the

condition fn = O(n), we obtain

I1 + I2 = o
(
FS(n)

)
= o

(
FS(fn)

)
.

It remains to prove that

lim sup
δ↓0

lim sup
n→∞

I3

FS(fn)
≤
∫∫

r1(s,t)≥b
ν(ds)P (ξ ∈ dt) . (A.6)

Clearly, for some large M > 0,

I3 ≤ P

(
r1

(
S

fn
, ξ

)
≥ b− δ, ξ > r̃←1 (b− δ)

)
≤ P

(
ξ >

fn
M

)
+

∫ fn
M

r̃←1 (b−δ)
P

(
r1

(
S

fn
, t

)
≥ b− δ

)
P (ξ ∈ dt)

= I31 + I32.

By the conditions on S and ξ, we have

I31 = o
(
FS(fn)

)
. (A.7)

To deal with I32, for t ∈ R define At = {s ∈ R+ : r1 (s, t) ≥ b− δ}, which is a cross section

of the set A = {(s, t) ∈ R+ × R : r1 (s, t) ≥ b− δ}. By Lemma A.4, there is some small

ε1 > 0 such that, for all r̃←1 (b− δ) < t ≤ fn
M

and all large n,

fnst(b− δ) ≥
ε1fn

fn
M
− r̃←1 (b− 2δ)

∼ ε1M,

which can be sufficiently large by raising M . Thus, by Potter’s bounds (see Proposition 2.2.3

of Bingham et al. (1987)), it holds for any small ε2 > 0, all large M , all r̃←1 (b− δ) < t ≤ fn
M

,

and all large n that

P
(
r1

(
S
fn
, t
)
≥ b− δ

)
FS(fn)

≤
P
(
S
fn
≥ st(b− δ)

)
FS(fn)
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≤ (1 + ε2)
(
(st(b− δ))−α−ε2 ∨ (st(b− δ))−α+ε2

)
≤ C

(
(t− r̃←1 (b− 2δ))α+ε2 ∨ (t− r̃←1 (b− 2δ))α−ε2

)
,

with C a positive constant irrespective of t, where the last step is due to Lemma A.4.

Applying the dominated convergence theorem, which is justified by the inequality above

and the moment condition on ξ, and then applying relation (3.6), we obtain

lim
n→∞

I32

FS(fn)
=

∫
R

lim
n→∞

P
(
r1

(
S
fn
, t
)
≥ b− δ

)
FS(fn)

1(r̃←1 (b−δ)<t≤ fn
M )P (ξ ∈ dt)

=

∫ ∞
r̃←1 (b−δ)

ν (At)P (ξ ∈ dt)

≤
∫∫

r1(s,t)≥b−δ
ν(ds)P (ξ ∈ dt) . (A.8)

Putting (A.7)–(A.8) together gives (A.6).

Next we derive the corresponding lower bound for P (Ln > nb). For any small ε > 0,

define the set Ã = {(s, t) ∈ R+ × R : r1(s, t) > b+ ε}. Then for t ∈ R, write its cross section

as Ãt = {s ∈ R+ : r1 (s, t) > b+ ε}. We derive

P (Ln > nb)

≥ P

(
Ln > nb, r1

(
S

fn
, ξ

)
> b+ ε

)
=

∫∫
Ã

P

(
1

n

n∑
i=1

θi1(s(ρt+√1−ρ2ηi
)
>`i

) > b

)
P

(
S

fn
∈ ds

)
P (ξ ∈ dt) .

Over (s, t) ∈ Ã, the i.i.d. summands θi1(s(ρt+√1−ρ2ηi
)
>`i

) in the tail probability above have

a common mean r1(s, t) > b + ε. Applying Lemma A.3, it holds uniformly for (s, t) ∈ Ã
that

P

(
1

n

n∑
i=1

θi1(s(ρt+√1−ρ2ηi
)
>`i

) > b

)

≥ P

(
1

n

n∑
i=1

θi1(s(ρt+√1−ρ2ηi
)
>`i

) − r1(s, t) > −ε
)
→ 1.

It follows that

P (Ln > nb) &
∫∫

Ã

P

(
S

fn
∈ ds

)
P (ξ ∈ dt) =

∫ ∞
r̃→1 (b+ε)

P

(
S

fn
∈ Ãt

)
P (ξ ∈ dt) , (A.9)

where the last step is due to the fact that r̃1(t) > b+ε if and only if t > r̃→1 (b+ε). Moreover,

from the definition of the function r1(s, t) in (4.2) it is easy to see that, for each fixed t, the
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cross section Ãt as an interval is away from 0. Thus, by FS ∈ RV−α,

lim
n→∞

P
(
S
fn
∈ Ãt

)
FS(fn)

= ν
(
Ãt

)
. (A.10)

Applying Fatou’s lemma to the right-hand side of (A.9) and applying (A.10), we obtain

P (Ln > nb)

FS(fn)
&
∫ ∞
r̃→1 (b+ε)

ν
(
Ãt

)
P (ξ ∈ dt) =

∫∫
r1(s,t)>b+ε

ν(ds)P (ξ ∈ dt) .

Thus, the lower bound in (4.3) follows by letting ε ↓ 0.

Proof of Theorem 4.2

We aim to establish the two-sided inequality (4.8). First we derive the corresponding upper

bound for P (Ln > nb). By the conditions on ξ and S, there is some auxiliary function a(·)
such that the following limit relations, as x→∞, hold simultaneously:

• 0 < a(x) ↑ ∞,
• x

a(x)
→∞,

• P
(
S > x

a(x)

)
= o

(
Fξ(x)

)
.

In terms of this auxiliary function a(·) and the function r2(u;h) introduced in (A.4), we

split P (Ln > nb) into three parts as

P (Ln > nb) = P

(
Ln > nb, S >

fn
a(fn)

)
+P

(
Ln > nb, r2

(
Sξ

fn
; δ

)
< b− 2δ, S ≤ fn

a(fn)

)
+P

(
Ln > nb, r2

(
Sξ

fn
; δ

)
≥ b− 2δ, S ≤ fn

a(fn)

)
= J1 + J2 + J3,

where δ > 0 is arbitrarily fixed and small. Clearly,

J1 ≤ P

(
S >

fn
a(fn)

)
= o

(
Fξ(fn)

)
.

For J2, by the conditions on ξ and θ, we have Eθq <∞ for 1 < q < 1 + α. As dealing with

I1 in the proof of Theorem 4.1, by Lemma A.5, it holds for any λ > 0 and some constant

C > 0 that

J2 ≤
∫∫

(0, fn
a(fn) ]×R

P (S ∈ ds)P
(
ξ

fn
∈ dt

)
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×P

(
1

n

n∑
i=1

θi1( s
`i

(
ρt+
√

1−ρ2 ηi
fn

)
>1
) − r2(st; δ) > 2δ

)
≤ nP (θ > λn) + Cn−

δ(q−1)
2λ .

Choose some small λ > 0 such that δ(q−1)
2λ

> α. Then it follows from the conditions on ξ, θ

and the condition fn = O(n) that

J2 = o
(
Fξ(n)

)
= o

(
Fξ(fn)

)
.

To deal with J3, we derive

J3 ≤
∫ fn

a(fn)

0

P

(
r2

(
s
ξ

fn
; δ

)
≥ b− 2δ

)
P (S ∈ ds) .

For s ∈ R+ define As = {t ∈ R : r2(st; δ) ≥ b − 2δ}, which is a cross section of the set

A = {(s, t) ∈ R+×R : r2(st; δ) ≥ b−2δ}. Note that the inequality r2 (u; δ) ≥ b−2δ implies

that u ≥ u0 for some u0 > 0. Then the event
(
r2

(
s ξ
fn

; δ
)
≥ b− 2δ

)
appearing in J3 implies

that, for all 0 < s ≤ fn
a(fn)

,

ξ ≥ u0
s
fn ≥ u0a(fn)→∞.

Then by Potter’s bounds, it holds for any small ε > 0, all 0 < s ≤ fn
a(fn)

, and all large n that

P
(
r2

(
s ξ
fn

; δ
)
≥ b− 2δ

)
Fξ(fn)

≤
P
(
ξ ≥ u0

s
fn
)

Fξ(fn)
≤ C

(
sα+ε ∨ sα−ε

)
for some positive constant C irrespective of s. Applying the dominated convergence theorem,

which is justified by the inequality above and the moment condition on S, and then applying

relation (3.6), we obtain

lim sup
n→∞

J3

Fξ(fn)
≤

∫
R+

lim
n→∞

P
(
r2

(
s ξ
fn

; δ
)
≥ b− 2δ

)
Fξ(fn)

1(s≤ fn
a(fn))

P (S ∈ ds)

=

∫
R+

ν(As)P (S ∈ ds)

=

∫∫
r2(st;δ)≥b−2δ

P (S ∈ ds) ν(dt).

Putting these estimates together and letting δ ↓ 0, we obtain

lim sup
n→∞

P (Ln > nb)

Fξ(fn)
≤
∫∫

r2(st+)≥b
P (S ∈ ds) ν(dt),

which is the upper bound in (4.8).
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Next we derive the corresponding lower bound for P (Ln > nb). For any small δ > 0,

define the set Ã = {(s, t) ∈ R+ × R : r2(st;−δ) > b+ 2δ}. Then for s ∈ R+, write its cross

section as Ãs = {t ∈ R : r2(st;−δ) > b+ 2δ}. We derive

P (Ln > nb)

≥ P

(
Ln > nb, r2

(
Sξ

fn
;−δ

)
> b+ 2δ, S ≤ fn

a(fn)

)
=

∫ fn
a(fn)

0

∫
Ãs

P

(
1

n

n∑
i=1

θi1( s
`i

(
ρt+
√

1−ρ2 ηi
fn

)
>1
) > b

)
P

(
ξ

fn
∈ dt

)
P (S ∈ ds) .

Similarly to the derivation for the lower bound in the proof of Theorem 4.1, by Lemma A.5,

it holds uniformly for 0 < s ≤ fn
a(fn)

and t ∈ Ãs that

P

(
1

n

n∑
i=1

θi1( s
`i

(
ρt+
√

1−ρ2 ηi
fn

)
>1
) > b

)

≥ 1− P

(
1

n

n∑
i=1

θi1( s
`i

(
ρt+
√

1−ρ2 ηi
fn

)
>1
) − r2(st;−δ) ≤ −2δ

)
→ 1.

It follows that

P (Ln > nb) &
∫ fn

a(fn)

0

∫
Ãs

P

(
ξ

fn
∈ dt

)
P (S ∈ ds)

=

∫ fn
a(fn)

0

P

(
ξ

fn
∈ Ãs

)
P (S ∈ ds) . (A.11)

Moreover, from the definition of the function r2(u;h) in (A.4) it is easy to see that, for each

fixed s > 0, the cross section Ãs as an interval is away from 0. Thus, by Fξ ∈ RV−α,

lim
n→∞

P
(
ξ
fn
∈ Ãs

)
Fξ(fn)

= ν
(
Ãs

)
. (A.12)

Applying Fatou’s lemma to the right-hand side of (A.11) and applying (A.12), we obtain

P (Ln > nb)

Fξ(fn)
&
∫
R+

ν
(
Ãs

)
P (S ∈ ds) =

∫∫
r2(st;−δ)>b+2δ

P (S ∈ ds) ν(dt).

Thus, the lower bound in (4.8) follows by letting δ ↓ 0.
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