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ABSTRACT

Barrier options have become increasingly popular financial instruments due to

the lower costs and the ability to more closely match speculating or hedging needs.

In addition, barrier options play a significant role in modeling and managing risks

in insurance and finance as well as in refining insurance products such as variable

annuities and equity-indexed annuities. Motivated by these immediate applications

arising from actuarial and financial contexts, the thesis studies the pricing of barrier

options and some exotic variations, assuming that the underlying asset price follows

the Black-Scholes model or jump-diffusion processes.

Barrier options have already been well treated in the classical Black-Scholes

framework. The first part of the thesis aims to develop a new valuation approach

based on the technique of exponential stopping and/or path counting of Brown-

ian motions. We allow the option’s boundaries to vary exponentially in time with

different rates, and manage to express our pricing formulas properly as combina-

tions of the prices of certain binary options. These expressions are shown to be

extremely convenient in further pricing some exotic variations including sequential

barrier options, immediate rebate options, multi-asset barrier options and window

barrier options. Many known results will be reproduced and new explicit formulas

will also be derived, from which we can better understand the impact on option

values of various sophisticated barrier structures.

We also consider jump-diffusion models, where it becomes difficult, if not im-

possible, to obtain the barrier option value in analytical form for exponentially

curved boundaries. Our model assumes that the logarithm of the underlying asset

price is a Brownian motion plus an independent compound Poisson process. It is

quite common to assign a particular distribution (such as normal or double expo-

nential distribution) for the jump size if one wants to pursue closed-form solutions,
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whereas our method permits any distributions for the jump size as long as they

belong to the exponential family. The formulas derived in the thesis are explicit

in the sense that they can be efficiently implemented through Monte Carlo simu-

lations, from which we achieve a good balance between solution tractability and

model complexity.
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PUBLIC ABSTRACT

The payoff of a barrier option depends on whether the price of the underlying

asset ever reaches a pre-specified boundary (or one of two pre-specified boundaries if

it is a double-barrier option) during the contract’s lifetime. Therefore, the valuation

of barrier options can often be a key step in solving many problems in insurance and

finance that are related to the so-called “first passage times”. We study how to price

barrier options and their exotic variations under two fundamental asset models: the

Black-Scholes model and jump-diffusion models. The most sophisticated case we

consider is that the options have two boundaries that are exponential functions in

time.

In the Black-Scholes framework, we propose a new approach to compute the

prices of single-barrier and double-barrier options as well as some of their exotic

variations. Our method leads to closed-form expressions written in terms of the

prices of certain binary options, which are much easier to compute explicitly.

In the last part of the thesis, we consider jump diffusions as the underlying

asset price process. The great flexibility of our model as opposed to some old ones

comes from the fact that in our model, the jump magnitude of the asset price can

follow a wider range of distributions. Fortunately, this generalization does not mean

sacrificing the feasibility of our problem because we present a new algorithm to yield

the explicit solutions for both single-barrier and double-barrier options. Based on

Monte Carlo simulations, we can efficiently implement our pricing formulas.

vii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 INTRODUCTION AND MOTIVATION . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis subject and our contribution . . . . . . . . . . . . . . . 3
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Strong Markov property . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Reflection principle . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Optional stopping theorem . . . . . . . . . . . . . . . . . . . . 12
2.4 Laplace transform of one-sided exit time . . . . . . . . . . . . . 13
2.5 Esscher transforms . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Proof of Example 2.2.1 . . . . . . . . . . . . . . . . . . 16
2.6.2 Proof of Proposition 2.4.1 . . . . . . . . . . . . . . . . . 16

3 REVIEW OF EXISTING VALUATION APPROACHES . . . . . . 18

3.1 A brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Density integrations . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Static hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Method of images . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 PRICING BARRIER OPTIONS VIA EXPONENTIAL STOPPING:
A NEW VALUATION APPROACH . . . . . . . . . . . . . . . . . . 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Single-barrier options . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Single-barrier options with exponential boundary . . . . . . . . 37
4.4 Double-barrier options with exponential boundaries . . . . . . 39

4.4.1 Path counting of double knock-out . . . . . . . . . . . . 40

viii



4.4.2 Pricing formula for double knock-out options based on
exponential stopping . . . . . . . . . . . . . . . . . . . . 46

4.4.3 Convergence of the pricing formula and numerical examples 57
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.1 Proof of Remark 4.2.1 . . . . . . . . . . . . . . . . . . . 60
4.5.2 An alternative proof of Lemma 4.4.3 . . . . . . . . . . . 61
4.5.3 An alternative proof of Corollary 4.4.5 and related remarks 63

5 APPLICATIONS TO PRICING EXOTIC VARIATIONS OF BAR-
RIER OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Sequential barrier options . . . . . . . . . . . . . . . . . . . . . 69
5.3 Immediate rebate options . . . . . . . . . . . . . . . . . . . . . 74
5.4 Multi-asset barrier options . . . . . . . . . . . . . . . . . . . . 81

5.4.1 Multi-asset model and the representation formulas . . . 82
5.4.2 Numerical examples . . . . . . . . . . . . . . . . . . . . 89
5.4.3 Extension to two-sided stochastic barrier . . . . . . . . 92

5.5 Window barrier options . . . . . . . . . . . . . . . . . . . . . . 93
5.5.1 Forward-starting monitoring window . . . . . . . . . . . 95
5.5.2 Forward-starting and early-ending monitoring window . 96
5.5.3 Numerical examples . . . . . . . . . . . . . . . . . . . . 102

5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6.1 Proof of Proposition 5.4.4 . . . . . . . . . . . . . . . . . 103

6 PRICING BARRIER OPTIONS IN JUMP-DIFFUSION MODELS 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 The setting for risk-neutral pricing . . . . . . . . . . . . . . . . 108
6.3 Single-barrier options . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Double-barrier options . . . . . . . . . . . . . . . . . . . . . . . 119
6.5 Numerical examples based on Monte Carlo simulations . . . . . 123
6.6 The BS model revisited: double knock-out options with piece-

wise exponential boundaries . . . . . . . . . . . . . . . . . . . . 127

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

ix



LIST OF TABLES

TABLE

1.1 Notation and abbreviations . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Static hedging of single-barrier options . . . . . . . . . . . . . . . . 26

3.2 Active domains and boundary conditions for v(s, t) . . . . . . . . . 27

4.1 Double knock-out call with exponential boundaries . . . . . . . . . 59

4.2 Double knock-out put with exponential boundaries . . . . . . . . . 60

5.1 Standard sequential barrier options . . . . . . . . . . . . . . . . . . 72

5.2 Double knock-out call with an external variable . . . . . . . . . . . 89

5.3 Window double knock-out call vs. standard double knock-out call . 102

6.1 Up-and-out call with an exponential boundary when the jump size
follows normal distrbution . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Up-and-out call with an exponential boundary when the jump size
follows double exponential distribution . . . . . . . . . . . . . . . . 126

6.3 Up-and-out call with an exponential boundary when the jump size
follows Gamma distribution . . . . . . . . . . . . . . . . . . . . . . 127

x



LIST OF FIGURES

FIGURE

2.1 The reflection of a standard Brownian motion at the hitting time . 11

4.1 Examples of B±n, n ≥ 1. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 An illustration of equation (4.51) . . . . . . . . . . . . . . . . . . . 52

5.1 Multi-asset double knock-out call price vs. correlation . . . . . . . . 91

6.1 The jump-diffusion process with an upper boundary b given NT = 4 112

xi



1

CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Motivation

Barrier options are a basic type of exotic options and have become frequently

traded financial instruments in the US over-the-counter markets. The reasons for

the increasing popularity of barrier options are manifold. First, they have lower

costs than their plain vanilla counterparts. For example, a knock-in call only pays

off when the barrier is breached prior to maturity, and thus is cheaper than a

standard call. In addition, barrier options may match an investor’s hedging needs

in a more suitable manner. For example, buying a down-and-in put with the barrier

set below the strike, as opposed to a long standard put, offers an appropriate (and

inexpensive) way to protect against large downward movements in the underlying

asset price. Moreover, the introduction of barrier features allows the option to more

closely match the views about the future market behavior. For example, a long

position in a down-and-out call is more consistent with the view that the underlying

asset price will rise, as opposed to a long position in a standard call. As a result,

when buying a barrier option, you can avoid paying for those states you believe are

unlikely to occur; you may also enhance the profit by selling a barrier option that

only pays off when you believe are impossible.

The most important motivation for us to spend the whole thesis considering

the valuation of barrier options is that barrier options find suitable applications in

insurance and finance from a number of aspects. Let us mention some of them. The
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pricing of barrier options essentially comes down to study the first passage times of

certain stochastic processes, which is the building block of the solutions to many

problems arising in risk management. Typical examples include the computation of

ruin probability and the default risk modeling of an insurance company. Since time-

until-ruin and time-until-default random variables can be viewed as first passage

times, these problems can be formulated in certain ways based on barrier options.

For example, see Wang (2016) which managed to decompose the insurance guaranty

scheme introduced in Hwang, Chang and Wu (2015) into down-and-out options with

immediate rebate payments.

Barrier options can also be very useful in refining certain insurance products

such as modeling dynamic lapsations in variable annuity products. Policyholders

are allowed to surrender the contract at their discretion, which usually happens

when the embedded guarantee options associated with the variable annuities are

deep out-of-money. Let us consider the guaranteed minimum maturity benefits

(GMMB) where the account value at time t is denoted by St. At the maturity time

T , if the contract has not lapsed, the policyholder is entitled the amount

ST ∨G = ST + (G− ST )+,

where G is a fixed guaranteed amount to protect against the depreciation of the

underlying funds. Hence, the liability to the insurer would be a European put

option with the strike G and the maturity T . Now, suppose the account value

reaches to a very high point prior to maturity, then it may be worthwhile for the

policyholder to surrender the contract to avoid high management fees (subsequent

fees are usually set to be proportional to the account value) and invest directly in

the underlying funds; there is little reason to continue to pay for the embedded

option (put option) with negligible value in the future. This incentive to surrender

can obviously be captured by introducing an upper barrier. Let us assume that the
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contract lapses when the account value rises above a fixed level B. Then the payoff

of the embedded guarantee option becomes

(G− ST )+
1 (τB > T ) , (1.1)

where τB denotes the first time the account value rises to the level B. Hence, when

valuing GMMB, we will deal with an up-and-out put option instead of the put

option we just mentioned. One may also incorporate surrender penalty. Define by

ιt the surrender charge rate as a decreasing function in time. Upon the surrender

prior to maturity, a policyholder will receive the amount equal to the account value

less the penalty charge. Therefore, we refine our solution of valuing GMMB by

adding to (1.1) an immediate rebate option with the payoff at time τB equal to

(1− ιτB)SτB1 (τB < T ) .

Similar discussions about modeling dynamic lapsations in variable annuity products

using barriers options can also be found, for example, in Gerber, Shiu and Yang

(2013) and Augustyniak and Boudreault (2015).

In summary, the valuation of barrier options can be regarded as a key step

in defining and solving many problems in insurance and finance, and hence our

discussion in the thesis is highly relevant.

1.2 Thesis subject and our contribution

This thesis studies the pricing of barrier options and their exotic variations in

the Black-Scholes (BS) model and jump-diffusion models.

In the first part of the thesis, we mainly focus on the valuation of barrier

options restricted by exponentially time-varying boundaries within the classical BS

framework. In particular, our contribution is to develop a new pricing method based

on the exponential stopping of linear Brownian motions. It is worth pointing out
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that our approach does not require the use of traditional techniques such as the

reflection principle and change of probability measure. Because we are dealing with

an arbitrage payoff function, we express the prices of barrier options as combinations

of the prices of certain path-independent options (binary options), which are fairly

straightforward to determine explicitly. These expressions can be immediately used

to recover many well-known results in the literature, and more importantly, based

on these expressions, it becomes very convenient in pricing certain- exotic variations

of barrier options.

The next contribution is to value some popular variations of barrier options

by applying the results obatined in the first part. These options include sequential

barrier options, immediate rebate options, multi-asset barrier options and window

barrier options, where the boundaries are still exponential functions in time, and

the BS economy is considered. First, we show that our formulation of path count-

ing derived in the first part can be structured to deal with the problem where the

boundaries may be breached in certain sequential orders, which directly leads to

the pricing of sequential barrier options. Second, the pricing formulas in the first

part can also be used to identify the distributions of one-sided and two-sided exit

times, and thus the values of immediate rebate options can be easily obtained. Fur-

thermore, to value multi-asset barrier options, we propose to adopt the Cholesky

decomposition technique to factor out the barrier variable from other source of un-

certainty, and the problem reduces to the one under the single-asset model. Finally,

we calculate the price of window barrier options by taking repetitive conditional

expectations and applying the pricing formula in the first part. In summary, we

reproduce some known results for sequential barrier options and immediate rebate

options, and for multi-asset barrier options and window barrier options, some new

results will be derived.

The third and last major part of this thesis studies the pricing of barrier



5

options under a general jump-diffusion framework, where the logarithm of the un-

derlying asset price is modeled by a linear Brownian motion plus an independent

compound Poisson process. The generality of our model comes from the fact that

the jump magnitude can follow any distribution as long as it belongs to the ex-

ponential family, whereas in some other approaches, certain distribution should be

assumed for the jump magnitude for analytical convenience. Following the idea in

Shao and Wang (2012), we derive closed-form solutions for the prices of knock-out

options with one-sided and two-sided exponential time-varying boundaries. We also

show that our pricing formulas, although written in terms of infinite sums and mul-

tiple integrals, can be efficiently implemented by the Monte Carlo method.

1.3 Thesis structure

Chapter 2 briefly reviews some well-known results about stochastic processes

that we will frequently use or mention throughout the thesis.

Chapter 3 presents a literature review of the existing valuation approaches for

barrier options in the BS model. We also revisit three particular methods, density

integrations, static hedging and method of images.

In Chapter 4, we develop a new valuation approach to pricing barrier op-

tions based on the exponential stopping of linear Brownian motions. We start with

single-barrier options with a flat boundary, and then generalize it to the case of

an exponentially time-varying boundary. Furthermore, a double knock-out option

with exponential boundaries is considered. We evaluate the double knock-out event

using path counting technique (See Sidenius (1998) for example), and express the

option price as doubly infinite sums of the prices of certain binary options. Finally,

we explain that when the payoff function satisfies some mild conditions, the pricing

formula as doubly infinite sums is convergent rapidly.
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In Chapter 5, we study the pricing of four exotic variations of barrier options.

First, we treat sequentail barrier options using the path counting results obtained

in Chapter 4. Then we treat immediate rebate options. We apply the martingale

approach introduced in Gerber and Shiu (1994b, 1996) to study the case of flat

boundaries; furthermore, immediate rebate options with exponential boundaries

are valued based on the density functions of the two-sided exit times, which can

be recovered from one of the major formulas in Chapter 4 with the payoff function

being an identity function. In addition, we study multi-asset barrier options. The

Cholesky decomposition is adopted to simplify our derivation, and we also make an

extension to the case where the boundaries are stochastic processes. At the end,

we derive a closed-form pricing formula for a window double knock-out option with

exponential boundaries.

In Chapter 6, we first provide a literature review of the applications of jump-

diffusion models in insurance and finance, and some classical pricing methods for

barrier options under certain jump-diffusion models will be mentioned. Then we

discuss the risk-neutral set-up for our jump-diffusion model. Explicit solutions are

derived for the prices of an up-and-out option with an exponential boundary and

a double knock-out option with two exponential boundaries. We also show how to

numerically implement our formulas using Monte Carlo simulations. At the end,

we discuss an application to pricing a double knock-out option restricted by two

piecewise exponential boundaries in the BS framework.
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1.4 Notation

Table 1.1: Notation and abbreviations

BS Black-Scholes

(Ω,F ,Ft,Pr) filtered probability space

{Wt} standard Brownian motion

{Xt} Xt = µt+ σWt (or Lévy process in Section 2.5)

{St} price process of a single underlying asset

T fixed time horizon

mT mT = min0≤t≤T Xt

MT MT = max0≤t≤T Xt

fX(x) density function of a random variable X

ελ exponential random variable with mean 1/λ

θ+
λ positive root of σ2

2
θ2 + µθ = λ

θ−λ negative root of σ2

2
θ2 + µθ = λ

1A 1A = 1 when A occurs and 1A = 0 otherwise

E expectation

Pr probability

Es expectation taken under measure Pr given S0 = s

Prs probability given S0 = s

Es[X;A] Es[X;A] = Es[X1A] for a random variable X and

an event A

φ(x) φ(x) = 1√
2π
e−

x2

2

φt(x) φt(x) = 1√
2πσ2t

e−
(x−µt)2

2σ2t
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Table 1.1 continued: Notation and abbreviations

Φ(x) distribution function of standard normal

Φ2(x, y; ρ) distribution function of bivariate standard normal

with correlation ρ

Φ3(x, y, z; ρ12, ρ13, ρ23) distribution function of trivariate standard normal

with correlations ρ12, ρ13 and ρ23

τU τU = inf{t > 0|St = U}

With a little abuse of notation, we also use τx

to denote the hitting time of {Xt} for some x.

τL τL = inf{t > 0|St = L}

τ̃U τ̃U = inf{t > 0|St = Ueδ1t}

τ̃L τ̃L = inf{t > 0|St = Leδ2t}

τ̃U |L τ̃U |L = inf{t > τ̃U |St = Leδ2t}

τ̃L|U τ̃L|U = inf{t > τ̃L|St = Ueδ1t}

x ∧ y x ∧ y = min(x, y)

x ∨ y x ∨ y = max(x, y)

x+ x+ = x ∨ 0

i.i.d. independent and identically distributed

{X t} m-dimensional diffusion process with drift vector

µ and diffusion matrix Σ

{St} price vector process of m underlying assets

e e = (1, 0, . . . , 0)′m×1

Im m×m identity matrix

Es expectation taken under measure Pr given S0 = s
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Table 1.1 continued: Notation and abbreviations

R (−∞,∞)

R
n (−∞,∞)× · · · × (−∞,∞) n times
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CHAPTER 2

PRELIMINARIES

In this chapter, we shall recall and prove some classical results about stochas-

tic processes. The following fundamental assumption will be made throughout the

thesis. We let (Ω,F ,Ft,Pr) denote a filtered probability space equipped with a

filtration {F}t≥0 satisfying the so-called usual conditions: (1) F0 contains all null

sets under the measure Pr; (2) the filtration is right-continuous, that is, Ft =
⋂
s>t

Fs.

2.1 Strong Markov property

Proposition 2.1.1 (Strong Markov Property). Let {Wt} denote a standard Brow-

nian motion. If τ is a stopping time, then the process {W̄t} defined by W̄t =

Wτ+t −Wτ is also a standard Brownian motion and is independent of Fτ .

2.2 Reflection principle

Proposition 2.2.1 (Reflection Principle). Let {Wt} denote a standard Brown-

ian motion. If τ is a stopping time, then the reflected process {Ŵt} defined by

Ŵt = Wt1(t < τ) + (2Wτ −Wt)1(t ≥ τ) is also a standard Brownian motion.

Figure 2.1 illustrates the reflected sample path of {Wt} starting at the first

time it reaches the level b (b > 0) from below. Proposition 2.2.1 implies that the



11

solid path and the dashed path in Figure 2.1 starting at the hitting time occur with

the same probability.

Wt

b

2b −Wt

Figure 2.1: The reflection of a standard Brownian motion at the hitting time

The examples below are immediate applications of the reflection principle.

Example 2.2.1 (Joint distributions of Brownian motion and its extremum). Let

Xt = µt + σWt where {Wt} is a standard Brownian motion, and define mT =

min
0≤t≤T

Xt and MT = max
0≤t≤T

Xt for some T > 0. The following formulas are the

classical results based on the reflection principle.

Pr (XT > x,mT ≤ y) = eκyPr(XT > x− 2y), y < x ∧ 0, (2.1)

Pr (XT ≤ x,MT ≥ y) = eκyPr(XT ≤ x− 2y), y > x ∨ 0, (2.2)

where κ = 2µ
σ2 . The case where µ = 0 is easy and can be obtained directly from

Proposition 2.2.1 if one considers τy, the first time the process {Xt} reaches the

level y. The derivation becomes less straightforward when µ 6= 0. A simple proof is

given in Section 2.6.1 based on the Esscher transform factorization.
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Example 2.2.2 (Brownian bridge). The two formulas in Example 2.2.1 can be used

to obtain some fundamental results for Brownian bridge.

Pr(mT ≤ y|XT = x) =
Pr (XT ∈ dx,mT ≤ y)

Pr (XT ∈ dx)
=
eκbφT (x− 2b)

φT (x)
, y < x ∧ 0,

Pr(MT ≥ y|XT = x) =
Pr (XT ∈ dx,MT ≥ y)

Pr (XT ∈ dx)
=
eκbφT (x− 2b)

φT (x)
, y > x ∨ 0,

where φT (x) denotes the density function of XT . By a straightforward calculation,

Pr(mT ≤ y|XT = x) = e−
2(−y)(x−y)

σ2T , y < x ∧ 0, (2.3)

Pr(MT ≥ y|XT = x) = e−
2y(y−x)
σ2T , y > x ∨ 0. (2.4)

Note that the expressions on the right-hand sides of (2.3) and (2.4) do not contain

the drift parameter µ. As expected, when we let y → x, these two conditional

probabilities tend to 1. There is a simple way to see why these expressions do not

contain µ. In fact, the Brownian bridge tied at x at time T can be constructed by

{Xt} in the following manner.

Yt = Xt −
t

T
(XT − x), 0 ≤ t ≤ T.

Substituting Xt = µt+ σWt into the definition above, we have

Yt = σWt −
t

T
(σWT − x), 0 ≤ t ≤ T.

Hence, the drift parameter is irrelevant, and we can derive formulas (2.3) and (2.4)

assuming µ = 0. We only need (2.1) and (2.2) with κ = 0, the easy case.

2.3 Optional stopping theorem

Proposition 2.3.1 (Optional Stopping Theorem). Let {Mt} denote a martingale

and τ denote a stopping time. Then E [Mτ ] = E [M0] if either of the two following
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conditions is satisfied: (1) τ is bounded almost surely; (2) {Mt} is uniformly inte-

grable, that is, sup
t≥0

E [|Mt|1(Mt > x)]→ 0 as x→∞.

2.4 Laplace transform of one-sided exit time

Proposition 2.4.1. Let Xt = µt+σWt where {Wt} is a standard Brownian motion.

Define by τb the first time the process {Xt} reaches level b. For λ > 0, the Laplace

transform of τb is given by

E
[
e−λτb

]
=

{
e−θ

+
λ b b > 0

e−θ
−
λ b b < 0

(2.5)

where

θ+
λ =

−µ+
√
µ2 + 2λσ2

σ2
and θ−λ =

−µ−
√
µ2 + 2λσ2

σ2

are the two solutions of the quadratic equation σ2

2
θ2 + µθ − λ = 0.

The proof of Proposition 2.4.1 is given in Section 2.6.2.

2.5 Esscher transforms

The concept of Esscher transforms was first introduced by Esscher (1932) for

a single random variable. Gerber and Shiu (1994a) then extended this definition to

the class of Lévy processes. Let {Xt} denote a Lévy process. An Esscher transform

induces a new probability measure on {Xt}. Let a be a real number such that

E
[
eaX1

]
exists. The expectation of h(Xt, 0 ≤ t ≤ T ) for some function h(·) under

the Esscher-transformed measure with index a is defined by

E [h(Xt, 0 ≤ t ≤ T ); a] =
E
[
h(Xt, 0 ≤ t ≤ T )eaXT

]
E [eaXT ]

. (2.6)

The Esscher transform can also be defined in multivariate cases. Let m-dimensional
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vectors X t = (X1t, X2t, · · · , Xmt)
′ and a = (a1, a2, · · · , am)′. In an analogous

manner, we can have

E [h(X t, 0 ≤ t ≤ T );a] =
E
[
h(X t, 0 ≤ t ≤ T )ea

′XT
]

E [ea′XT ]
,

where abusing notation, we still use the same function h(·) for vectors. The two

factorization formulas below can be very useful in simplifying certain expectations.

E
[
eaXTh(Xt, 0 ≤ t ≤ T ); b

]
= E

[
eaXT ; b

]
· E [h(Xt, 0 ≤ t ≤ T ); a+ b] , (2.7)

E
[
ea
′XTh(X t, 0 ≤ t ≤ T ); b

]
= E

[
ea
′XT ; b

]
· E [h(X t, 0 ≤ t ≤ T );a+ b] , (2.8)

where b = (b1, b2, · · · , bm)′.

It is not difficult to show that a Lévy process under the Esscher transform is

still a Lévy process. Consider one-dimensional case for example. For 0 ≤ s < t

and each Borel set C, the independent and stationary increments property of {Xt}

under the original measure leads to

Pr (Xt −Xs ∈ C|Fs; a) =
E
[
1(Xt −Xs ∈ C)eaXt|Fs

]
E [eaXt |Fs]

=
E
[
1(Xt −Xs ∈ C)ea(Xt−Xs)|Fs

]
E [ea(Xt−Xs)|Fs]

=
E
[
1(Xt−s ∈ C)eaXt−s

]
E [eaXt−s ]

= Pr (Xt−s ∈ C; a) ,

which shows that the independent and stationary increments property is satisfied

under the transformed measure with index a. The case of a multivariate Lévy pro-

cess can be treated in a similar fashion.

The following example considers Brownian motions, a special case of Lévy

processes, under Esscher transforms, and shows how to determine the drift and

volatility parameters under the new measure.



15

Example 2.5.1 (Brownian motions under Esscher transforms). Let Xt = µt+σWt

where {Wt} is a standard Brownian motion. For 0 ≤ s < t, it can be shown

E
[
ez(Xt−Xs)|Fs; a

]
= E

[
ezXt−s ; a

]
= exp

(
(µ+ aσ2)z(t− s) + 1

2
σ2z2(t− s)

)
,

from which we conclude that, under the transformed measure with index a, the

process {Xt} is still a Brownian motion with the modified drift µ + aσ2 and the

same volatility σ. Likewise, one can also show that for an m-dimensional Brownian

motion with drift vector µ and diffusion matrix Σ, its distribution under the trans-

formed measure with index a becomes an m-dimensional Brownian motion with

drift vector µ+ Σa and the same diffusion matrix Σ.

Example 2.5.2 (Option pricing by Esscher transforms). Let Xt = µt+σWt where

{Wt} is a standard Brownian motion. In Gerber and Shiu (1994a), the method of

Esscher transforms was introduced as a powerful tool in option pricing. Assume

the risk-free interest rate is constant, denoted by r. Let St be the time-t price of a

non-dividend-paying asset and

St = S0e
Xt ,

where {Xt} is a Lévy process. According to Gerber and Shiu (1994a), to find a

risk-neutral measure, an index a∗ is determined such that the discounted asset price

process {e−rtSt} is a martingale under the transformed measure with the index a∗.

Equivalently, this means that we need to solve the equation

E
[
eXt ; a∗

]
= ert, t ≥ 0 (2.9)

to get a∗, which is unique (See Gerber and Shiu (1994b)). Then an option price is

calculated as the expectation, with respect to this particular risk-neutral measure,

of the discounted payoffs. When multiple risk-neutral measures are present, the

Esscher transforms method can yield a simple and unambiguous solution. However,
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in most part of this thesis except for Chapter 6, we will only consider a geometric

Brownian motion for the asset price process, in which case the risk-neutral measure

is unique.

2.6 Appendix

2.6.1 Proof of Example 2.2.1

Proof. We only derive (2.1). When µ = 0, an immediate consequence of the re-

flection principle (Proposition 2.2.1) is that the two events {XT > x,mT ≤ y} and

{2y−XT > x} occur with the same probability. When µ 6= 0, we utilize the Esscher

tranform factorization formula (2.7). According to the discussion in Example 2.5.1,

under the transformed measure with index −κ
2
, the drift term of {Xt} becomes

µ− κ
2
σ2 = 0. Therefore,

Pr (XT > x,mT ≤ y) = E
[
e−

κ
2
XT e

κ
2
XT1(XT > x,mT ≤ y)

]
= E

[
e−

κ
2
XT
]

E
[
e
κ
2
XT1(XT > x,mT ≤ y);−κ

2

]
= E

[
e−

κ
2
XT
]

E
[
e
κ
2

(2y−XT )
1(2y −XT > x);−κ

2

]
= eκyE

[
e−

κ
2
XT
]

E
[
e−

κ
2
XT1(2y −XT > x);−κ

2

]
= eκyE

[
e−

κ
2
XT
]

E
[
e
κ
2
XT1(2y +XT > x);−κ

2

]
= eκyPr (XT > x− 2y) .

The second to last step is due to the fact that XT and −XT have identical distri-

bution when µ = 0.

2.6.2 Proof of Proposition 2.4.1

Proof. First note that the two stochastic processes {e−λt+θ+λXt} and {e−λt+θ−λ Xt}

are martingales. When b > 0, we apply the optional stopping theorem to the first
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martingale {e−λt+θ+λXt} for the bounded stopping time τb ∧ t with some positive t.

In particular, we have

E
[
e−λ(τb∧t)+θ+λXτb∧t

]
= 1.

The equation above can be expanded as

E
[
e−λt+θ

+
λXt1(t < τb)

]
+ E

[
e−λτb+θ

+
λXτb1(t ≥ τb)

]
= 1. (2.10)

Observe that eθ
+
λXt < eθ

+
λ b when t < τb. Then we let t→∞ in the (2.10), and apply

the dominated convergence theorem. It follows that the first expectation tends to

zero and the second expectation tends to eθ
+
λ bE

[
e−λτb

]
because Xτb = b. Hence,

when t→∞, (2.10) becomes

eθ
+
λ bE

[
e−λτb

]
= 1,

from which the result follows immediately. When b < 0, we choose the second mar-

tingale and use a similar argument.
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CHAPTER 3

REVIEW OF EXISTING VALUATION APPROACHES

3.1 A brief overview

The purpose of this chapter is to provide the readers a brief literature review

of valuation approaches to pricing barrier options. Three particular methods will

be discussed. Our attention will be only given to those common types of barrier op-

tions within the classical BS framework (A review of option pricing in jump-diffusion

models will be given separately in Chapter 6). Due to our interest, some popular

barrier options, such as discretely monitored barrier options, will not be mentioned.

Before the survey, let us briefly review the basic set-up for option pricing.

We start with the filtered probability space (Ω,F ,Ft,Pr) to describe the un-

certainty of the financial world, where Ft can be regarded as the information avail-

able up to time t and Pr is the physical probability. In the BS model, the asset

price process {St} can be expressed as a geometric Brownian motion

St = S0 exp(µt+ σWt), 0 ≤ t ≤ T, (3.1)

where µ and σ are constants, {Wt} is a standard Brownian motion and T is a

fixed time horizon. We assume the asset pays no dividends, but nevertheless a

proportional constant dividend yield can be easily incorporated into the general

drift parameter. We also assume that the risk-free interest rate is constant, denoted

by r. Then according to Harrison and Kreps (1979) and Harrison and Pliska (1981),

no arbitrage argument leads to the existence of a risk-neutral measure Pr∗ equivalent
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to Pr such that the option value is calculated as the expectation of the discounted

payoff under Pr∗. The dynamic of {St} under Pr∗ is given by

St = S0 exp((r − σ2/2)t+ σW ∗
t ), (3.2)

where {W ∗
t } is a standard Brownian motion under Pr∗. We remark that the risk-

neutral measure can also be found by the method of Esscher transforms (See Ex-

ample 2.5.2). Because the asset price process has the same form under Pr∗ and Pr,

one can, without loss of generality, use (3.1) when deriving pricing formulas. Now

let us begin the literature review.

The valuation of single-barrier options can be traced back to the seminal paper

Merton (1973), which derived a closed-form formula for the price of a down-and-

out call by solving the BS equation subject to certain boundary conditions. The

application of binomial tree methodology to knock-out options with rebates can be

found in Cox and Rubinstein (1985). Static hedging was pioneered by Peter Carr

for pricing path-dependent options. It was shown in, for example, Carr and Chou

(1997, 2002) that barrier options can be replicated staticly by a portfolio of path-

independent options, the prices of which are fairly easy to calculate. The problem of

a two-sided barrier is far less straightforward to tackle. Based on the classical results

in Anderson (1960), Kunitomo and Ikeda (1992) expressed the prices of knock-out

call and put options with two exponential boundaries in terms of doubly infinite

sums of normal probabilities. Kolkiewicz (2002) studied the exit times distributions

using a new method and provided a general valuation for a large class of double-

barrier options. Using path counting and the reflection principle, Sidenius (1998)

and Li (1998) obtained closed-form solutions of double knock-out options with flat

boundaries and exponential boundaries, respectively. The Laplace transform ap-

proach was considered in Geman and Yor (1996) and Pelsser (2000). Buchen and

Konstandatos (2009) developed the method of images to price double knock-out
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options with exponential boundaries and arbitrary payoffs. The partial differential

equation approach can be found, for example, in Zvan, Vetzal and Forsyth (2000)

to price barrier options in a unified framework.

Two exotic variations of barrier options worth mentioning are outside bar-

rier options and partial barrier options, which were proposed by Heynen and Kat

(1994a) and Heynen and Kat (1994b), respectively. In an outside barrier option,

the asset (called an outside asset or an external barrier variable) associated with

the barrier provision is not the same asset underlying the payoff. Heynen and Kat

(1994a) and Carr (1995) evaluated this type of options based on a bivariate as-

sumption. Kwok, Wu and Yu (1998) extended to a multi-asset model with a single

external barrier variable, and the problem for double barriers was studied in Wong

and Kwok (2003). Skipper (2007) applied the method of images to a very general

barrier variable which depends on multiple asset prices through a power function.

In a partial barrier option, the monitoring period either starts after the initiation

time of the contract or ends before the maturity time. Carr and Chou (2002) ap-

plied the static hedging technique to price this type of options. Guillaume (2003)

derived a closed-form formula for a window double-barrier option where the moni-

toring period is a strict subset of the option’s lifetime.

In particular, we revisit three time-honored pricing methods in the literature

and present them in the remaining of this chapter. As pointed out earlier, in the

BS framework, no-arbitrage pricing only requires us to modify the drift parameter

of the asset price process and the problem reduces to the calculation of a general

discounted expectation. Therefore, most of the time in this thesis when we are in

the BS world, we treat a general drift parameter µ and calculate related expecta-

tions. Since we assume a constant risk-free interest rate r, one can always obtain

the time-0 no-arbitrage price by multiplying back the discount factor e−rT and re-

placing µ by r − 1
2
σ2.
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3.2 Density integrations

The most direct way to determine the price of barrier options is to identify

the joint distribution of the underlying asset price at maturity and its extremum

restricted by the boundary up to the maturity time. Let mT denote the running

minimum of Xt = ln St
S0

from time 0 up to time T : mT = min
0≤t≤T

Xt. Given an

initial asset price s0 and an arbitrary payoff function π(s), the forward price of a

down-and-out option with a barrier B can be expressed as

E
[
π(s0e

XT )1 (s0e
mT > B)

]
, s0 > B. (3.3)

It is sufficient to find the joint distribution of XT and mT . Define the density

function g+(x; y) by

g+(x; y)dx = Pr (XT ∈ dx,mT > y) , y < x ∧ 0.

Differentiating both sides of equation (2.1) with respect to x, we are able to ex-

press g+(x; y) solely in terms of the density function of XT , denoted by φT (x). In

particular, we have

g+(x; y) = φT (x)− eκyφT (x− 2y),

where κ = 2µ
σ2 . Then expectation (3.3) becomes

Es0

[
π(s0e

XT )1 (s0e
mT > B)

]
=

∫ ∞
ln B
s0

π(s0e
x)g+

(
x; ln

B

s0

)
dx

=

∫ ∞
ln B
s0

π(s0e
x)φT (x)dx− eκ ln B

s0

∫ ∞
ln B
s0

π(s0e
x)φT

(
x− 2 ln

B

s0

)
dx.
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The first integral is∫ ∞
ln B
s0

π(s0e
x)φT (x)dx =

∫ ∞
−∞

π(s0e
x)1(s0e

x > B)φT (x)dx

= E
[
π(s0e

XT )1(s0e
XT > B)

]
= Es0 [π(ST )1(ST > B)] ,

where Es0 [·] means the expectation is computed given that the initial asset price

S0 = s0. By the change of variable z = x− 2 ln B
s0
, the second integral becomes∫ ∞

ln B
s0

π(s0e
x)φT

(
x− 2 ln

B

s0

)
dx =

∫ ∞
− ln B

s0

π

(
B2

s0

ez
)
φT (z) dz

=

∫ ∞
−∞

π

(
B2

s0

ez
)
1

(
B2

s0

ez > B

)
φT (z) dz

= EB2

s0

[π(ST )1(ST > B)] ,

where EB2

s0

[·] means the expectation is computed given that the initial asset price

S0 = B2

s0
. Note that e

κ ln B
s0 =

(
B
s0

)κ
. Hence, we arrive at obtaining a representation

formula for the time-0 forward price of the down-and-out option:

E
[
π(s0e

XT )1 (s0e
mT > B)

]
= Es0 [π(ST )1(ST > B)]−

(
B

s0

)κ
EB2

s0

[π(ST )1(ST > B)] , s0 > B. (3.4)

Remark 3.2.1. To evaluate the right-hand side of (3.4), one only needs to deter-

mine the first expectation. In fact, if we consider the first expectation as a function

of the initial price s0, the second expectation is the function just obtained but eval-

uated at B2

s0
.

Remark 3.2.2. The calculations can be quite tedious if we choose to use the “real”

joint density function of XT and mT , that is, Pr(XT ∈ dx,mT ∈ dy). See, for ex-

ample, Section 7.3.3 in Shreve (2010) which used several pages to integrate the joint
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density of XT and its running maximum to derive the formula of the price of an

up-and-out call option.

Remark 3.2.3. To handle up-and-out or up-and-in options, one will need to find

the joint distribution of XT and MT , which can be derived from (2.2). Some may be

more interested in the joint distribution of the triplet (XT ,mT ,MT ), which is the key

to pricing double-barrier options. However, it turns out to be far less straightforward

to identify this joint distribution, especially when the drift parameter µ is not zero.

The closed-form expression of this trivariate density has been available for quite

some time in the literature of probability theory (See, for example, formula (4.1.48)

in Kwok (2008)). Define the density function g(x; y, z) such that

g(x; y, z)dx = Pr(XT ∈ dx,mT > y,MT < z).

Then g(x; y, z) can be expressed as the doubly infinite sum

g(x; y, z) =
∞∑

n=−∞

e(y−z)nκ[φT (x− 2(y − z)n)− eyκφT (x− 2y − 2(y − z)n)
]
,

where φT (x) is the density function of XT .

3.3 Static hedging

Static hedging was pioneered by Professor Peter Carr for the purpose of valuing

barrier options through a portfolio of path-independent options (See, for example,

Carr (1995), Carr and Chou (1997, 2002)). This technique is essentially derived

from applying the reflection principle to the underlying asset price process at its

first passage time of a pre-specified barrier. Let us first describe a different version

of the reflection principle for geometric Brownian motion.
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Proposition 3.3.1. Let π(s) denote a general payoff function, and define its re-

flected payoff function with respect to the barrier B as

π∗(s) =

(
B

s

)κ
π

(
B2

s

)
, (3.5)

where κ = 2µ
σ2 . Let t ∈ [0, T ]. Then given St = B, the payoffs π(ST ) and π∗(ST )

have the same conditional expectation.

Remark 3.3.1. Proposition 3.3.1 can be viewed as a more generalized version of

the reflection principle (Proposition 2.2.1) because the payoff function is arbitrary.

The expression
(
B
s

)κ
accounts for the non-zero drift parameter.

Proof of Proposition 3.3.1. By the Esscher transform factorization (2.7), we have

E

[(
B

ST

)κ
π

(
B2

ST

) ∣∣∣∣St = B

]
= E

[(
B

ST

)κ ∣∣∣∣St = B

]
E

[
π

(
B2

ST

) ∣∣∣∣St = B;−κ
]
.

Because {(St)−κ} is a martingale,

E

[(
B

ST

)κ ∣∣∣∣St = B

]
=

(
B

B

)κ
= 1.

Under the transformed measure with index −κ, Xt = ln St
S0

becomes a linear Brow-

nian motion with modified drift µ − κσ2 = −µ and the same volatility σ. It then

follows that {Xt, t ≤ T} under the transformed measure has the same distribution

as {−Xt, t ≤ T} under the original measure. Hence,

E

[
π

(
B2

ST

) ∣∣∣∣St = B;−κ
]

= E

[
π

(
B2

BeXT−Xt

)
;−κ

]
= E

[
π
(
BeXT−Xt

)]
= E [π (ST ) |St = B] .

Here we also use the fact that {Xt} has independent increments.
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Now let us explain the procedure of static hedging of, for example, a down-

and-out option. We claim that a down-and-out option can be replicated using a

path-independent option with maturity payoff

π(ST )1(ST > B)−
(
B

ST

)κ
π

(
B2

ST

)
1(ST < B).

Here, the word “static” means that we do not need to dynamically rebalance the

replicating portfolio prior to maturity. Define πB(s) = π(s)1(s > B), then the

payoff above can be expressed as πB(ST ) − π∗B(ST ) where π∗B(s) is the reflected

payoff function of πB(s) as defined in (3.5). To hedge the down-and-out options,

one can at time 0 hold a portfolio consisting of a long position on the options

with payoff πB(ST ) and a short position on the options with payoff π∗B(ST ). If the

barrier is never breached prior to maturity, the portfolio delivers a payoff of π(ST ),

matching the payoff of the barrier options. Otherwise, the barrier options expire

worthless upon breaching the barrier, and one can then close both positions in the

portfolio, also resulting in a zero value at the time of breaching, which follows from

Proposition 3.3.1.

Therefore, given S0 = s0, we can write the time-0 forward price of down-and-

out options as

Es0

[
π(ST )1

(
min

0<t≤T
St > B

)]
= Es0 [π(ST )1(ST > B)]− Es0

[(
B

ST

)κ
π

(
B2

ST

)
1(ST < B)

]
. (3.6)

Following the same argument used in the proof of Proposition 3.3.1, we can easily

demonstrate that the second expectation on the right-hand side of (3.6) is equal to(
B

s0

)κ
EB2

s0

[π (ST )1(ST > B)] .

Hence, formula (3.6) indeed agrees with formula (3.4). The other three types of

single-barrier options can be hedged and valued in a similar fashion. Table 3.1
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summarizes the replicating portfolios for all types of single-barrier options. For a

comprehensive discussion of static hedging to price various types of barrier options

(and exotic variations), we refer to Carr and Chou (2002).

Table 3.1: Static hedging of single-barrier options

Option type Maturity payoff Static portfolio payoff

Up-and-out π(ST )1

(
max

0<t≤T
St < B

) 
π(ST ) ST < B

−
(
B

ST

)κ
π

(
B2

ST

)
ST > B

Up-and-in π(ST )1

(
max

0<t≤T
St > B

) 
0 ST < B

π(ST ) +

(
B

ST

)κ
π

(
B2

ST

)
ST > B

Down-and-out π(ST )1

(
min

0<t≤T
St > B

) 
π(ST ) ST > B

−
(
B

ST

)κ
π

(
B2

ST

)
ST < B

Down-and-in π(ST )1

(
min

0<t≤T
St < B

) 
0 ST > B

π(ST ) +

(
B

ST

)κ
π

(
B2

ST

)
ST < B

3.4 Method of images

The prices of barrier options satisfy the BS partial differential equation subject

to some boundary conditions modified to account for the barrier event. Merton

(1973) is considered as the first one appeared in the literature to solve the BS

equation and derive an explicit formula for the price of down-and-out call options.

The procedure is very similar to that for plain vanilla options such as calls and

puts. Under certain variable transformations, one would be able to translate the

BS equation to a heat equation subject to some semi-infinite boundary conditions,

which can be solved through a routine procedure.

Now we treat a down-and-out option as an example. Let v(s, t) denote its
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time-t price given that St = s. Also, let u(s, t) denote the price of the corresponding

plain vanilla options without the barrier feature. We know that v(s, t) satisfies the

BS equation

1

2
σ2s2∂

2v

∂s2
+ rs

∂v

∂s
+
∂v

∂t
− rv = 0, s > B, 0 ≤ t < T, (3.7)

with the boundary conditions

v(B, t) = 0, (3.8)

v(s, T ) = u(s, T ) = π(s). (3.9)

One can formulate similar equations for the other three types of single-barrier op-

tions according to Table 3.2. Let us briefly explain the boundary conditions (3.8)

and (3.9): the down-and-out options become void upon breaching the barrier prior

to maturity, which yields (3.8); condition (3.9) basically means that the payoff π(s)

is granted at the time of maturity if the barrier has never been reached before.

Table 3.2: Active domains and boundary conditions for v(s, t)

Option type Active domain of (s, t) Boundary conditions

Up-and-out (0, B)× [0, T )

{
v(B, t) = 0

v(s, T ) = u(s, T )

Up-and-in (0, B)× [0, T )

{
v(B, t) = u(B, t)

v(s, T ) = 0

Down-and-out (B,∞)× [0, T )

{
v(B, t) = 0

v(s, T ) = u(s, T )

Down-and-in (B,∞)× [0, T )

{
v(B, t) = u(B, t)

v(s, T ) = 0
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Now consider the following variable transformations:

x = ln
s

B
, z = σ2(T − t), Hv(x, z) = e

1
2
κx+ζ(T−t)v(s, t),

where κ = 2µ
σ2 with µ = r − 1

2
σ2 and ζ = r + 1

8
κ2σ2. It is easy to verify that the

BS equation (3.7) to (3.9), after the transformation, reduce to a heat equation for

Hv(x, z):

1

2

∂2Hv

∂x2
− ∂Hv

∂z
= 0, x > 0, 0 < z ≤ σ2T, (3.10)

with the boundary conditions

Hv(0, z) = 0, (3.11)

Hv(x, 0) = e
1
2
κxπ(Bex). (3.12)

This is a semi-infinite boundary problem which can be solved using variable sep-

aration or the Fourier transform inversion. It is called “semi-infinite” because the

active domain of x is the positive real line.

We now introduce an approach called method of images, which can signifi-

cantly simplify the derivation when dealing with the heat equation. Note that if

Hv(x, z) is a solution to (3.10), so is −Hv(−x, z). Hence, we can somehow extend

the domain of x to the whole real line so that we will be dealing with an “infinite”

boundary problem instead, and we also want the condition (3.11) satisfied auto-

matically. Let us see how to achieve this. Recall that u(s, t) denotes the price of

the corresponding plain vanilla options. The it also satisfies the BS equation (3.7)

but the active domain of (s, t) becomes (0,∞)× [0, T ) and it is only subject to the

second condition (3.9). We can make the exactly same change of variables for u(s, t)

and obtain its corresponding heat equation of Hu(x, z):

1

2

∂2Hu

∂x2
− ∂Hu

∂z
= 0, −∞ < x <∞, 0 < z ≤ σ2T,
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with the boundary condition

Hu(x, 0) = e
1
2
κxπ(Bex).

Notice that the equations above lead to an infinite boundary problem. We further

refine the boundary condition so that the function vanishes on the negative real line.

To do this, let û(x, z) denote a function such that its corresponding transformed

function H û(x, z) satisfies

1

2

∂2H û

∂x2
− ∂H û

∂z
= 0, −∞ < x <∞, 0 < z ≤ σ2T,

with the boundary condition

H û(x, 0) = e
1
2
κxπ(Bex)1(x > 0).

Therefore, û(s, t) corresponds to the time-t price of a plain vanilla option with payoff

function equal to π(s)1(s > B). We now can observe the following relation between

H û(x, z) and Hv(x, z):

Hv(x, z) = H û(x, z)−H û(−x, z).

In particular, one can verify that the right-hand side of the equation above satisfies

equations (3.10) to (3.12). To obtain the relation between v(s, t) and û(s, t), we

reverse the change of variables. It follows that

v(s, t) = e−
1
2
κx−ζ(T−t)Hv(x, z)

= e−
1
2
κx−ζ(T−t) [H û(x, z)−H û(−x, z)

]
= e−

1
2
κx−ζ(T−t)

[
e

1
2
κx+ζ(T−t)û(s, t)− e−

1
2
κx+ζ(T−t)û(Be−x, t)

]
= û(s, t)− e−κxû(Be−x, t)

= û(s, t)−
(
B

s

)κ
û

(
B2

s
, t

)
, (3.13)

where we have defined û(s, t) as the time-t price of a binary option with payoff
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function π(s)1(s > B). Hence,

û(s, t) = E
[
e−r(T−t)π(ST )1(ST > B)|Ft, St = s

]
,

and formula (3.13) agrees with (3.4) and (3.6) when t = 0.

Remark 3.4.1. The method of images approach can also be used to evaluate more

sophisticated barrier options. See the book Buchen (2012) for the development of

this approach in pricing a variety of exotic options. In Buchen and Konstandatos

(2009), the method of images approach was extended to price double knock-out

options with exponential boundaries and arbitrary payoffs.
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CHAPTER 4

PRICING BARRIER OPTIONS VIA EXPONENTIAL
STOPPING: A NEW VALUATION APPROACH

4.1 Introduction

It seems that little can be further achieved in option pricing under the cel-

ebrated BS framework. We show an opposite view by presenting a new valuation

approach to pricing a large class of barrier options. The pricing of path-dependent

options such as barrier options usually requires one to take advantage of the sym-

metry property of Brownian motions, which is typically expressed by the reflection

principle. In addition, when dealing with more complicated barrier options, chang-

ing the drift of a Brownian motion from one to another is inevitable, and this is

usually done by change of measure using the Girsanov theorem.

In this chapter, we shall price a variety of barrier options using a new method

based on exponential stopping, which obviates the explicit needs for the reflection

principle and change of measure. The exponential stopping basically replaces the

fixed maturity time by an independent exponential random variable, leading to the

Laplace transform of the option value with respect to the maturity time. Partially

thanks to the memoryless property, this Laplace transform is fairly easy to calcu-

late in an explicit form (See Geman and Yor (1996)). However, we will not invert

the Laplace transform, instead we shall manage to show that the exponential stop-

ping directly yields the option value for fixed maturity time. The most exotic case
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we consider in this chapter is a double knock-out option with exponentially time-

varying boundaries and arbitrary payoffs. We refine the path counting technique

(See Anderson (1960), Li (1998) and Sidenius (1998) for example) to express the

double knock-out event as doubly infinite sums, and our results can be structured

to price more exotic variations of barrier options, which will be discussed in detail

in Chapter 5. We should point out that all the formulas derived in this chapter

using our new method have been available in the literature in some alternative ex-

pressions.

Let us describe the organization of the remainder of this chapter. Section 4.2

treats barrier options with a single flat boundary. Section 4.3 treats barrier options

with an exponential boundary. Section 4.4 treats a double knock-out option with

exponential boundaries, discusses the convergence about one of our major pricing

formulas and provides some numerical examples.

4.2 Single-barrier options

We follow the setting for the BS model described at the beginning of Chapter

3. Define the hitting time of {St} with respect to a barrier B as

τB = inf {t > 0|St = B} .

Given an initial asset price s0 < B, the time-0 forward price of an up-and-in option

corresponds to the expectation

Es0 [π(ST )1(τB < T )] . (4.1)

Depending on whether the terminal asset price is above or below the barrier, the

expectation (4.1) can be further written as the sum of the following two terms,

Es0 [π(ST )1(ST > B, τB < T )] + Es0 [π(ST )1(ST < B, τB < T )] . (4.2)
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Note that every continuous path of the underlying asset price process that starts

at s0 < B and terminates at ST > B must breach the barrier before maturity, and

thus the first expectation in (4.2) simply reduces to

Es0 [π(ST )1(ST > B)] . (4.3)

To determine the second expectation in (4.2), we resort to the exponential stopping

of Brownian motion. In particular, let ελ denote an exponential random variable

with mean 1/λ and independent of the process {St}. We replace the fixed maturity

T by ελ and evaluate the expectation

Es0 [π(Sελ)1(Sελ < B, τB < ελ)] . (4.4)

Conditioning on the stopping time τB, we apply the memoryless property of ex-

ponential distribution and the strong Markov property, and hence arrive at the

equation

Es0 [π(Sελ)1(Sελ < B, τB < ελ)|FτB , τB] = e−λτBEB [π(Sελ)1(Sελ < B)] .

By the law of iterated expectations, (4.4) is rewritten as

Es0 [π(Sελ)1(Sελ < B, τB < ελ)] = Es0

[
e−λτB

]
· EB [π(Sελ)1(Sελ < B)]

=
(s0

B

)θ+λ
EB [π(Sελ)1(Sελ < B)] , (4.5)

where θ+
λ denotes the positive root of the equation of θ

σ2

2
θ2 + µθ − λ = 0. (4.6)

The last step is an immediate consequence of Proposition 2.4.1 by setting b = ln B
s0

.

Note that the expression
(
s0
B

)θ+λ in (4.5) depends on the parameter λ. Now we

let s1 be a number such that s1 > B. Then every continuous sample path of the

underlying asset price process that starts at s1 and terminates below the barrier
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must breach the barrier before maturity. Therefore, we have

Es1 [π(Sελ)1(Sελ < B)] = Es1 [π(Sελ)1(Sελ < B, τB < ελ)]

= Es1

[
e−λτB

]
· EB [π(Sελ)1(Sελ < B)]

=
(s1

B

)θ−λ
EB [π(Sελ)1(Sελ < B)] , (4.7)

where θ−λ denotes the negative root of the equation (4.6). By the memoryless prop-

erty and the Markov property, the derivation of (4.7) is essentially the same as that

of (4.5). We specifically choose

s1 =
B2

s0

. (4.8)

Then s1 > B because we assume s0 < B. It is implied by (4.7) that

EB [π(Sελ)1(Sελ < B)] =
(s0

B

)θ−λ
EB2

s0

[π(Sελ)1(Sελ < B)] .

Substituting the equation above back to (4.5) yields

Es0 [π(Sελ)1(Sελ < B, τB < ελ)] =
(s0

B

)θ+λ +θ−λ
EB2

s0

[π(Sελ)1(Sελ < B)]

=

(
B

s0

)κ
EB2

s0

[π(Sελ)1(Sελ < B)] , (4.9)

where

κ = −
(
θ+
λ + θ−λ

)
=

2µ

σ2

because θ+
λ and θ−λ are the solutions of the equation (4.6).

Note that the choice of s1 given by (4.8) makes the expression
(
B
s0

)κ
indepen-

dent of the parameter λ. Therefore, we claim that the exponential random variable

ελ can be changed back to a positive fixed time T , and we obtain a formula for the

second expectation in (4.2):

Es0 [π(ST )1(ST < B, τB < T )] =

(
B

s0

)κ
EB2

s0

[π(ST )1(ST < B)] . (4.10)

This can be heuristically derived from the fact that the collection of combinations
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of exponential distributions is weakly dense in the set of all distributions defined

on the positive real line (See, for example, Dufresne (2007)). As a consequence,

equation (4.9) still holds if ελ on both sides is replaced by an arbitrary positive

random variable independent of {St}, and of course, by a positive fixed time T as a

special case. Combining (4.2), (4.3) and (4.10), we arrive at getting a representation

pricing formula for up-and-in options:

Es0 [π(ST )1(τB < T )] = Es0 [π(ST )1(ST > B)] +

(
B

s0

)κ
EB2

s0

[π(ST )1(ST < B)] ,

where the expectations on the right-hand side are the forward prices of some binary

options (all-or-nothing options), which are easy to calculate.

Remark 4.2.1. There is an altenative way to see why equation (4.9) also holds for

any positive fixed time. Define an auxiliary function Λt such that

Λt = Es0 [π(St)1(St < B, τB < t)]−
(
B

s0

)κ
EB2

s0

[π(St)1(St < B)] .

Then equation (4.9) implies that the Laplace transform of Λt is zero for every

positive λ: ∫ ∞
0

e−λtΛtdt = 0.

The Laplace transform is in general not a one-to-one operator, so the function whose

Laplace transform is zero may not necessarily be a zero function. Here we want to

further assume that the function Λt is continuous in t, then one can conclude that

Λt = 0 for every positive t, which leads to (4.10). The proof of this claim is a simple

exercise in real analysis and will be provided in Section 4.5.1.

For down-and-in options, we do not need to repeat the entire procedure de-

scribed above; instead, we can simply switch the positions of the process {St} and
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the barrier. It then follows that with s0 > B, the time-0 forward price of down-

and-in options is given by

Es0 [π(ST )1(τB < T )] = Es0 [π(ST )1(ST < B)] +

(
B

s0

)κ
EB2

s0

[π(ST )1(ST > B)] .

The corresponding knock-out options can be valued by the in-out parity. The fol-

lowing theorem provides the prices of all types of single-barrier options.

Theorem 4.2.1. Given initial asset value s0, the time-0 forward prices of up-and-

in, up-and-out, down-and-in and down-and-out options are respectively given by

Vui = V +
π (s0, B) +

(
B

s0

)κ
V −π

(
B2

s0

, B

)
, s0 < B, (4.11)

Vuo = V −π (s0, B)−
(
B

s0

)κ
V −π

(
B2

s0

, B

)
, s0 < B, (4.12)

Vdi = V −π (s0, B) +

(
B

s0

)κ
V +
π

(
B2

s0

, B

)
, s0 > B, (4.13)

Vdo = V +
π (s0, B)−

(
B

s0

)κ
V +
π

(
B2

s0

, B

)
, s0 > B, (4.14)

where

V ±π (s, x) = Es [π(ST )1(ST ≷ x)] (4.15)

denote the time-0 forward prices of some binary options and κ = 2µ
σ2 .

Remark 4.2.2. It is worth mentioning that our approach does not use traditional

techniques such as the reflection principle and change of probability measure.

Remark 4.2.3. We also remark that Theorem 4.2.1 delivers representation for-

mulas for single-barrier options which are written as combinations of the prices of

binary options (all-or-nothing options). These expressions show their advantage in

being extended to study the cases of a variety of exotic variations of barrier options,
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which will be discussed in the next chapter.

Example 4.2.1 (Up-and-in call and put options). We make the formulation a

general one by treating an arbitrary payoff function π(s). In this example, the

explicit solutions of up-and-in call and put will be given. Let π(s) = (s −K)+ or

(K− s)+ where K is the strike price. We assume the underlying asset does not pay

any dividends. To derive the time-0 no-arbitrage prices, we multiply the discount

factor e−rT and let the drift term µ = r − 1
2
σ2 in the formulas in Theorem 4.2.1.

The time-0 no-arbitrage price of up-and-in call options is given by

Vuic =

d(s0;K,B) +

(
B

s0

)κ [
d

(
B2

s0

;K,K

)
− d

(
B2

s0

;K,B

)]
K < B

d(s0;K,K) K ≥ B

and the time-0 no-arbitrage price of up-and-in put options is given by

Vuip =


(
B

s0

)κ [
d

(
B2

s0

;K,K

)
+Ke−rT − B2

s0

]
K < B

d(s0;K,K)− d(s0;K,B) +

(
B

s0

)κ [
d

(
B2

s0

;K,B

)
+Ke−rT − B2

s0

]
K ≥ B

where

d(s;x, y) = sΦ

(
ln s

y
+
(
r + 1

2
σ2
)
T

σ
√
T

)
− xe−rTΦ

(
ln s

y
+
(
r − 1

2
σ2
)
T

σ
√
T

)
denotes the value of a gap option with initial asset price s, strike price x and trig-

ger price y, and Φ(·) is the distribution function of standard normal random variable.

4.3 Single-barrier options with exponential boundary

We can easily extend to the case where the asset price process is restricted by

an exponential boundary. Assume the boundary Bt = Beδt, and thus the time-0

forward price of an up-and-in option is expressed as

Es0

[
π(ST )1

(
max

0≤t≤T
(St −Beδt) > 0

)]
, s0 < B.
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Define S̃t = Ste
−δt and π̃(s) = π(seδT ). One can rewrite the expectation above as

Es0

[
π̃(S̃T )1

(
max

0≤t≤T
(S̃t −B) > 0

)]
, S̃0 = s0 < B.

This reduces to the problem of up-and-in options with flat boundary B where the

asset price process is {S̃t} and the payoff function is π̃(s). Applying equation (4.11)

in Theorem 4.2.1 yields

Es0

[
π(ST )1

(
max

0≤t≤T
(St −Beδt) > 0

)]
= V +

π

(
s0, Be

δT
)

+

(
B

s0

) 2(µ−δ)
σ2

V −π

(
B2

s0

, BeδT
)
.

The other three types of barrier options can be valued in a similar fashion. We

obtain the following corollary.

Corollary 4.3.1. Given initial asset value s0, the time-0 forward prices of up-

and-in, up-and-out, down-and-in and down-and-out options with the exponential

boundary Bt = Beδt are respectively given by

Veui = V +
π (s0, BT ) +

(
B

s0

)κ̃
V −π

(
B2

s0

, BT

)
, s0 < B, (4.16)

Veuo = V −π (s0, BT )−
(
B

s0

)κ̃
V −π

(
B2

s0

, BT

)
, s0 < B, (4.17)

Vedi = V −π (s0, BT ) +

(
B

s0

)κ̃
V +
π

(
B2

s0

, BT

)
, s0 > B, (4.18)

Vedo = V +
π (s0, BT )−

(
B

s0

)κ̃
V +
π

(
B2

s0

, BT

)
, s0 > B, (4.19)

where we have defined V ±π (s, x) = Es [π(ST )1(ST ≷ x)] and κ̃ = 2(µ−δ)
σ2 .

Remark 4.3.1. As a check, we can let δ = 0 in Corollary 4.3.1 to recover the

results in Theorem 4.2.1.
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4.4 Double-barrier options with exponential boundaries

We in this section tackle the problem of double-barrier options delimited by

two non-parallel curved boundaries that vary exponentially in time. Denote by Ut =

Ueδ1t and Lt = Leδ2t the upper boundary and the lower boundary respectively. If

δ1 = δ2 = 0, it reduces to the case of two flat boundaries. We assume Ueδ1T > Leδ2T

to guarantee that these two boundaries do not intersect before maturity.

A double knock-out option comes into being if the underlying asset price never

breaches either barrier prior to maturity. Otherwise, the option expires worthless

upon the time of breaching. Therefore, its time-0 forward price is given by

Es0

[
π(ST )1

(
max

0≤t≤T
(St − Ueδ1t) < 0, min

0≤t≤T
(St − Leδ2t) > 0

)]
, L < s0 < U.

Define two hitting times of {St}

τ̃U = inf{t > 0|St = Ueδ1t} and τ̃L = inf{t > 0|St = Leδ2t}.

Let τ̃U ∧ τ̃L denote the minimum between τ̃U and τ̃L, then the time-0 forward price

of double knock-out options can be rewritten as

Es0 [π(ST )1 (τ̃U ∧ τ̃L > T )] , L < s0 < U. (4.20)

The evaluation of (4.20) is far less straightforward than that for a single-barrier case

because the path-dependent component is characterized by two barriers instead of

one. Therefore, the relative order of the process {St} in breaching the two barri-

ers should be carefully considered. Our approach further modifies the results in Li

(1998) and Sidenius (1998) and decomposes the double knock-out event τ̃U ∧ τ̃L > T

according to a series of breaching patterns.



40

4.4.1 Path counting of double knock-out

Definition 4.4.1. Let B0 denote the sample space of all continuous paths of the un-

derlying asset price process {St} over the time interval [0, T ]. We introduce {Bn}n≥1

and {B−n}n≥1, two sequences of subsets of B0. For S0 < U, let Bn be the event that

there exist n time points 0 < t1 < · · · < tk < · · · < tn ≤ T, such that Stk = Utk

when k is odd and Stk = Ltk when k is even. Analogously, for S0 > L, let B−n be

the event that there exist n time points 0 < t1 < · · · < tk < · · · < tn ≤ T, such that

Stk = Ltk when k is odd and Stk = Utk when k is even.

Remark 4.4.1. Sidenius (1998) and Li (1998) also introduced analogous concepts

as in Defintion 4.4.1; the former treated flat boundaries and the latter treated ex-

ponential boundaries.

Figure 4.1 shows possible examples of the events of interest, B2n, B2n−1, B−2n

and B−(2n−1), for L < S0 < U and two flat barriers. Obviously, Bn is the event that

the process {St} alternates breaching the two barriers for n times and starts with

an upcrossing; B−n is the event that the process {St} alternates breaching the two

barriers for n times and starts with a downcrossing. The following nesting relations

can be obtained by inspection:

B0 ⊃ Bn ⊃ Bn+1, B0 ⊃ B−n ⊃ B−(n+1), n = 1, 2, · · · , (4.21)

and when L < S0 < U,

Bn ⊃ B−(n+1), B−n ⊃ Bn+1, n = 1, 2, · · · . (4.22)

Using the concept of path counting, we obtain the following identities, which serve

as the basic ingredients in deriving the prices of double-barrier options.
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S0

U

L

1

2

2n −1

2n

B2n :

S0

U

L

1

2

2n −1

2n − 2

B2n−1 :

S0

U

L 1

2

2n −1

2n
B−2n :

S0

U

L 1

2

2n −1

2n − 2
B−(2n−1) :

Figure 4.1: Examples of B±n, n ≥ 1.

Proposition 4.4.1. When L < S0 < U, almost surely,

1(τ̃U < τ̃L ∧ T ) =
∞∑
n=1

1B2n−1 −
∞∑
n=1

1B−2n , (4.23)

1(τ̃L < τ̃U ∧ T ) =
∞∑
n=1

1B−(2n−1)
−
∞∑
n=1

1B2n . (4.24)

As a result,

1(τ̃U ∧ τ̃L > T ) =
∞∑

n=−∞

1B2n −
∞∑

n=−∞

1B2n−1 . (4.25)
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Remark 4.4.2. The intuition behind Proposition 4.4.1 is not difficult to understand

if one uses the inclusion-exclusion reasoning and notices the nesting relations (4.22).

For example, the left-hand side of identity (4.23) means that the process {St} hits

the upper barrier first and it occurs before the maturity time T . It is natural to

include the event B1. But B1 may contain the possibility that the lower barrier is

hit first, which should be excluded. Thus we subtract B−2. But B−2 also contains

the possibility that the upper barrier is hit first and should be included. Thus we

add back B3. Note that B1 ⊃ B−2 ⊃ B3 ⊃ B−4 ⊃ · · · . We continue this procedure

for indefinitely many times and obtain

1(τ̃U < τ̃L ∧ T ) = 1B1 − 1B−2 + 1B3 − 1B−4 + · · · =
∞∑
n=1

1B2n−1 −
∞∑
n=1

1B−2n .

Switching the two barriers in (4.23) yields the second identity (4.24).

Remark 4.4.3. The utilization of path counting or similar techniques can be traced

back to, for example, Anderson (1960) which obtained some fundamental results

such as the probabilities of a standard Brownian motion hitting one linear bound-

ary before hitting the other one. To derive the corresponding probabilities for a

geometric Brownian motion, one can use the Girsanov theorem to perform change

of measure and take an exponential transformation of the Brownian motion. For a

detailed discussion about the case of geometric Brownian motion, we refer to the

proof of Theorem 2.1 in Kunitomo and Ikeda (1992).

It is worthwhile to point out that the right-hand sides of (4.23), (4.24) and

(4.25) are all well-defined because the infinite sums on the right-hand sides of the

identities are all finite almost surely. This can be guaranteed by the following propo-

sition.
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Lemma 4.4.2. For every outcome ω ∈ B0, there exists an integer N such that the

given outcome is not in B±n for all n ≥ N.

Lemma 4.4.2 follows from the result given in Sidenius (1998), which consid-

ered two flat barriers. For the sake of completeness, we also give an outline of the

proof here.

Proof of Lemma 4.4.2. Without loss of generality, we show the existence of N for

Bn, n ≥ 1. For a given outcome ω in B0, it induces a continuous function St(ω) over

the finite interval [0, T ]. If the conclusion is not true, then there exist two increasing

sequences of time points {t+n } and {t−n }, n = 1, 2, ..., in [0, T ] such that

St+n (ω) = Ut+n , St−n (ω) = Lt−n , t+n < t−n < t+n+1. (4.26)

The sequence {t+n } on the compact set [0, T ] guarantees a subsequence that coverges

to a time point, say t+. By the continuity of the functions St(ω) and Ut, we have

St+(ω) = Ut+ . However, for every neighborhood of t+, there will be infinite many

points of {t+n } in it according to the definition of limiting point. Thus, by (4.26),

the given neighborhood will also contain a point, say t− such that St−(ω) = Lt− ,

which violates the continuity of St(ω).

Now, let us rigorously demonstrate Proposition 4.4.1. We shall present two

different proofs. The first one is based on Lemma 4.4.2.

First proof of Proposition 4.4.1. We only prove (4.23), and (4.24) is readily ob-

tained by switching the two barriers. Note that

1(τ̃U ∧ τ̃L > T ) = 1− 1(τ̃U < τ̃L ∧ T )− 1(τ̃L < τ̃U ∧ T ),
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and 1B0 = 1 almost surely, then identity (4.25) follows immediately. It suffices to

show that both sides of (4.23) are identical for every outcome ω ∈ B0. We basically

have two cases.

The first case: When the left-hand side of (4.23) is one, either the event {τ̃U < T <

τ̃L} or the event {τ̃U < τ̃L < T} occurs. If τ̃U < T < τ̃L, then the sample path

stays above the lower barrier before maturity, and hence, each indicator function

on the right-hand side of (4.23) vanishes except that 1B1 = 1. If τ̃U < τ̃L < T , we

apply Lemma 4.4.2. There exists a minimal integer N such that 1B±n = 0 when

n > N. Note that N ≥ 2 because the sample path breaches both barriers at least

once before maturity. Assume N is an odd number for the given sample path and

in particular, N = 2M + 1 for some M ≥ 1. Therefore, the right-hand side of (4.23)

reduces to a finite sum

M+1∑
n=1

1B2n−1 −
M∑
n=1

1B−2n . (4.27)

The minimality of N ensures that at least one of 1BN and 1B−N is equal to one. In

fact, one can show that for the given sample path such that τ̃U < τ̃L < T , 1BN = 1

and 1B−N = 0. Suppose 1B−N = 1, for example. Since the sample path breaches

the upper barrier first, then 1BN+1
= 1, which violates the minimality of N . The

nesting relations (4.21) and (4.22) imply that

1Bn ≥ 1BN = 1, 1 ≤ n ≤ N − 1.

Therefore, the expression (4.27) becomes (M + 1)−M = 1, which gives the right-

hand side of (4.23). When N is an even number, the argument follows similarly.

The second case: On the other hand, when the left-hand side of (4.23) is zero, either

the event τ̃U ∧ τ̃L > T occurs or the event τ̃L < τ̃U ∧ T occurs. If τ̃U ∧ τ̃L > T ,

then the two barriers are never breached before maturity time T , and hence each

indicator function on the right-hand side of (4.23) is zero. If τ̃L < τ̃U ∧ T , one can
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repeat those steps for the first case.

Second proof of Proposition 4.4.1. This proof is simpler than the first one and is

derived from the following two recursion formulas. When L < S0 < U, the following

identities hold almost surely for n ≥ 0:

1Bn+1 = 1B−n∩B+ + 1Bn+1∩B− , (4.28)

1B−(n+1)
= 1Bn∩B− + 1B−(n+1)∩B+ , (4.29)

where we define B+ = {τ̃U < τ̃L ∧ T} and B− = {τ̃L < τ̃U ∧ T}. We only show

(4.28), and identity (4.29) can be derived in a similar fashion. By Definition 4.4.1,

the event Bn+1 can be decomposed as the union of two disjoint events, B−n∩B+ and

Bn+1 ∩B−, depending on which barrier is breached first before time T . Apparently,

for every ω in B0, if the sample path {St(ω), 0 ≤ t ≤ T} breaches the upper barrier

first, then w is in B−n ∩ B+; otherwise, if the sample path {St(ω), 0 ≤ t ≤ T}

breaches the lower barrier first, then ω is in Bn+1 ∩ B−. Now, to evaluate 1B+ and

1B− , one simply recursively apply (4.28) and (4.29) starting at n = 0. For example,

we have

1B+ = 1B1 − 1B1∩B−

= 1B1 − (1B−2 − 1B−2∩B+)

= 1B1 − 1B−2 + 1B3 − 1B3∩B−

= · · ·

=
∞∑
n=1

1B2n−1 −
∞∑
n=1

1B−2n .

The indicator 1B− can be evaluated in a similar fashion.
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4.4.2 Pricing formula for double knock-out options based on
exponential stopping

Identity (4.25) demonstrates how double knock-out options can be hedged and

valued by a series of options that are activated given the two barriers are breached in

certain patterns. We shall show that each such option can reduce to a combination

of plain vanilla options, and as a consequence, we represent the price of double

knock-out options in terms of the prices of a combination of plain vanilla options.

Define Bπ
0 (s) = Es [π(ST )] and for n ≥ 1,

Bπ
n(s) = Es [π(ST )1Bn ] , s < U, (4.30)

Bπ
−n(s) = Es

[
π(ST )1B−n

]
, s > L. (4.31)

The recursion formulas for Bπ
n(s0) and Bπ

−n(s0) are presented below.

Lemma 4.4.3. For n ≥ 2 and L < s0 < U,

Bπ
n(s0) =

(
U

s0

)κ1
Bπ
−(n−1)

(
U2

s0

)
, (4.32)

Bπ
−n(s0) =

(
L

s0

)κ2
Bπ
n−1

(
L2

s0

)
, (4.33)

where κ1 = 2(µ−δ1)
σ2 and κ2 = 2(µ−δ2)

σ2 .

We shall later give a proof of Lemma 4.4.3 via the exponential stopping of

Brownian motion, which does not require the traditional techniques including the

reflection principle and change of probability measure. For an alternative proof that

applies these techniques, one can directly read Section 4.5.2.

Now let us combine Lemma 4.4.3 and identity (4.25) in Proposition 4.4.1 to

derive the pricing formula for the double knock-out options, which leads to the fol-

lowing theorem.
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Theorem 4.4.4. Given initial asset value s0 where L < s0 < U , the time-0 forward

price of double knock-out options with exponential boundaries Ut = Ueδ1t and Lt =

Leδ2t is given by the doubly infinite sum

Vedko =
∞∑

n=−∞

(
s0β

n

L

)γn
βnκ2

[
V ∗π
(
s0β

2n
)
−
(

L

s0β2n

)κ2
V ∗π

(
L2

s0β2n

)]
, (4.34)

where β = L
U
, γn = n(κ2 − κ1), κ1 = 2(µ−δ1)

σ2 , κ2 = 2(µ−δ2)
σ2 and

V ∗π (s) = Es [π(ST )1(LT < ST < UT )] (4.35)

denotes the time-0 forward price of a binary option.

Proof of Theorem 4.4.4. Applying inductions of (4.32) and (4.33) yields, for n ≥ 1,

Bπ
2n(s0) =

(
s0L

n−1

Un

)n(κ2−κ1)−κ2
Bπ
−1

(
U2n

s0L2n−2

)
, (4.36)

Bπ
2n−1(s0) =

(
s0L

n−2

Un−1

)(n−1)(κ2−κ1)+κ2 (L
s0

)κ2
Bπ

1

(
s0L

2n−2

U2n−2

)
. (4.37)

The expressions of Bπ
−2n(s0) and Bπ

−(2n−1)(s0) can be directly obtained by switching

the two barriers in (4.36) and (4.37), respectively. Hence,

Bπ
−2n(s0) =

(
s0U

n−1

Ln

)n(κ1−κ2)−κ1
Bπ

1

(
L2n

s0U2n−2

)
, (4.38)

Bπ
−(2n−1)(s0) =

(
s0U

n−2

Ln−1

)(n−1)(κ1−κ2)+κ1 (U
s0

)κ1
Bπ
−1

(
s0U

2n−2

L2n−2

)
. (4.39)

One can notice that when L < s < U , Bπ
1 (s) represents the forward price of an up-

and-in option with the upper barrier Ut = Ueδ1t and Bπ
−1(s) represents the forward

price of a down-and-in option with the lower barrier Lt = Leδ2t. As an immediate

result of Corollary 4.3.1, we have

Bπ
1 (s) = V +

π (s, UT ) +

(
U

s

)κ1
V −π

(
U2

s
, UT

)
, s < U, (4.40)

Bπ
−1(s) = V −π (s, LT ) +

(
L

s

)κ2
V +
π

(
L2

s
, LT

)
, s > L. (4.41)
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Let us define π̂(s) such that

π̂(s) = π(s)1(LT < s < UT ).

The double knock-out event τ̃U ∧ τ̃L > T implies that the terminal value of the asset

price must be in the range (LT , UT ), otherwise the option will be knocked out and

the payoff becomes zero. Hence, we have

π(ST )1(τ̃U ∧ τ̃L > T ) = π̂(ST )1(τ̃U ∧ τ̃L > T ), (4.42)

and we can feel free to replace π(s) by π̂(s) in all equations (4.36) to (4.41). Note

that when π(s) is replaced by π̂(s), the first terms on the right-hand sides of (4.40)

and (4.41) vanish. Combining equations (4.36) to (4.41) leads to

Bπ̂
2n(s0) =

(
s0L

n−1

Un

)n(κ2−κ1)+κ2 (L
s0

)κ2
V ∗π

(
s0L

2n

U2n

)
, (4.43)

Bπ̂
2n−1(s0) =

(
s0L

n−1

Un

)n(κ2−κ1)−κ2
V ∗π

(
U2n

s0L2n−2

)
, (4.44)

Bπ̂
−2n(s0) =

(
s0U

n−1

Ln

)n(κ1−κ2)+κ1 (U
s0

)κ1
V ∗π

(
s0U

2n

L2n

)
, (4.45)

Bπ̂
−(2n−1)(s0) =

(
s0U

n−1

Ln

)n(κ1−κ2)−κ1
V ∗π

(
L2n

s0U2n−2

)
. (4.46)

By identity (4.42) and the path counting (4.25) in Proposition 4.4.1,

Es0 [π(ST )1(τ̃U ∧ τ̃L > T )] = Es0 [π̂(ST )1(τ̃U ∧ τ̃L > T )]

=
∞∑

n=−∞

Bπ̂
2n(s0)−

∞∑
n=−∞

Bπ̂
2n−1(s0).

Here, the order of expectation and summation can be exchanged due to the fact that

the corresponding indicator functions and the payoff function are all non-negative.

We then substitute (4.43) to (4.46) into the last equation and formula (4.34) follows

after some simple rearrangements.
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In Theorem 4.4.4, the price of double knock-out options is expressed as dou-

bly infinite sums of the prices of path-independent options. This formula was first

derived by Kunitomo and Ikeda (1992) for call and put options. Once the path-

independent options are valued, the representation formula (4.34) becomes explicit.

In fact, closed-form solutions of the binary option price V ∗π (s) are available for most

payoff types. Due to the rapid decay of normal probabilities, we shall explain that

the doubly infinite series converge under some mild conditions such as boundedness

of the payoff function over the finite interval (LT , UT ).

Buchen and Konstandatos (2009) also discussed the pricing of double knock-

out options with exponential boundaries and arbitrary payoffs, and they used the

method of images approach to derive a pricing formula equivalent to (4.34). When

the payoff is of call or put type, our formula (4.34) reproduces the results obtained in

Kunitomo and Ikeda (1992). The well-known formula for double knock-out options

with two flat boundaries is clearly contained in Theorem 4.4.4 as a special case if

we let δ1 = δ2 = 0. Then κ1 = κ2 = κ = 2µ
σ2 , γn = 0 and the following corollary is

obtained.

Corollary 4.4.5. Given initial asset value s0 where L < s0 < U, the time-0 forward

price of double knock-out options with flat boundaries U and L is given by the doubly

infinite sum

Vdko =
∞∑

n=−∞

βnκ
[
V̄π
(
s0β

2n
)
−
(

L

s0β2n

)κ
V̄π

(
L2

s0β2n

)]
, (4.47)

where β = L
U
, κ = 2µ

σ2 and V̄π(s) = Es [π(ST )1(L < ST < U)].

We shall show in Section 4.5.3 a shortcut to get (4.47), which obviates the

need for Theorem 4.4.4 or path counting like (4.25). The proof will stand on its

own and basically utilizes the geometric expansion of the barrier option value after



50

we take the exponential stopping of the asset price process {St}. Unfortunately,

this approach fails when the two boundaries are non-flat and exponentially curved

with different curvatures (δ1 6= δ2).

Example 4.4.1 (Double knock-out call and put options). We first observe the

following relations

V ∗π (s) = V −π (s, UT )− V −π (s, LT ) = V +
π (s, LT )− V +

π (s, UT ), (4.48)

where V ∗π (s) is given by (4.35) and we have defined V ±π (s, x) = Es [π(ST )1(ST ≷ x)]

when studying single-barrier options. Let us consider call and put options for the

pricing formula (4.34), where π(s) = (s − K)+ or π(s) = (K − s)+ for a strike

price K which is assumed to be between LT and UT . We use relations in (4.48) to

calculate the binary option price V ∗π (s). For example, if π(s) = (K−s)+, V −π (s, UT )

reduces to the forward price of a K-strike put and V −π (s, LT ) reduces to the for-

ward price of a K- strike gap put with trigger price LT . Similar argument follows

if π(s) = (s − K)+. We shall not write down the explicit solutions of the double

knock-out call and put since they are too lengthy. Interested readers can refer to

Kunitomo and Ikeda (1992) for the corresponding explicit formulas. These exam-

ples will be numerically implemented in Section 4.4.3.

Now let us go back to prove Lemma 4.4.3 based on the exponential stopping

of Brownian motions.

Proof of Lemma 4.4.3. We only demonstrate (4.32), and (4.33) follows by switching

the two barriers. Without loss of generality, it is sufficient to deal with one flat

boundary and one curved boundary. Let δ1 = 0 in (4.32), in which case, κ1 = 2µ
σ2 and

Bn becomes the event associated with an upper barrier Ut = U and a lower barrier
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Lt = Leδ2t. In light of the idea used in the derivation for single-barrier options, we

replace the fixed maturity time T by an exponential random variable ελ, which is

independent of the process {St} and has mean 1/λ. Denote the corresponding event

by B̂n when the maturity time is ελ. For notional convenience, we write

E [Y 1A] = E [Y ;A]

for a random variable Y and an event A. Define

B̂π
n(s) = Es

[
π(Sελ); B̂n, ελ ≤ T

]
, n ≥ 2,

The event ελ ≤ T is included to avoid the situation where the two barriers intersect

before the maturity time T . We aim at showing

B̂π
n(s0) =

(
U

s0

)κ1
B̂π
−(n−1)

(
U2

s0

)
(4.49)

with κ1 = 2µ
σ2 . By definition, the event B̂n, n ≥ 2, implies that the process {St} must

breach the upper barrier at least once prior to maturity. Hence, we have

B̂π
n(s0) = Es0

[
π(Sελ); B̂n, ελ ≤ T, τU < ελ

]
, (4.50)

where τU is the hitting time. Because of the memoryless property of ελ and the

strong Markov property,

Es0

[
π(Sελ); B̂n, ελ ≤ T, τU < ελ

∣∣∣FτU , τU]
= e−λτUEs0

[
π(Sελ); B̂n, ελ ≤ T

∣∣∣FτU , τU , τU < ελ

]
= e−λτUEU

[
π(Sελ); B̂(τU )

−(n−1), ελ ≤ T − τU
∣∣∣τU] , (4.51)

where B̂(t)
n , t ≥ 0, is defined as the event associated with a lower barrier starting at

the level Leδ2t. When t = 0, the event B̂(t)
n simply reduces to B̂n. See Figure 4.2 as

a visual aid to understand (4.51).
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U

L
S0

ελτU

Leδ2τU

B̂n :
U

ελ

Leδ2τU

B̂−(n−1)
(τU ) :

Figure 4.2: An illustration of equation (4.51)

Now we introduce an auxiliary function ∆t such that

∆t = EU

[
π(Sελ); B̂(t)

−(n−1), ελ ≤ T − t
]
, t ≥ 0.

Then (4.51) can be expressed as e−λτU∆τU , and by the law of iterated expectations

as well as the definition (4.50),

B̂π
n(s0) = Es0

[
e−λτU∆τU

]
. (4.52)

Now let us evaluate the right-hand side of (4.49). Let s1 = U2

s0
. Then s1 > U because

s0 < U. Given S0 = s1, B̂−(n−1), n ≥ 2, implies that the process {St} must breach

the upper barrier from above prior to maturity. It then follows that

B̂π
−(n−1) (s1) = Es1

[
π(Sελ); B̂−(n−1), ελ ≤ T

]
= Es1

[
π(Sελ); B̂−(n−1), ελ ≤ T, τU < ελ

]
= Es1

[
e−λτU∆τU

]
.

In the last step we also apply the memoryless property of ελ and the strong Markov

property. Therefore, in terms of ∆t, equation (4.49) is equivalent to

Es0

[
e−λτU∆τU

]
=

(
U

s0

)κ1
Es1

[
e−λτU∆τU

]
. (4.53)
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It is not difficult to verify the equation above. Note that the Laplace transform of

the hitting time τU is given in Proposition 2.4.1. Hence, we have

Prs0 (τU < ελ) = Es0

[
e−λτU

]
=
(s0

U

)θ+λ
,

Prs1 (τU < ελ) = Es1

[
e−λτU

]
=
(s1

U

)θ−λ
=

(
U

s0

)θ−λ
.

Because θ+
λ + θ−λ = −2µ

σ2 = −κ1, it is obvious that

Prs0 (τU < ελ) =

(
U

s0

)κ1
Prs1 (τU < ελ) .

The coefficient κ1 is independent of the parameter λ. Because the class of combi-

nations of exponential distributions is weakly dense in the set of all distributions

defined on the positive real line, the equation above still holds when ελ is replaced

by a positive time t. Hence,

Prs0 (τU < t) =

(
U

s0

)κ1
Prs1 (τU < t) , t ≥ 0. (4.54)

Taking derivatives on both sides of (4.54) with respect to t, one can see that the

density functions of τU given S0 = s0 and s1 satisfy the same equation

fτU (t; s0) =

(
U

s0

)κ1
fτU (t; s1), t ≥ 0.

Thus, (4.53), and equivalently (4.49) are readily obtained. Again, we can change ελ

back to fixed T in (4.49) and this yields equation (4.32). The general case where

δ1 6= 0 is simply a trivial extension by considering S̃t = Ste
−δ1t, π̃(s) = π

(
seδ1T

)
,

an upper barrier Ut = U and a lower barrier Lt = Le(δ2−δ1)t.

Our results can be used to recover the well-known expressions of some impor-

tant densities and probabilities.
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Corollary 4.4.6. Define density functions f(x; t), f+(x; t) and f−(x; t) by

f(x; t)dx = Prs0(St ∈ dx, τ̃U ∧ τ̃L > t),

f+(x; t)dx = Prs0(St ∈ dx, τ̃U < τ̃L ∧ t),

f−(x; t)dx = Prs0(St ∈ dx, τ̃L < τ̃U ∧ t),

for some t > 0 where Prs0(·) denotes some probability given S0 = s0. Then we have

f(x; t) =
∞∑

n=−∞

[an(x, t)− bn(x, t)] Lt < x < Ut (4.55)

f+(x; t) =


∞∑
n=1

[
an−1(x, t)− b−(n−1)(x, t)

]
x > Ut

∞∑
n=1

[bn(x, t)− a−n(x, t)] 0 < x < Ut
(4.56)

f−(x; t) =


∞∑
n=1

[
b−(n−1)(x, t)− an(x, t)

]
x > Lt

∞∑
n=1

[
a−(n−1)(x, t)− bn(x, t)

]
0 < x < Lt

(4.57)

where

an(x, t) =

(
s0β

n

L

)γn
βnκ2

1

xσ
√
t
φ

(
lnx− ln s0β

2n − µt
σ
√
t

)
,

bn(x, t) =

(
s0β

n

L

)γn−κ2 1

xσ
√
t
φ

(
lnx− ln(L2/s0β

2n)− µt
σ
√
t

)
,

with φ(·) being the standard normal density function.

Proof of Corollary 4.4.6. Note that we already obtained the formulas for Bπ
±n(s0),

given by (4.36) to (4.39) in the proof of Theorem 4.4.4. Now simply let the payoff

function π(s) = 1(s ∈ dx) and apply Proposition 4.4.1. Note that the density func-

tion of St given S0 = s0 is Prs0(St ∈ dx) = 1
xσ
√
t
φ
(

lnx−ln s0−µt
σ
√
t

)
dx.

Remark 4.4.4. Using some fundamental results in Anderson (1960) as ingredients,

Kunitomo and Ikeda (1992) derived formula (4.55). Following the same procedure,
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Kolkiewicz (2002) also obtained formulas (4.56) and (4.57).

Remark 4.4.5. One should expect that the sum f(x; t) + f+(x; t) + f−(x, t) is

equal to the density function of St. Using the formulas (4.55) to (4.57), it is not

difficult to show that f(x; t)+f+(x; t)+f−(x, t) = a0(x, t) = 1
xσ
√
t
φ
(

lnx−ln s0−µt
σ
√
t

)
=

Prs0(St ∈ dx)/dx.

Corollary 4.4.7. For some t > 0,

Prs0 (τ̃U < τ̃L ∧ t) =
∞∑
n=1

[(
s0β

n−1

L

)γn−1

β(n−1)κ2Gt

(
ln
s0β

2n−1

L
, µ− δ1

)
−
(
Lβn−1

s0

)γn−1+κ2

Gt

(
ln
Lβ2n−1

s0

, µ− δ1

)]
, (4.58)

and

Prs0 (τ̃L < τ̃U ∧ t) =
∞∑
n=1

[(
Uβn−1

s0

)γn−1

β−(n−1)κ1Gt

(
ln

s0

Lβ2n−2
, µ− δ2

)
−
(
s0β

n−1

U

)γn−1−κ1
Gt

(
ln

U

s0β2n−1
, µ− δ2

)]
, (4.59)

where

Gt(x, y) = Φ

(
x+ yt

σ
√
t

)
+ e−

2xy

σ2 Φ

(
x− yt
σ
√
t

)
(4.60)

with Φ(·) being the standard normal distribution function.

Proof of Corollary 4.4.7. We can show (4.58) and (4.59) by integrating with re-

spect to x the density functions f+(x; t) and f−(x; t) given by (4.56) and (4.57)

respectively. For example,

Prs0 (τ̃U < τ̃L ∧ t) =

∫ ∞
0

Prs0 (St ∈ dx, τ̃U < τ̃L ∧ t) =

∫ ∞
0

f+(x; t)dx,

The order of integration and summation can be interchanged in
∫∞

0
f+(x; t)dx since
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each an(x, t) and bn(x, t) are non-negative, and thus the integrations can be per-

formed termwise. Then we have to perform some elementary but cumbersome cal-

culations to get (4.58) and (4.59). A more direct method is to use identities (4.23)

and (4.24) and simply choose π(s) = 1 in equations (4.37), (4.38) and (4.40). In

particular, it is not difficult to show when π(s) = 1,

Bπ
1 (s0) = Prs0 (τ̃U < T ) = GT

(
ln
s0

U
, µ− δ1

)
.

Then the remaining work is to rearrange equations (4.37) and (4.38).

Remark 4.4.6. The two density functions

Prs0 (τ̃U ∈ dt, τ̃U < τ̃L) =
∂

∂t
Prs0 (τ̃U < τ̃L ∧ t) ,

Prs0 (τ̃L ∈ dt, τ̃L < τ̃U) =
∂

∂t
Prs0 (τ̃L < τ̃U ∧ t) ,

are the key ingredients to value immediate rebate options restricted by two expo-

nential barriers, which will be deferred for discussion until Section 5.3.

The study of exponential boundaries can be extended to deal with more gen-

eral curved boundaries as we may be able to approximate a smooth nonlinear func-

tion using a set of piecewise exponential functions. This problem was briefly men-

tioned in Kunitomo and Ikeda (1992) for a double-barrier option with n-period

piecewise exponential time-varying boundaries, but no explicit solution was given.

We shall delay the detailed consideration of this option until Section 6.6, where

a closed-form formula will be derived as an application of our pricing method for

jump-diffusion models.
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4.4.3 Convergence of the pricing formula and numerical examples

We will explain rigorously that the pricing formula (4.34) as doubly infinite

sums is convergent under certain mild condition and we will also present some nu-

merical results for different choices of parameter values.

Suppose the payoff function π(s) is bounded by a constant C over the fi-

nite interval (LT , UT ). This admits a fairly wide range of payoff types. We only

demonstrate the convergence of the first doubly infinite series in (4.34) and leave

it to readers to show the convergence of the second series in an analogous manner.

Without loss of generality, we assume s0 = 1 and C = 1. The first infinite series in

(4.34) is

∞∑
n=−∞

(
βn

L

)γn
βnκ2V ∗π

(
β2n
)
. (4.61)

The convergence follows from the rapid decay of normal distribution. Note that

V ∗π (s) = Es [π(ST )1(LT < ST < UT )]

≤ Prs (LT < ST < UT )

= Φ

(
ln(s/LT ) + µT

σ
√
T

)
− Φ

(
ln(s/UT ) + µT

σ
√
T

)
,

where Φ(·) is the distribution function of standard normal random variable. Hence,

one can observe that V ∗π (s) → 0 when s → 0 or ∞. In fact, V ∗π (s) decreases to

zero at a much higher speed. We use the L’Hôpital’s rule to obtain the following

asymptotic property: For ξ < 1
2σ2T

and η ∈ R,

s(ξ ln s)+η · V ∗π (s)→ 0 (4.62)

as s → 0 or ∞. For notional convenience, we define βn = β2n = L2n

U2n . Then the

summand in (4.61) can be rewritten as(
Ln

Un

)n(κ2−κ1−4ξ lnβ)

·
(
Lκ1−2η

Uκ2−2η

)n
· βn(ξ lnβn)+η · V ∗π (βn) (4.63)
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with ξ and η being some undetermined parameters. In particular, we choose ξ such

that κ2 − κ1 − 4ξ ln β = 0. Then ξ = κ2−κ1
4 lnβ

and (4.63) reduces to(
Lκ1−2η

Uκ2−2η

)n
· βn(ξ lnβn)+η · V ∗π (βn).

We also choose η such that Lκ1−2η

Uκ2−2η < 1. Note that βn → 0 as n → ∞. According

to (4.62), for every finite ε, there exists a positive integer N depending on ξ and η,

such that βn
(ξ lnβn)+η · V ∗π (βn) < ε when n > N . For a given ε, we have

∞∑
n=0

(
Lκ1−2η

Uκ2−2η

)n
· βn(ξ lnβn)+η · V ∗π (βn)

<
N∑
n=0

(
Lκ1−2η

Uκ2−2η

)n
· βn(ξ lnβn)+η · V ∗π (βn) + ε ·

∑
n>N

(
Lκ1−2η

Uκ2−2η

)n
<∞,

because Lκ1−2η

Uκ2−2η < 1. This means that for a pre-specified number ε, we can truncate

the infinite sum with a finite sum of N + 1 terms, and the approximating result has

an error of order ε. To show the convergence of

−∞∑
n=−1

(
Lκ1−2η

Uκ2−2η

)n
· βn(ξ lnβn)+η · V ∗π (βn),

we simply choose η such that Lκ1−2η

Uκ2−2η > 1 and notice that βn → ∞ as n → −∞.

Finally, we verify that the choice of ξ satisfies the condition ξ < 1
2σ2T

. In fact,

ξ = κ2−κ1
4 lnβ

< 1
2σ2T

is equivalent to Ueδ1T > Leδ2T , which is our primary assumption.

Now let us show some numerical examples. We revisit several parameter val-

ues considered in Kunitomo and Ikeda (1992); it shows that our results are the same

as theirs except for some negligible errors in a few entries.

We compute the prices of double knock-out (at-the-money) call options and

put options for various choices of barrier levels, curvature rates and volatilities. To

obtain the arbitrage-free price at time 0, we multiply the discount factor e−rT and

let the drift parameter µ = r − 1
2
σ2 in our calculation. The parameter values used

in the calculations are: s0 = 1000, K = 1000, r = 0.05 and T = 0.5. In particular,

we let (δ1, δ2) be (0.1,−0.1), (0, 0) or (−0.1, 0.1). (δ1, δ2) = (0.1,−0.1) corresponds
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to the case of two diverging barriers. When (δ1, δ2) = (0, 0), it reduces to the case

where the two barriers are flat (see formula (4.47)), and when (δ1, δ2) = (−0.1, 0.1),

the barriers are converging to each other. The most extreme case is also taken into

account where the two barriers can never be reached, and in this case the barrier

option simply reduces to vanilla call or put option; hence, the prices are identical

regardless of the values of δ1 and δ2. The results are provided in Table 4.1 and 4.2.

Table 4.1: Double knock-out call with exponential boundaries

δ1/δ2 L/U σ = 0.2 σ = 0.3 σ = 0.4

0.1/-0.1 0/∞ 68.89 96.35 123.85

400/1600 68.64 85.88 81.60

500/1500 67.78 76.57 64.85

600/1400 64.63 61.48 45.23

700/1300 55.20 40.54 25.08

0/0 0/∞ 68.89 96.35 123.85

400/1600 68.14 80.06 71.05

500/1500 66.13 67.88 53.35

600/1400 60.06 50.23 34.22

700/1300 45.65 28.90 16.49

-0.1/0.1 0/∞ 68.89 96.35 123.85

400/1600 66.93 72.22 59.59

500/1500 62.75 57.30 41.70

600/1400 52.50 38.10 24.05

700/1300 33.45 18.22 9.45

Our observations agree with those found in Kunitomo and Ikeda (1992) and

Buchen and Konstandatos (2009). The doubly infinite series in (4.34) will converge

as long as a small number of terms are involved. In many cases, it is sufficient to
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Table 4.2: Double knock-out put with exponential boundaries

δ1/δ2 L/U σ = 0.2 σ = 0.3 σ = 0.4

0.1/-0.1 0/∞ 44.20 71.66 99.16

400/1600 44.20 71.66 98.66

500/1500 44.20 71.42 93.78

600/1400 44.18 68.10 75.73

700/1300 43.13 52.82 42.72

0/0 0/∞ 44.20 71.66 99.16

400/1600 44.20 71.65 98.30

500/1500 44.20 71.15 91.13

600/1400 44.12 65.58 68.32

700/1300 41.62 45.12 32.69

-0.1/0.1 0/∞ 44.20 71.66 99.16

400/1600 44.20 71.64 97.71

500/1500 44.20 70.63 87.49

600/1400 43.94 61.78 59.61

700/1300 38.64 35.98 22.87

truncate the infinite sum only up to n = ±2 terms. The option values tend to

decline as the two barriers approach towards each other, since there is a greater

chance for the barriers to be breached and thus for the options to expire worthless.

4.5 Appendix

4.5.1 Proof of Remark 4.2.1

Proof. We want to show that when Λt is continuous in [0,∞), the following equation

implies that Λt is a zero function:∫ ∞
0

e−λtΛtdt = 0, λ > 0. (4.64)
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Make change of variables s = e−t and Λ̃s = Λt, then (4.64) leads to∫ 1

0

sλ−1Λ̃sds = 0, λ > 0. (4.65)

Note that Λ̃s is also continuous in [0, 1]. By Weierstrass approximation theorem,

for every positve ε, there exists a polynomial P ε
s such that |Λ̃s − P ε

s | < ε. From

equation (4.65), we also have ∫ 1

0

P ε
s Λ̃sds = 0.

It then follows that∫ 1

0

Λ̃2
sds =

∫ 1

0

Λ̃2
sds−

∫ 1

0

P ε
s Λ̃sds =

∫ 1

0

Λ̃s(Λ̃s − P ε
s )ds,

and as a result, ∫ 1

0

Λ̃2
sds ≤

∫ 1

0

|Λ̃s||Λ̃s − P ε
s |ds < ε

∫ 1

0

|Λ̃s|ds.

Because Λ̃s is continuous in [0, 1], it is bounded, and we can let ε tend to zero and

obtain
∫ 1

0
Λ̃2
sds = 0. Hence, Λ̃s = 0 for all 0 ≤ s ≤ 1, and as a consequence, Λt = 0

for all t ≥ 0.

4.5.2 An alternative proof of Lemma 4.4.3

Proof. Recall that we need to show for n ≥ 2 that

Bπ
n(s0) =

(
U

s0

)κ1
Bπ
−(n−1)

(
U2

s0

)
, s0 < U, (4.66)

Bπ
−n(s0) =

(
L

s0

)κ2
Bπ
n−1

(
L2

s0

)
, s0 > L. (4.67)

We only present a sketch of the proof of (4.66) based on the reflection principle

(Propostion 2.2.1) and the Esscher transform factorization (Section 2.5). It is ac-

tually sufficient to consider the case where δ1 = 0, that is, the upper barrier is flat

and κ1 = 2µ
σ2 . According to the discussion in Example 2.5.1, under the transformed
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measure with index −κ1
2

, the drift term of {Xt} becomes µ− κ1
2
σ2 = 0. For n ≥ 2,

Bn implies {τU < T}. Then

Bπ
n(s0) = Es0 [π(ST )1Bn ] = Es0 [π(ST )1(τU < T )1Bn ] .

The Esscher transform factorization formula (2.7) yields

Bπ
n(s0) = Es0

[
e−

κ1
2
XT e

κ1
2
XTπ(ST )1(τU < T )1Bn

]
= E

[
e−

κ1
2
XT
]

Es0

[
e
κ1
2
XTπ(ST )1(τU < T )1Bn ;−κ1

2

]
, (4.68)

where by Definition 4.4.1, Bn can be viewed as the event that there exist n− 1 time

points τU < t1 < · · · < tn−1 ≤ T such that Stk = Ltk when k is odd and Stk = U

when k is even. Note that the process {Xt; 0 ≤ t ≤ T} in the second expectation of

(4.68) has no drift, and hence, {Xt; 0 ≤ t ≤ T} and {−Xt; 0 ≤ t ≤ T} have the same

distribution. We first reflect the process at τU and then change {Xt; 0 ≤ t ≤ T}

to {−Xt; 0 ≤ t ≤ T}. It follows from the reflection principle that the second

expectation on the right-hand side of (4.68) can be rewritten as

EU2

s0

[
e
κ1
2

(2b+XT )π(ST )1(τU < T )1B−(n−1)
;−κ1

2

]
,

where b = ln U
s0

. Actually the indicator 1(τU < T ) can be removed. The reason is

that if the initial asset price is U2

s0
and the event B−(n−1) occurs for n ≥ 2, the asset

price process must breach the upper barrier before time T . Reversing the Esscher

transform factorization, we obtain

Bπ
n(s0) = ebκ1E

[
e−

κ1
2
XT
]

EU2

s0

[
e
κ1
2
XTπ(ST )1B−(n−1)

;−κ1
2

]
=

(
U

s0

)κ1
EU2

s0

[
π(ST )1B−(n−1)

]
=

(
U

s0

)κ1
Bπ
−(n−1)

(
U2

s0

)
,

which yields (4.66). Then we switch the two barriers, from which (4.67) follows.
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4.5.3 An alternative proof of Corollary 4.4.5 and related remarks

Proof. Recall that Corollary 4.4.5 claims

Vdko =
∞∑

n=−∞

βnκ
[
V̄π
(
s0β

2n
)
−
(

L

s0β2n

)κ
V̄π

(
L2

s0β2n

)]
, (4.69)

where β = L
U
, κ = 2µ

σ2 and V̄π(s) = Es [π(ST )1(L < ST < U)]. This is a special case

of Theorem 4.4.4 where the barriers are flat. Now let us present a self-contained

proof that does not depend on Theorem 4.4.4. We still use the exponential stopping

of Brownian motions, but the path counting is no longer required. Define by τU,L

the first time the asset price process exits the interval [L,U ], that is, τU,L = inf{t >

0|St ≤ L or St ≥ U}. Again, we let L < s0 < U . Then Vdko can be expressed as

Vdko = Es0 [π(ST )1(τU,L > T )] .

Let us first consider the exponential stopping of the asset price process and evaluate

the knock-in option value

Es0 [π(Sελ)1(τU,L < ελ)] ,

where ελ is an independent exponential random variable with mean 1/λ. If we

define V̂π(s) = Es [π(Sελ)], then using the memoryless property of ελ, the strong

Markov property and the law of iterated expectations, we can show

Es0 [π(Sελ)1(τU,L < ελ)] = Es0

[
e−λτU,LV̂π(SτU,L)

]
.

Note that SτU,L = U when τU < τL and SτU,L = L when τL < τU . Therefore,

Es0

[
e−λτU,LV̂π(SτU,L)

]
= Es0

[
e−λτU1(τU < τL)

]
V̂π(U) + Es0

[
e−λτL1(τL < τU)

]
V̂π(L)

=

(
s0
L

)θ+λ − ( s0
L

)θ−λ(
U
L

)θ+λ − (U
L

)θ−λ V̂π(U) +

(
s0
U

)θ+λ − ( s0
U

)θ−λ(
L
U

)θ+λ − (L
U

)θ−λ V̂π(L). (4.70)
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The last step follows immediately from equations (5.14) and (5.15) in Theorem 5.3.2

where we let T → ∞ and r = λ. Because {τU,L > T} implies {L < ST < U}, we

can express Vdko in an alternative form given by

Vdko = Es0 [π(ST )1(L < ST < U, τU,L > T )] .

Hence, if we define
ˆ̂
Vπ(s0) = Es0 [π(Sελ)1(L < Sελ < U)] , the put-call parity and

the formula (4.70) lead to the following equation.

Es0 [π(Sελ)1(τU,L > ελ)]

= Es0 [π(Sελ)1(L < Sελ < U, τU,L > ελ)]

=
ˆ̂
Vπ(s0)−

(
s0
L

)θ+λ − ( s0
L

)θ−λ(
U
L

)θ+λ − (U
L

)θ−λ ˆ̂
Vπ(U)−

(
s0
U

)θ+λ − ( s0
U

)θ−λ(
L
U

)θ+λ − (L
U

)θ−λ ˆ̂
Vπ(L). (4.71)

Now we rewrite the ratios right in front of
ˆ̂
Vπ(U) and

ˆ̂
Vπ(L) in terms of infinite

series. For example, taking geometric expansion of the first ratio, we have

1(
U
L

)θ+λ − (U
L

)θ−λ =

(
U
L

)−θ+λ
1−

(
U
L

)θ−λ −θ+λ =

(
U

L

)−θ+λ ∞∑
n=0

(
U

L

)n(θ−λ −θ
+
λ )

.

With some arrangements, the second term on the right-hand side of (4.71) can be

rewritten as the difference of the two infinite sums

∞∑
n=0

(
Un

Ln

)θ−λ −θ+λ (s0

U

)θ+λ ˆ̂
Vπ(U), (4.72)

and

∞∑
n=0

(
s0U

n

Ln+1

)θ−λ −θ+λ (s0

U

)θ+λ ˆ̂
Vπ(U). (4.73)

The argument used to obtain (4.7) is again considered and we have

ˆ̂
Vπ(s1) =

(s1

U

)θ−λ ˆ̂
Vπ(U), s1 > U,
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or equivalently,

ˆ̂
Vπ(U) =

(
U

s1

)θ−λ ˆ̂
Vπ(s1), s1 > U. (4.74)

Then we apply (4.74) to substitute
ˆ̂
Vπ(U) into equations (4.72) and (4.73). We

specifically choose s1 = U2n+2

s0L2n . It is easy to verify that s1 > U since L < s0 < U ,

and hence (4.72) becomes

∞∑
n=0

(
Un+1

s0Ln

)κ
ˆ̂
Vπ

(
U2n+2

s0L2n

)
,

where κ = −(θ+
λ + θ−λ ) = 2µ

σ2 . Likewise, we choose s1 = s0U2n+2

L2n+2 and (4.73) becomes

∞∑
n=0

(
Un+1

Ln+1

)κ
ˆ̂
Vπ

(
s0U

2n+2

L2n+2

)
.

To evaluate the third term on the right-hand side of (4.71), we simply switch U and

L. As a consequence,

Es0 [π(Sελ)1(L < Sελ < U, τU,L > ελ)]

=
ˆ̂
Vπ(s0)−

∞∑
n=0

(
Un+1

s0Ln

)κ
ˆ̂
Vπ

(
U2n+2

s0L2n

)
+
∞∑
n=0

(
Un+1

Ln+1

)κ
ˆ̂
Vπ

(
s0U

2n+2

L2n+2

)
−
∞∑
n=0

(
Ln+1

s0Un

)κ
ˆ̂
Vπ

(
L2n+2

s0U2n

)
+
∞∑
n=0

(
Ln+1

Un+1

)κ
ˆ̂
Vπ

(
s0L

2n+2

U2n+2

)
.

Since κ does not depend on λ, the exponential random variable ελ in the equation

above can be replaced by a fixed positive time T , and correspondingly,
ˆ̂
Vπ(s) be-

comes V̄π(s). The pricing formula (4.69) follows after some rearrangements.

Remark 4.5.1. In fact, the proof presented above gives rise to a Laplace transform

approach to valuing the double barrier options with flat boundaries. Note that
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because ελ is independent of {St},

Es0 [π(Sελ)1(τU,L < ελ)] =

∫ ∞
0

Es0 [π(St)1(τU,L < t)]λe−λtdt.

Hence, the expression given by the right-hand side of (4.70) divided by λ yields

a closed-form solution of the Laplace transform with respect to the maturity time

as long as we can explicitly calculate V̂π(s) = Es [π(Sελ)]. In particular, we only

need to identify the distribution of Sελ or Xελ = ln
Sελ
S0

. Let fXελ (x) be the density

function of Xελ , then

fXελ (x) =
θ+
λ θ
−
λ

θ−λ − θ
+
λ


e−θ

+
λ x x > 0

e−θ
−
λ x x < 0

(4.75)

which is an two-sided exponential distribution. It follows that we are able to com-

pute the Laplace transform and invert it numerically for any given payoff and fixed

maturity time. One way to derive the density above is through the inversion of a

bilateral Laplace transform. Specifically, the bilateral Laplace transform of Xελ is

determined as follows.∫ ∞
−∞

e−zxfXελ (x)dx

= E
[
e−zXελ

]
= E

[
e(−µz+

1
2
σ2z2)ελ

]
=

λ

λ+ µz − 1
2
σ2z2

=
λ

−1
2
σ2(z + θ+

λ )(z + θ−λ )

=
θ+
λ θ
−
λ

(z + θ+
λ )(z + θ−λ )

=
θ+
λ θ
−
λ

θ−λ − θ
+
λ

(
1

z + θ+
λ

− 1

z + θ−λ

)
, (4.76)

where −θ+
λ < z < −θ−λ and θ+

λ > 0 and θ−λ < 0 are the roots of the quadratic

equation 1
2
σ2θ2 +µθ−λ = 0. Hence, the distribution given by (4.75) can be derived

by inverting (4.76).

Remark 4.5.2. See also Gerber, Shiu and Yang (2012) which recovered the expres-

sion of fXελ (x) through a discounted density approach.
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Remark 4.5.3. Geman and Yor (1996) also derived a closed-form formula for a

double knock-out call option with flat barriers.
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CHAPTER 5

APPLICATIONS TO PRICING EXOTIC VARIATIONS
OF BARRIER OPTIONS

5.1 Introduction

The objective of this chapter is to evaluate some popular variations of the

standard barrier options treated in Chapter 4, including sequential barrier options,

immediate rebate options, multi-asset barrier options and window barrier options.

These variations are created as complements to traditional barrier options, by mod-

ifying the original asset model or barrier structure for the purpose to more closely

accommodate to the investors’ hedging or speculating needs. We shall show that

we can manage to reduce the problem of each variation to the one already studied

in Chapter 4, and our valuation approach can be easily applied to derive the prices

of these variations. We still assume an arbitrary payoff function and allow the bar-

riers to change exponentially in time. The pricing formulas for sequential barrier

options and immediate rebate options already exist and will be reproduced using

our new method, while we will pay closer attention to multi-asset barrier options

and window barrier options, and derive several pricing formulas that are not yet

available in the literature as far as we know.

The remainder of this chapter is organized as follows: Section 5.2 treats seque-

tial barrier options, Section 5.3 treats immediate rebate options, Section 5.4 treats

multi-asset barrier options and Section 5.5 treats window barrier options.
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5.2 Sequential barrier options

The analysis of our approach in Chapter 4 can be structured and readily

applied to pricing sequential barrier options, where the barrier event is determined

by a pre-specified sequential order of the breaching times τ̃U , τ̃L and the maturity

time T . Recall that τ̃U and τ̃L denote the first times the asset price process hits

the boundaries Ut = Ueδ1t and Lt = Leδ2t respectively. Similar problem was solved

by Sidenius (1998) and Li (1998) which derived the joint density functions given in

Corollary 4.4.6. Kolkiewicz (2002) developed a systematic procedure for sequential

barrier options by considering the density functions of related exit times. We follow

a different path however, and use Proposition 4.4.1 and Lemma 4.4.3 to investigate

some examples of sequential barrier options. To avoid complicated equations, we

only study the path counting of each barrier provision.

(1) Upper-barrier knock-in options: This type of options comes into being if

the upper barrier is breached before the lower one prior to maturity. The associated

indicator function is given by

1(τ̃U < τ̃L ∧ T ) =
∞∑
n=1

1B2n−1 −
∞∑
n=1

1B−2n . (5.1)

(2) Lower-barrier knock-in options: This type of options comes into being if

the lower barrier is breached before the upper one prior to maturity. The associated

indicator function is given by

1(τ̃L < τ̃U ∧ T ) =
∞∑
n=1

1B−(2n−1)
−
∞∑
n=1

1B2n . (5.2)

(3) Upper-then-lower knock-in options: This type of options comes into being

when the upper barrier is breached first and then the lower barrier is breached prior

to maturity. The associated indicator function is given by

1(τ̃U < τ̃L < T ) =
∞∑
n=1

1B2n −
∞∑
n=2

1B−(2n−1)
. (5.3)
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To obtain the identity above, observe the following identity

1B−1 = 1(τ̃U < τ̃L < T ) + 1(τ̃L < τ̃U ∧ T ), (5.4)

and then apply (5.2). The identity (5.4) can be understood in this way: the event

B−1 is equivalent to τ̃L < T and can be partitioned into two disjoint events depending

on which barrier is breached first, which are given correspondingly on the right-hand

side of (5.4).

(4) Lower-then-upper knock-in options: This type of options comes into being

when the lower barrier is breached first and then the upper barrier is breached prior

to maturity. The associated indicator function is given by

1(τ̃L < τ̃U < T ) =
∞∑
n=1

1B−2n −
∞∑
n=2

1B2n−1 . (5.5)

(5) Double-hit knock-in options: This type of option comes into being if both

barriers are breached prior to maturity. It is the sum of upper-then-lower knock-in

option and lower-then-upper knock-in option. The associated indicator function is

given by

1(τ̃L < T, τ̃U < T ) =
∞∑

n=−∞

1B2n −
∞∑

n=−∞

1B2n−1 + 1B1 + 1B−1 − 1. (5.6)

To further find the values of these variations, one can directly use formulas (4.36)

to (4.41) (the calculations are elemantary but quite lengthy).

It is worth mentioning that the sequential barrier options are discussed here in

a broad sense: we treate any barrier option that is knocked in or out depending on

the sequential order of the hitting times as a type of sequential barrier options (the

double knock-out options analyzed in the last chapter can obviously be visualized as

a type of sequential barrier options). In fact, the definition of sequential barrier op-

tions, as in Pfeffer (2001) and Section 7.11 of Buchen (2012) for example, is slightly



71

different, and essentially refers to eight types of options: ui/di (up-and-in/down-

and-in), ui/do (up-and-in/down-and-out), di/ui, di/uo, uo/di, uo/do, do/ui and

do/uo options. In our context, we call these options the standard sequential bar-

rier options. With an ui/di option, if the asset price process breaches the upper

boundary Ut at the hitting time τ̃U before the maturity time T , the holder is im-

mediately given a down-and-in option with the remaining lifetime T − τ̃U and the

lower boundary Lt. By analogy, one can easily understand the concepts of the other

seven types of sequential barrier options. Fortunately, we are still able to utilize the

technique of path counting to evaluate these options. For instance, the indicators

associated with ui/di and uo/di options can respectively be expressed as

1
(
τ̃U |L < T

)
and 1 (τ̃L < T < τ̃U) , (5.7)

where we define τ̃U |L = inf{t > 0|t > τ̃U , St = Lt} as the first time the asset price

process breaches the lower boundary after first breaching the upper boundary earlier.

Readers should notice the difference between the ui/di options and the upper-then-

lower knock-in options described by (5.3). Comparing their corresponding barrier

provisions, we see that the ui/di options do not put any restrictions on the asset

price process prior to first breaching the upper boundary, while the upper-then-lower

knock-in options require the lower boundary never be breached first. According to

Definition 4.4.1 and the identity (4.25) in Proposition 4.4.1, we obtain the following

identities for the indicators in (5.7),

1
(
τ̃U |L < T

)
= 1B2 , (5.8)

1 (τ̃L < T < τ̃U) = 1 (τ̃U > T )− 1 (τ̃U ∧ τ̃L > T ) . (5.9)

Note that the pricing formula for an ui/di option only has one term, and an uo/di

option can simply be written as the difference between an up-and-out single-barrier

option and a double-barrier knock-out option.
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Table 5.1 below summarizes the eight types of standard sequential barrier

options mentioned earlier in terms of the indicators associated with their barrier

provisions. Similar to τ̃U |L, we also define τ̃L|U = inf{t > 0|t > τ̃L, St = Ut} as the

first time the asset price process breaches the upper boundary after breaching the

lower boundary earlier.

Table 5.1: Standard sequential barrier options

Sequential order Indicator

ui/di 1
(
τ̃U |L < T

)
ui/do 1

(
τ̃U < T, τ̃U |L > T

)
di/ui 1

(
τ̃L|U < T

)
di/uo 1

(
τ̃L < T, τ̃L|U > T

)
uo/di 1 (τ̃L < T < τ̃U)

uo/do 1 (τ̃U ∧ τ̃L > T )

do/ui 1 (τ̃U < T < τ̃L)

do/uo 1 (τ̃U ∧ τ̃L > T )

Several immediate results can be obtained from Table 5.1. First, we observe

the following parity relations

Vui/di + Vui/do = Veui, Vdi/ui + Vdi/uo = Vedi, (5.10)

Vuo/di + Vuo/do = Veuo, Vdo/ui + Vdo/uo = Vedo, (5.11)

where Veui, Vedi, Veuo and Vedo denote the forward prices of those barrier options with

single exponential boundary (either an upper boundary Ut or a lower boundary Lt).

Second, uo/do and do/uo options are identical to double-barrier knock-out options.

Therefore, it is only necessary to evaluate two of the eight types of sequential barrier
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options, which are ui/di and uo/di options. In fact, di/ui and do/ui options can be

produced respectively from ui/di and uo/di options by switching the two barriers.

Now let us multiply the payoff π(ST ) and take expectation on both sides of (5.8) to

derive the time-0 forward price of ui/di options. Specifically,

Vui/di = E [π(ST )1B2 ] = Bπ
2 (s0),

where Bπ
2 (s0) is given by (4.30). To calculate Bπ

2 (s0), we use Lemma 4.4.3 and

equation (4.41). Note that Bπ
−1(s0) is in fact the price of single-barrier down-and-in

options, then

Bπ
2 (s0) =

(
U

s0

)κ1
Bπ
−1

(
U2

s0

)
=

(
U

s0

)κ1 [
V −π

(
U2

s0

, LT

)
+

(
s0L

U

)κ2
V +
π

(
s0L

2

U2
, LT

)]
.

The formula for Vdi/ui can be obtained from the equation above by switching the

two barriers. In particular, we have the following results.

Proposition 5.2.1. The time-0 forward prices of ui/di and di/ui sequential barrier

options with the upper boundary Ut = Ueδ1t and the lower boundary Lt = Leδ2t are

respectively given by

Vui/di =

(
U

s0

)κ1 [
V −π

(
U2

s0

, LT

)
+

(
s0L

U

)κ2
V +
π

(
s0L

2

U2
, LT

)]
,

Vdi/ui =

(
L

s0

)κ2 [
V +
π

(
L2

s0

, UT

)
+

(
s0U

L

)κ1
V −π

(
s0U

2

L2
, UT

)]
,

where κ1 = 2(µ−δ1)
σ2 , κ2 = 2(µ−δ2)

σ2 and V ±π (s, x) = Es [π(ST )1(ST ≷ x)].

Remark 5.2.1. To value ui/do and di/uo options using Proposition 5.2.1, we sim-

ply apply the parity relations (5.10). In addition, uo/di and do/ui options can be

valued by noting that they can be viewed as the difference between single-barrier

knock-out options and double-barrier knock-out options, which is also implied by
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the parity relations (5.11) (uo/do and do/uo options are equal to double-barrier

knock-out options).

Remark 5.2.2. Analogous discussions about standard sequential barrier options

can be found in Pfeffer (2001) and Section 7.11 of Buchen (2012). The former used

density integrations, while the latter proposed the method of images approach for a

general payoff function. However, both of them only considered flat barriers, which

is a special case of what we analyze here.

5.3 Immediate rebate options

In some cases of knock-out options, the specification of rebate is allowed and

the option holder receives a fixed rebate payment as compensation at the moment

the barrier is breached prior to maturity. We study the price of one dollar paid at

the moment of breaching given it occurs before maturity. The traditional method

requires to identify the distributions of one-sided and two-sided exit times (see, for

example, Jeanblanc, Yor and Chesney (2009) and Karatzas and Shreve (1998)).

For the case where the barriers are flat, we use a martingale method introduced in

Gerber and Shiu (1994b, 1996) to show that immediate rebate options can reduce to

standard barrier options with certain adjusted payoff functions. For the case where

the barriers are exponential functions of time, we carry out the valuation approach

discussed in Chapter 4 to derive the density functions of corresponding exit times.

Now let us first consider the case where the barriers are flat. The following

theorem deals with single flat barrier.
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Theorem 5.3.1. The time-0 price of one dollar paid at the moment of breaching

the barrier B before time T is either given by

Es0

[
e−rτB1(τB < T )

]
= e−rTEs0

[
(ST/B)θ

+
r 1(τB < T )

]
, (5.12)

or

Es0

[
e−rτB1(τB < T )

]
= e−rTEs0

[
(ST/B)θ

−
r 1(τB < T )

]
, (5.13)

where θ+
r > 0 and θ−r < 0 are the two roots of equation σ2

2
θ2 + µθ− r = 0. Formula

(5.12) and formula (5.13) are identical.

The right-hand sides of (5.12) and (5.13) represent the time-0 prices of knock-

in options with payoff functions π(s) =
(
s
B

)θ+r and π(s) =
(
s
B

)θ−r respectively.

Whether to choose θ+
r or θ−r , it is not difficult to verify that these two expectations

can always be rewritten as
e−rTEs0

[((
ST
B

)θ+r
+

(
ST
B

)θ−r )
1(ST > B)

]
s0 < B

e−rTEs0

[((
ST
B

)θ+r
+

(
ST
B

)θ−r )
1(ST < B)

]
s0 > B

Therefore, the right-hand sides of (5.12) and (5.13) indeed yield an identical pricing

formula.

The following theorem deals with two flat barriers.

Theorem 5.3.2. The time-0 prices of one dollar paid at the moment of first breach-

ing the upper barrier U , and first breaching the lower barrier L before time T are

respectively given by

Es0

[
e−rτU1(τU < τL ∧ T )

]
=

s
θ+r
0 −P+

Lθ
+
r
− s

θ−r
0 −P−

Lθ
−
r(

U
L

)θ+r − (U
L

)θ−r , (5.14)
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and

Es0

[
e−rτL1(τL < τU ∧ T )

]
=

s
θ+r
0 −P+

Uθ
+
r
− s

θ−r
0 −P−

Uθ
−
r(

L
U

)θ+r − (L
U

)θ−r , (5.15)

where θ+
r and θ−r are the two roots of the equation σ2

2
θ2 + µθ − r = 0 and

P± = e−rTEs0

[
Sθ
±
r
T 1(τU ∧ τL > T )

]
denote the time-0 prices of double knock-out options with π(s) = sθ

±
r .

Remark 5.3.1. The equations in Theorem 5.3.2 reduce to the ones in Theorem

5.3.1 when the upper barrier U tends to ∞ or the lower barrier L tends to 0. For

example, we let L→ 0 on both sides of equation (5.14). Then we have τL →∞ and

P+ → e−rTEs0

[
Sθ

+
r
T 1(τU > T )

]
and P− → e−rTEs0

[
Sθ
−
r
T 1(τU > T )

]
.

Because θ+
r − θ−r > 0 and P− <∞, equation (5.14) reduces to

Es0

[
e−rτU1(τU < T )

]
=
(s0

U

)θ+r
− e−rTEs0

[(
ST
U

)θ+r
1(τU > T )

]
.

Note that {e−rt(St)θ
+
r } is a martingale, then the equation above becomes

Es0

[
e−rτU1(τU < T )

]
= e−rTEs0

[(
ST
U

)θ+r ]
− e−rTEs0

[(
ST
U

)θ+r
1(τU > T )

]

= e−rTEs0

[(
ST
U

)θ+r
1(τU < T )

]
,

which yields equation (5.12).

Remark 5.3.2. Theorem 5.3.2 deals with a general situation where the options

have unequal rebate payments, depending on whether the upper or lower barrier is

breached first. This situation should be considered as the financial positions that

cause the options to be nullified in the two cases above may be quite different.
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Equations (5.14) and (5.15) show that the prices are written explicitly in terms of

P±, which can be calculated by formula (4.47) with the payoff functions π(s) = sθ
±
r .

If we let T tend to∞, then P± become zero, and equations (5.14) and (5.15) reduce

to equations (4.1.8) and (4.1.9) respectively in Gerber and Shiu (1994b). See the

proof in Section 4.5.3 for an application of this special case.

Theorem 5.3.2 is more difficult to prove than Theorem 5.3.1, so we only prove

Theorem 5.3.2 using a martingale approach introduced in Gerber and Shiu (1994b).

Proof of Theorem 5.3.2. First note that

{e−rt(St)θ
+
r } and {e−rt(St)θ

−
r }

are two martingales. Define τU,L = τU∧τL, the minimum of τU and τL. Applying the

optional stopping theorem to the first martingale above for the bounded stopping

time τU,L ∧ T , we have

Es0

[
e−r(τU,L∧T )(SτU,L∧T )θ

+
r

]
= sθ

+
r

0 .

Rearranging the equation above yields

U θ+r Es0

[
e−rτU1(τU < τL ∧ T )

]
+ Lθ

+
r Es0

[
e−rτL1(τL < τU ∧ T )

]
+ Es0

[
e−rT (ST )θ

+
r 1(τU ∧ τL > T )

]
= sθ

+
r

0 .

By the definition of P+,

U θ+r Es0

[
e−rτU1(τU < τL ∧ T )

]
+ Lθ

+
r Es0

[
e−rτL1(τL < τU ∧ T )

]
= sθ

+
r

0 − P+.

Likewise, we can apply the optional stopping theorem to the second martingale

above and obtain a second equation

U θ−r Es0

[
e−rτU1(τU < τL ∧ T )

]
+ Lθ

−
r Es0

[
e−rτL1(τL < τU ∧ T )

]
= sθ

−
r

0 − P−.



78

With this pair of equations, we can compute the two expectations by calculatingU θ+r Lθ
+
r

U θ−r Lθ
−
r

−1sθ+r0 − P+

sθ
−
r

0 − P−

 .

The proof is thus complete.

Remark 5.3.3. A derivation of Es0 [e−rτB1(τB < T )] can also be found, for ex-

ample, in Poulsen (2006) which also applied the optional stopping theorem to the

martingales {e−rt(St)θ
±
r }.

Now let us consider the case where the barriers are exponential functions

of time. As discussed earlier in Chapter 4, extending single flat barrier to single

exponential barrier is merely a matter of changing the drift term of the asset price

process. Hence, we only pay attention to immediate rebate options with respect

to two exponential barriers. In particular, we need to calculate the following two

expectations

Es0

[
e−rτ̃U1(τ̃U < τ̃L ∧ T )

]
and Es0

[
e−rτ̃L1(τ̃L < τ̃U ∧ T )

]
,

where we have defined τ̃U and τ̃L as the first times the asset price process hits the

upper barrier Ut = Ueδ1t and the lower barrier Lt = Leδ2t respectively.

Some related density functions of τ̃U and τ̃L will be identified, primarily based

on the formulas given in Corollary 4.4.7. First, we observe

Es0

[
e−rτ̃U1(τ̃U < τ̃L ∧ T )

]
=

∫ T

0

e−rtPrs0 (τ̃U ∈ dt, τ̃U < τ̃L) , (5.16)

Es0

[
e−rτ̃L1(τ̃L < τ̃U ∧ T )

]
=

∫ T

0

e−rtPrs0 (τ̃L ∈ dt, τ̃L < τ̃U) . (5.17)

The integrals on the right-hand sides of (5.16) and (5.17) can be calculated if we
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find the two probabilities

Prs0 (τ̃U < τ̃L ∧ t) and Prs0 (τ̃L < τ̃U ∧ t)

and take derivatives with respect to t. Let us take the calculation of (5.16) as an

example. According to Corollary 4.4.7,

Prs0 (τ̃U < τ̃L ∧ t) =
∞∑
n=1

[(
s0β

n−1

L

)γn−1

β(n−1)κ2Gt

(
ln
s0β

2n−1

L
, µ− δ1

)
−
(
Lβn−1

s0

)γn−1+κ2

Gt

(
ln
Lβ2n−1

s0

, µ− δ1

)]
, (5.18)

where

Gt(x, y) = Φ

(
x+ yt

σ
√
t

)
+ e−

2xy

σ2 Φ

(
x− yt
σ
√
t

)
.

It is easy to show that when taking derivative of the right-hand side of (5.18), the

order of summation and differentiation can be interchanged. Then the problem

reduces to the calculation of the integral∫ T

0

e−rt
∂Gt(x, y)

∂t
dt,

where one can easily verify

∂Gt(x, y)

∂t
= − x

σ
√
t3
φ

(
x+ yt

σ
√
t

)
with φ(·) being the standard normal density. One can notice that ∂Gt(x,y)

∂t
resembles

the density function of inverse Gaussian distribution. Assuming x < 0, we have∫ T

0

e−rt
∂Gt(x, y)

∂t
dt = e

ν−y
σ2

x

∫ T

0

− x

σ
√
t3
φ

(
x+ νt

σ
√
t

)
dt

= e
ν−y
σ2

x

∫ T

0

∂Gt(x, ν)

∂t
dt

= e
ν−y
σ2

x[GT (x, ν)−G0(x, ν)]

= e
ν−y
σ2

xGT (x, ν)

= e
ν−y
σ2

x

[
Φ

(
x+ νT

σ
√
T

)
+ e−

2xν
σ2 Φ

(
x− νT
σ
√
T

)]
, (5.19)
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where ν =
√
y2 + 2rσ2. Considering the equation (5.18), we need to let x =

ln s0β2n−1

L
or ln Lβ2n−1

s0
, which is always negative given n ≥ 1. Hence, (5.19) can

be applied, and combining (5.19) together with (5.16) and (5.18) leads to the fol-

lowing theorem.

Theorem 5.3.3. The time-0 prices of one dollar paid at the moment of first breach-

ing the upper barrier Ut = Ueδ1t, and first breaching the lower barrier Lt = Leδ2t

before time T are respectively given by

Es0

[
e−rτ̃U1(τ̃U < τ̃L ∧ T )

]
=
∞∑
n=0

[(
s0β

n

L

)γn
βnκ2H1

(
ln
s0β

2n+1

L

)
−
(
Lβn

s0

)γn+κ2

H1

(
ln
Lβ2n+1

s0

)]
,

and

Es0

[
e−rτ̃L1(τ̃L < τ̃U ∧ T )

]
=
∞∑
n=0

[(
Lβn−1

s0

)γn
β−nκ1H2

(
− ln

Lβ2n

s0

)
−
(
s0β

n

U

)γn−κ1
H2

(
− ln

s0β
2n+1

U

)]
,

where for k = 1, 2,

Hk(x) = exp

(
νk − µ+ δk

σ2
x

)
Φ

(
x+ νkT

σ
√
T

)
+ exp

(
δk − νk − µ

σ2
x

)
Φ

(
x− νkT
σ
√
T

)
with νk =

√
(µ− δk)2 + 2rσ2 and Φ(·) denoting the standard normal distribu-

tion function. We have also defined β = L
U
, γn = n(κ2 − κ1), κ1 = 2(µ−δ1)

σ2 and

κ2 = 2(µ−δ2)
σ2 .

Remark 5.3.4. The pricing of immediate rebate options restricted by two expo-

nential barriers was also investigated in Kolkiewicz (2002) through the definitions

of two random times

τ̃+
U,L =

{
τ̃U τ̃U < τ̃L

∞ τ̃U > τ̃L
and τ̃−U,L =

{
τ̃L τ̃L < τ̃U

∞ τ̃L > τ̃U



81

The distributions of these two random times were derived by a different method.

In fact, for some fixed t > 0, it is not difficult to see

Prs0
(
τ̃+
U,L ∈ dt

)
= Prs0 (τ̃U ∈ dt, τ̃U < τ̃L) ,

Prs0
(
τ̃−U,L ∈ dt

)
= Prs0 (τ̃L ∈ dt, τ̃L < τ̃U) .

Hence, the formulation in Kolkiewicz (2002) is essentially the same as ours.

Remark 5.3.5. Our approach can easily be generalized to the case where the rebate

payments also depend on hitting times τ̃U and τ̃L. In particular, we can evaluate

Es0

[
e−rτ̃URτ̃U1(τ̃U < τ̃L ∧ T )

]
and Es0

[
e−rτ̃LRτ̃L1(τ̃L < τ̃U ∧ T )

]
,

where Rt is some rebate payment function.

5.4 Multi-asset barrier options

The basic version of multi-asset barrier options was first studied by Heynen

and Kat (1994a) which referred to such type of options as “outside barrier options”

because the option features an “outside barrier” determined by an “outside asset”

which is different from and correlated with the asset governing the original payoff.

Similar discussions can also be found in Carr (1995) and Lee (2004) under the same

bivariate model assumption as in Heynen and Kat (1994a). Kwok, Wu and Yu

(1998) made an extension to multi-asset model by finding the Green function of a

related partial differential equation. The problem of two-sided outside barriers was

investigated in Wong and Kwok (2003) and they developed the splitting direction

technique to yield a systematic valuation procedure by deriving the related joint

density function.
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The remainder of this section will develop a new unified formulation of multi-

asset barrier options that handles both one-sided and two-sided barriers. We still

assume an arbitrary payoff function and allow the barriers to vary exponentially in

time. Using the well-known Cholesky decomposition, we shall show that the price of

multi-asset barrier options can be easily derived from their one-asset counterparts

without much further effort. Some numerical examples will be provided at the end.

In addition, we shall extend our results to price a double knock-out option where

the barriers are stochastic and modeled by geometric Brownian motions.

5.4.1 Multi-asset model and the representation formulas

Consider m underlying assets with time-t price vector St = (S1t, · · · , Smt)′.

The process of the i-th asset is modeled as

Sit = Si0 exp (Xit) , i = 1, 2, . . . ,m, t ≥ 0,

where we assume

Xit = µit+ σiZit

with {Zit} being a standard Brownian motion, 1 ≤ i ≤ m. Denote by ρij the

correlation coefficient between dZit and dZjt, i 6= j. We let the payoff function be

h : (0,∞)m → (0,∞) and without loss of generality, use the first individual asset

as the outside asset. The time-0 forward price of multi-asset barrier options can be

generally expressed as

Es

[
h(ST )1B(S1t,0≤t≤T )

]
, (5.20)

where Es[·] means the expectation is calculated given S0 = s and we denote

B (S1t, 0 ≤ t ≤ T ) as some event regarding the sample path of {S1t} over time in-

terval [0, T ].
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The major complication involved in the derivation of (5.20) comes from the

correlation between the outside asset {S1t} and the additional source of randomness

(S2T , · · · , SmT )′ in the payoff. We use the Cholesky decomposition to isolate the

outside asset price variable from other random variables. Define the drift vector

µ = (µ1, · · · , µm)′ and the diffusion matrix Σ = (Σij)m×m where Σii = σ2
i and

Σij = ρijσiσj, i 6= j. It is a well-known result that X t = (X1t, · · · , Xmt)
′ has the

form

X t = µt+ PW t, (5.21)

where P is lower triangular such that PP ′ = Σ and W t = (W1t, · · · ,Wmt)
′ is an

m-dimensional standard Brownian motion which means that {Wit}, 1 ≤ i ≤ m, are

all standard Brownian motions and mutually independent. Let P = (pij)m×m where

pij = 0, i < j. Then equation (5.21) yields m individual equations

S1t = S10 exp (µ1t+ p11W1t) ,

Sit = Si0 exp

(
µit+

i∑
j=1

pijWjt

)
, i = 2, . . . ,m.

Therefore, we can rewrite Sit, 2 ≤ i ≤ m as

Sit = (S1t)
pi1
p11 Ŝit, (5.22)

where

Ŝit = Ŝi0 exp

((
µi −

pi1
p11

µ1

)
t+

i∑
j=2

pijWjt

)
, (5.23)

and
{
Ŝit

}
is independent of {S1t}, 2 ≤ i ≤ m. Therefore, we can isolate the

outside asset S1t from other source of uncertainty, and the expectation (5.20) can

be evaluated conditional on the joint distribution of
(
Ŝ2T , · · · , ŜmT

)′
, which can

reduce the problem of pricing multi-asset barrier options to that of pricing barrier

options consisting of only one asset S1t. In particular, we obtain the following result.
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Lemma 5.4.1. Let q(x2, · · · , xm) be the joint density function of
(
Ŝ2T , · · · , ŜmT

)′
defined by (5.23). Then the expectation (5.20) has the integral representation∫

· · ·
∫
xi>0

E
[
ĥ (S1T ;x2, · · · , xm)1B(S1t,0≤t≤T )

]
q(x2, · · · , xm)dx2 · · · dxm, (5.24)

where we define

ĥ(s;x2, · · · , xm) = h
(
s, sρ̂2x2, · · · , sρ̂mxm

)
and ρ̂i = ρi1σi

σ1
, i = 2, . . . ,m.

Proof of Lemma 5.4.1. It is only necessary to calculate the entries in the first col-

umn of matrix P . The classical algorithm for the Cholesky decomposition implies

that p11 =
√

Σ11 = σ1 and pi1 = Σi1
p11

= ρi1σi, i = 2, . . . ,m. Hence, ρ̂i = pi1
p11

= ρi1σi
σ1

.

Then the expression (5.24) follows immediately from the fact that {S1t; 0 ≤ t ≤ T}

is independent of
(
Ŝ2T , · · · , ŜmT

)′
.

Formula (5.24) provides a systematic methodology for pricing multi-asset bar-

rier options. One can observe that the expectation in the integrand of (5.24), when

fixing the dummy variables (x2, · · · , xm)′, is the price of standard barrier options

with one asset (the outside asset), which has been studied thoroughly in Chapter 4.

Some may find (5.24) quite complicated as it requires high dimensional integration

and every entry of P has to be determined. However, since the expectation in the

integrand of (5.24) can be written as the combination of the prices of plain vanilla

options, we will show that we do not need to know the formula for q(x2, · · · , xm),

and the explicit calculation of the (m − 1)-dimensional integral is not necessary,

either. Based on the expression given in Lemma 5.4.1, we can handle multi-asset

barrier options with a variety of barrier provisions.
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The following two theorems present closed-form solutions of the prices of multi-

asset barrier options with single flat barrier and double exponential barriers.

Theorem 5.4.2. Let the initial asset price vector be s0 = (s1, · · · , sm)′. The time-0

forward prices of up-and-in, up-and-out, down-and-in and down-and-out multi-asset

barrier options with a flat barrier B are respectively given by

Cui = C+
h (s0, B) +

(
B

s1

)κ̂
C−h (ŝ0, B), s1 < B, (5.25)

Cuo = C−h (s0, B)−
(
B

s1

)κ̂
C−h (ŝ0, B), s1 < B, (5.26)

Cdi = C−h (s0, B) +

(
B

s1

)κ̂
C+
h (ŝ0, B), s1 > B, (5.27)

Cdo = C+
h (s0, B)−

(
B

s1

)κ̂
C+
h (ŝ0, B), s1 > B, (5.28)

where C±h (s, x) = Es [h(ST )1 (S1T ≷ x)] are the forward prices of some binary op-

tions, κ̂ = 2µ1
σ2
1

and

ŝ0 =

(
B2

s1

s2

(
B

s1

)2ρ̂2

· · · sm

(
B

s1

)2ρ̂m
)′

with ρ̂i = ρi1σi
σ1

, i = 2, . . . ,m.

Theorem 5.4.3. Let the initial asset price vector be s0 = (s1, · · · , sm)′ with L <

s1 < U. The time-0 forward price of double knock-out multi-asset barrier options

with the exponential boundaries Ut = Ueδ1t and Lt = Leδ2t is given by the doubly

infinite sum

Cedko =
∞∑

n=−∞

(
s1β

n

L

)γ̂n
βnκ̂2

[
C∗h

(
s

(n)
0

)
−
(

L

s1β2n

)κ̂2
C∗h

(
ŝ

(n)
0

)]
, (5.29)

where β = L
U

, γ̂n = n(κ̂2 − κ̂1), κ̂1 = 2(µ1−δ1)

σ2
1

, κ̂2 = 2(µ1−δ2)

σ2
1

and

C∗h(s) = Es [h(ST )1 (LT < S1T < UT )] (5.30)
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denotes the forward price of a binary option and

s
(n)
0 =

(
s1β

2n s2β
2nρ̂2 · · · smβ

2nρ̂m

)′
,

ŝ
(n)
0 =

(
L2

s1β2n
s2

(
L

s1βn

)2ρ̂2

· · · sm

(
L

s1βn

)2ρ̂m
)′
,

with ρ̂i = ρi1σi
σ1

, i = 2, . . . ,m.

Theorems 5.4.2 and 5.4.3 can be regarded as extensions of Theorem 4.2.1 and

4.4.4, respectively. For the sake of brevity, we only provide the proof of (5.25) and

leave it to readers to derive the remaining results in an analogous manner. It is

worth noting that our approach, unlike identifying related joint density functions

as in Kwok, Wu and Yu (1998) and Wong and Kwok (2003), yields simpler and

more general formula by obviating the need for complicated integrations of density

functions. We write the prices of multi-asset barrier options as the combination

of C±h ’s or C∗h’s, the prices of binary options (all-or-nothing options), which can

be numerically computed. For a commonly used payoff function h, the expressions

of C±h and C∗h usually involve sequences of multivariate normal distribution func-

tions. As a check, we let m = 2 and the payoff function h (s1, s2) = (s2 −K)+

in our setup; then formula (5.25) reproduces the result derived in Carr (1995) and

our method is far less complicated. Similarly, one can also let the payoff function

h(s) = (max (s2, · · · , sm)−K)+ and δ1 = δ2 = 0 in Theorem 5.4.3 to reproduce

the pricing formula derived in Wong and Kwok (2003).

Remark 5.4.1. In the analysis of multi-asset barrier options, if the asset that con-

trols the barrier provision is functionally independent of the payoff, this asset is

called an external barrier variable; otherwise, this asset is called an internal bar-

rier variable. The articles we mentioned earlier at the beginning of this section

about pricing multi-asset barrier options all dealt with external barrier variables,
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while our formulation slightly admits an internal variable since the barrier variable

s1 also governs the payoff function h(s). Unfortunately, our approach presented

here fails for a more general internal variable, for example, that is determined by

a geometric basket of assets. The discussion of this case can be found in Skipper

(2007) and Section 10.9 of Buchen (2012), which assumed that the barrier vari-

able takes the form of a power function sx =
∏m

i=1 s
xi
i for some powers xi’s. They

derived the image solution for single-barrier options based on a generalized binary

pricing formula, but nevertheless did not consider two-sided exponential boundaries.

Proof of (5.25). Define the hitting time τ
(1)
B = inf {t > 0|S1t = B} . Then the time-0

forward price of an up-and-in multi-asset barrier option is expressed as

Es0

[
h(ST )1

(
τ

(1)
B < T

)]
.

Fixing the dummy variables x2, · · · , xm, we apply Theorem 4.2.1 by considering

a payoff function ĥ(s;x2, . . . , xm). Write ĥ(s;x2, · · · , xm) as ĥ(s) for short; then

Theorem 4.2.1 implies

Es1

[
ĥ (S1T )1

(
τ

(1)
B < T

)]
= Es1

[
ĥ (S1T )1 (S1T > B)

]
+

(
B

s1

)κ̂
EB2

s1

[
ĥ (S1T )1 (S1T < B)

]
,

where κ̂ = 2µ1
σ2
1

. In Lemma 5.4.1, we let B (S1t, 0 ≤ t ≤ T ) = {τ (1)
B < T} and

substitute the right-hand side of the equation above into (5.24). Formula (5.25)

then follows by some simple algebraic calculations. Now let us explain how to

obtain the modified initial value vector ŝ0. Given Si0 = si, i = 1, 2, . . . ,m, (5.22)

yields

Ŝi0 =
Si0

(S10)ρ̂i
=

si
(s1)ρ̂i

, i = 2, . . . ,m.



88

If S10 becomes B2

s1
, we use (5.22) again. For i ≥ 2, we have

Si0 = (S10)ρ̂i Ŝi0 =

(
B2

s1

)ρ̂i si
(s1)ρ̂i

= si

(
B

s1

)2ρ̂i

.

Thus the proof is complete.

Example 5.4.1 (C∗h for a rainbow call option). For certain forms of h(s), we can

derive closed-form solutions of C∗h given by (5.30), in which case the formulas in

Theorems 5.4.2 and 5.4.3 become explicit. In order to numerically implement our

results in the next section, we study a particular example of a rainbow call option

written on a geometric basket of assets. In particular, we let the payoff function

h(s) = (sw −K)+ where sw is defined as sw =
∏m

i=1 s
wi
i and obtain the following

proposition. The proof is given in Section 5.6.1.

Proposition 5.4.4. Let s = (s1, · · · , sm)′ and h(ST ) = (ST
w −K)+ with a strike

price K. Then

C∗h(s) = sw exp

(
w′µT +

1

2
w′ΣwT

)[
Ψ

(
ln
UT
s1

)
−Ψ

(
ln
LT
s1

)]
−K

[
Ψ̂

(
ln
UT
s1

)
− Ψ̂

(
ln
LT
s1

)]
, (5.31)

where

Ψ(z) = Φ2

z − µ1T − e′ΣwT
σ1

√
T

,
ln
sw

K
+w′µT +w′ΣwT
√
w′ΣwT

;− e′Σw

σ1

√
w′Σw

 ,

Ψ̂(z) = Φ2

z − µ1T

σ1

√
T
,
ln
sw

K
+w′µT

√
w′ΣwT

;− e′Σw

σ1

√
w′Σw

 ,

sw =
∏m

i=1 s
wi
i and Φ2 (·, · ; ρ) is the joint distribution function of bivariate standard

normal with correlation ρ. Here, µ and Σ are the drift vector and the diffusion

matrix of XT respectively and w = (w1, w2, · · · , wm)′, e = (1, 0, · · · , 0)′.
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5.4.2 Numerical examples

We perform numerical valuation of the formulas in Theorem 5.4.3 and Propo-

sition 5.4.4 for a special case where w = (0, 1, 0, · · · , 0)′; then the payoff function

h(s) = (s2 −K)+. We calculate the option prices given varying levels of barriers,

volatilities and correlations. The common parameter values are: s1 = s2 = 1000,

K = 1000, r = 0.05, σ2 = 0.3, T = 0.5, δ1 = 0.1 and δ2 = −0.1. We also consider

different choices of σ1 and ρ12. The numerical results are provided in Table 5.2.

To obtain the no-arbitrage time-0 prices, we replace µi by r − 1
2
σ2
i , i = 1, 2, and

multiply the discount factor e−rT in the corresponding formula.

Table 5.2: Double knock-out call with an external variable

σ1/σ2 L/U ρ12 = −0.2 ρ12 = 0 ρ12 = 0.2 ρ12 = 1

0.2/0.3 0/∞ 96.35 96.35 96.35 96.35

400/1600 96.34 96.31 96.27 95.93

500/1500 96.27 96.16 95.97 94.54

600/1400 95.92 95.44 94.72 89.57

700/1300 93.65 92.24 90.14 75.16

0.3/0.3 0/∞ 96.35 96.35 96.35 96.35

400/1600 95.59 94.81 93.68 85.88

500/1500 94.38 92.85 90.74 76.57

600/1400 90.33 88.03 84.71 61.48

700/1300 76.96 75.03 71.47 40.54

0.4/0.3 0/∞ 96.35 96.35 96.35 96.35

400/1600 92.53 90.04 86.77 65.70

500/1500 88.01 85.00 80.87 53.04

600/1400 76.33 74.01 70.08 37.86

700/1300 52.92 52.27 49.98 21.75
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Our implementation requires the computation of some bivariate normal dis-

tributions. We point out that for certain payoff functions, multivariate normal

distributions will be used, leading to computational inefficiency. For example, when

h(s) = (max (s2, · · · , sm)−K)+, which was considered in Wong and Kwok (2003),

the pricing formula involves m-dimensional normal probabilities, which are never

easy to compute numerically for a large value of m. When analyzing our examples,

we employed the function “pmvnorm” in the R package “mvtnorm”, which com-

putes multivariate normal probabilities with arbitrary correlation matrices. This

program specifies an algorithm proposed in Genz (1992), and this algorithm per-

forms a sequence of initial transformations to transform the original integral into

an integral over a unit hyper-cube, which can be handled efficiently using either

Monte-Carlo or subregion adaptive numerical integration. This moderately reme-

dies the computational issue caused by high dimensionality.

Through the implementation, we note that the doubly infinite series in (5.29)

converge extremely rapidly and only a few terms are required to achieve numerical

accuracy. The option prices are observed to increase as the barrier interval grows

wider or the volatility of the outside asset becomes smaller. This justifies our intu-

ition that the value of knock-out options rises as it is less likely for the barriers to be

breached. The impact of the correlation coefficient is however undetermined. The

overall trend according to the numbers in Table 5.2 appears to be that the options

are worth less as the two assets become more positively correlated, but it is not

the case for other parameter values. Figure 5.1 illustrates the complicated relations

between the option prices and the correlations. It is also worthwhile to point out

that when ρ12 = 1 and σ1 = σ2, formula (5.29) reduces to the known formula (4.34)

under the one-asset model. Therefore, we should expect with no surprise that the

numbers in the last column of Table 5.2 when σ1 = σ2 = 0.3 are identical to those

in Table 4.1 when σ = 0.3, δ1 = 0.1 and δ2 = −0.1. Interestingly, the option prices
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are seen to be all identical when L = 0 and U = ∞. Because in these two cases,

the barrier options reduce to vanilla call options whose values only depend on the

performance of {S2t}. Hence, the option values will have nothing to do with either

the correlation or the value of the outside asset.
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Figure 5.1: Multi-asset double knock-out call price vs. correlation
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5.4.3 Extension to two-sided stochastic barrier

The availability of pricing formulas within the multi-asset framework allows

us to make an extension to a more flexible case where the time-varying barriers are

stochastic and also driven by geometric Brownian motions. Let us express our point

by studying a double knock-out option.

We still follow the model setting given at the beginning of Section 5.4.1:

the payoff function is h : (0,∞)m → (0,∞) and the asset price process St =

(S1t, · · · , Smt)′ satisfies the usual conditions. We define a stochastic upper bound-

ary Ut = UeX
B
1t and a stochastic lower boundary Lt = LeX

B
2t where

XB
1t = µB1 t+ σBZ

B
t , t ≥ 0,

XB
2t = µB2 t+ σBZ

B
t , t ≥ 0,

with {ZB
t } being a standard Brownian motion. Hence, the two boundaries share the

same uncertainty and volatility, and we assume the correlation between dZit and

dZB
t is denoted by ρBi , i = 1, 2, . . . ,m. Then the time-0 forward price of a double

knock-out option restricted by these two stochastic boundaries is given by

Es

[
h(ST )1

(
LeX

B
2t < S1t < UeX

B
1t , 0 ≤ t ≤ T

)]
, s = (s1, s2, · · · , sm)′. (5.32)

As usual, we assume L < s1 < U , and also Leµ
B
2 T < Ueµ

B
1 T to avoid the situation

where the two boundaries intersect at some point before time T . We can easily

absorb the uncertainty component introduced by the boundaries into the barrier

variable by noting the following obvious identity:{
LeX

B
2t < S1t < UeX

B
1t , 0 ≤ t ≤ T

}
=
{
Le(µB2 −µB1 )t < s1e

X1t−XB
1t < U, 0 ≤ t ≤ T

}
.

Alternatively, we can also rewrite the left-hand side of the identity above as{
L < s1e

X1t−XB
2t < Ue(µB1 −µB2 )t, 0 ≤ t ≤ T

}
.
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Therefore, the problem reduces to the one we already solved in the multi-asset

framework, where the process of the barrier variable is given by {X1t−XB
1t} and the

curvatures of the upper and lower boundaries are respectively 0 and µB2 − µB1 . Now

it only becomes necessary to identify the distribution of the multivariate process

(X1t −XB
1t, X1t, · · · , Xmt)

′.

The drift vector and diffusion matrix of (XB
1t, X1t, · · · , Xmt)

′ are respectively

given by µB1
µ


(m+1)×1

and

σ2
B σ′B

σB Σ


(m+1)×(m+1)

,

where σB =
(
ρB1 σ1σB, ρ

B
2 σ2σB, . . . , ρ

B
mσmσB

)′
, and µ and Σ are respectively the

drift vector and the diffusion matrix of (X1t, X2t, · · · , Xmt)
′. Therefore, by a simple

transformation, one can easily write down the drift vector and the diffusion matrix

of (X1t −XB
1t, X1t, · · · , Xmt)

′ as−1 e′

0 Im

µB1
µ

 and

−1 e′

0 Im

σ2
B σ′B

σB Σ

−1 e′

0 Im

′ ,
where 0 = (0, 0, · · · , 0)′, e = (1, 0, · · · , 0)′ and Im denotes an m×m identity matrix.

Now one is able to readily apply the pricing formula provided in Theorem 5.4.3 to

calculate the expectation (5.32).

5.5 Window barrier options

The purpose of this section is to discuss the valuation of a class of barrier

options where the underlying asset price is monitored only during a fraction of the

options’ life. Before mentioning window barrier options, let us first introduce their

regular form, which is called partial barrier options. There are two types of partial

barrier options. One is forward-starting barrier options where the monitoring period
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starts at a specified date strictly after the options initiate. The other is early-ending

barrier options where the monitoring period terminates at a specified date strictly

before the options expire. With the feature of partial monitoring window, partial

barrier options can be employed to limit the risk of the barriers to be knocked in

or out, and have been extensively traded in the foreign exchanges or the over-the-

counter markets, to replace or supplement traditional barrier options. Heynen and

Kat (1994b) and Carr (1995) derived pricing formulas of partial barrier options in

terms of bivariate normal probabilities. The application of static hedging technique

to valuing partial barrier options can be found in Carr and Chou (2002).

Window barrier options incorporate both the forward-starting and early-ending

monitorings and thus offer more flexible structure, as opposed to partial barrier op-

tions. Investors who hold window barrier options can enjoy a more customized

hedging or investing experience by carefully choosing the location of monitoring

period according to how they evaluate the financial markets. Guillaume (2003)

studied window double knock-out options with flat barriers as well as a more exotic

case where single and double barriers are mixed during multiple disjoint monitoring

periods.

We will apply the results obtained in Chapter 4 to value window double

knock-out options with exponential boundaries and arbitrary payoff functions. By

repetitive conditioning, we will show that window barrier options can be viewed as

compound options written on certain standard barrier options. Assuming a single

segment of monitoring window with a fixed starting time t1 and a fixed ending

time t2, we express the pricing formula in terms of trivariate normal distribution

functions. The following begins with the case of forward-starting window and then

extends to the case of forward-starting and early-ending window. At the end, some

numerical examples and related discussion are provided.
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5.5.1 Forward-starting monitoring window

We assume that the barriers are not visible until some pre-specified time point

t1 and stay active in the remaining lifetime of the contract. Therefore, this type of

options behaves as plain vanilla options prior to time t1 and then becomes identical

to a standard double-barrier option during the monitoring period from t1 to T . We

can express the time-0 forward price W
(1)
π of the forward-starting double knock-out

options as the following expectation,

W (1)
π (s0, t1, T ) = Es0

[
π(ST )1

(
max
t1≤t≤T

(St − Ut) < 0, min
t1≤t≤T

(St − Lt) > 0

)]
. (5.33)

Note that in this case, s0 is not necessarily between L and U if t1 6= 0. By condi-

tioning on Ft1 , we can rewrite (5.33) as

W (1)
π (s0, t1, T ) = Es0 [1 (Lt1 < St1 < Ut1)Vπ(St1 , T − t1;Lt1 , Ut1)] , (5.34)

where we let Vπ(s, T − t1;Lt1 , Ut1) denote the time-0 forward price of the standard

double knock-out options; π is the payoff function, s is the initial asset price, T − t1

is the maturity time, Lt1 and Ut1 are the initial levels of the two barriers. Equation

(5.34) shows that this window barrier option can be viewed as a compound option:

this compound option gives the holder the right to purchase a standard barrier

option at time t1 at the cost of Vπ if Lt1 < St1 < Ut1 . The explicit formula for

Vπ can be derived from the pricing formula (4.34). Then we express W
(1)
π by the

integration

W (1)
π (s0, t1, T ) =

∫ Ut1

Lt1

Vπ(s, T − t1;Lt1 , Ut1)fSt1 (s)ds, (5.35)

where fSt1 (s) denotes the probability density function of St1 given S0 = s0. In fact,

we are able to give an analytical solution of W
(1)
π . But to save space and focus

on the more general case, let us move on to the next section where we combine

forward-starting and early-ending windows.
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5.5.2 Forward-starting and early-ending monitoring window

We assume that monitoring of the double barriers starts at time t1 and ends

at time t2 where 0 < t1 < t2 < T . The time-0 forward price W
(2)
π of this type of

window barrier options can be expressed as

W (2)
π (s0, t1, t2, T ) = Es0

[
π(ST )1

(
max
t1≤t≤t2

(St − Ut) < 0, min
t1≤t≤t2

(St − Lt) > 0

)]
.

(5.36)

The case of forward-starting and early-ending window can immediately reduce to

the case of only forward-starting window. In particular, we have

W (2)
π (s0, t1, t2, T ) = W (1)

χ (s0, t1, t2) (5.37)

= Es0 [1 (Lt1 < St1 < Ut1)Vχ(St1 , t2 − t1;Lt1 , Ut1)] , (5.38)

where χ(s) is defined as

χ(s) = E [π(ST )|Ft2 , St2 = s] . (5.39)

Equation (5.37) is derived by conditioning on Ft2 of the expectation in (5.36), and

(5.38) follows immediately from (5.34). Similar to (5.35), W
(2)
π can also be computed

by numerical integration as long as we know the formula for Vχ, which is derived

from Theorem 4.4.4 by replacing T by t2− t1, π(s) by χ(s), L by Lt1 and U by Ut1 .

Specifically, one can easily show that

Vχ(s, t2 − t1;Lt1 , Ut1) =
∞∑

n=−∞

(
sβn

Lt1

)γn
βnκ2Pχ

(
sβ2n, t2 − t1, Lt2 , Ut2

)
−

∞∑
n=−∞

(
sβn

Lt1

)γn−κ2
Pχ

(
L2
t1

sβ2n , t2 − t1, Lt2 , Ut2

)
, (5.40)

where for the ease of analysis, we define β =
Lt1
Ut1

and

Pχ(s, t, x, y) = Es [χ(St)1(x < St < y)] .

Based on the definition of χ(s) by (5.39), we evaluate Pχ (s, t2 − t1, Lt2 , Ut2) in the
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following manner.

Pχ (s, t2 − t1, Lt2 , Ut2) = Es [χ(St2−t1)1 (Lt2 < St2−t1 < Ut2)]

= E [χ(St2)1 (Lt2 < St2 < Ut2) |St1 = s]

= E [E [π(ST )|Ft2 ]1 (Lt2 < St2 < Ut2) |St1 = s]

= E [π(ST )1 (Lt2 < St2 < Ut2) |St1 = s] . (5.41)

When the payoff function π(s) is of call or put type, we can explicitly write Pχ in

terms of bivariate normal probabilities.

We pursue a closed-form solution of W
(2)
π , and this can be achieved by com-

bining (5.38), (5.40) and (5.41). In particular, we obtain the following theorem.

Theorem 5.5.1. Let s0 be the initial asset value. The two exponential boundaries

Ut = Ueδ1t and Lt = Leδ2t are monitored over the time interval from t1 to t2 where

0 < t1 < t2 < T . The time-0 forward price W
(2)
π of the window double knock-out

options is given by the doubly infinite sum

W (2)
π (s0, t1, t2, T ) =

∞∑
n=−∞

{
Es0

[
π
(
β2nST

)
In
]
− Es0

[
π

(
L2
t1

β2n

ST
S2
t1

)
Jn

]}
, (5.42)

where β =
Lt1
Ut1

,

In =

(
St1β

n

Lt1

)γn
βnκ21

(
Lt1 < St1 < Ut1 , Lt2 < β2nSt2 < Ut2

)
,

Jn =

(
St1β

n

Lt1

)γn−κ2
1

(
Lt1 < St1 < Ut1 , Lt2 <

L2n
t1

β2n

St2
S2
t1

< Ut2

)
,

and γn = n(κ2 − κ1), κ1 = 2(µ−δ1)
σ2 and κ2 = 2(µ−δ2)

σ2 .

Theorem 5.5.1 provides a representation formula for W
(2)
π in terms of the prices

of options whose payoffs only depend on the asset values at time points t = 0, t1,

t2 and T . For the formula to be well-defined, t1 must be strictly greater than 0 and
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t2 must be strictly less than T . However, one can still let t2 tend to T to recover a

forward-starting monitoring window and let t1 tend to 0 to recover an early-ending

monitoring window. The known formula (4.34) for the standard double knock-out

options can be reproduced by letting t1 and t2 tend to 0 and T respectively at the

same time.

Proof of Theorem 5.5.1. Formula (5.42) can be derived by substituting (5.40) and

(5.41) into (5.38). The order of summation and expectation can be interchanged

because every term involved is positive. Let us consider the n-th summand in the

first doubly infinte sum of (5.40) and denote it by Qn(s). By equation (5.41),

Qn(s) =

(
sβn

Lt1

)γn
βnκ2E

[
π(ST )1 (Lt2 < St2 < Ut2)

∣∣∣∣St1 = sβ2n

]
=

(
sβn

Lt1

)γn
βnκ2E

[
π
(
β2nST

)
1
(
Lt2 < β2nSt2 < Ut2

) ∣∣∣∣St1 = s

]
,

and hence, conditional on Ft1 , we have

Qn(St1) = E

[(
St1β

n

Lt1

)γn
βnκ2π

(
β2nST

)
1
(
Lt2 < β2nSt2 < Ut2

) ∣∣∣∣Ft1] .
From the inspection of (5.38), we need to compute

Es0 [1 (Lt1 < St1 < Ut1)Qn(St1)] .

Using the fact that 1 (Lt1 < St1 < Ut1) is Ft1-measurable as well as using the law

of iterated expectations lead to the first expectation in the summations of (5.42).

The second expectation can be computed in an analogous manner.

Now let us apply Theorem 5.5.1 to find the explicit solution for a window

double knock-out call option.



99

Corollary 5.5.2. When π(s) = (s − K)+ for a strike price K, then the doubly

infinite series given by (5.42) can be expressed as

W (2)
π (s0, t1, t2, T )

=
∞∑

n=−∞

(
βn

Lt1

)γn+κ2

Lκ2t1
{
β2nE(γn, 1)I1n −KE(γn, 0)I2n

}
−

∞∑
n=−∞

(
βn

Lt1

)γn−κ2 1

β2n

{
L2
t1
E(γn − κ2 − 2, 1)I3n − β2nKE(γn − κ2, 0)I4n

}
,

where we have defined β =
Lt1
Ut1

, γn = n(κ2− κ1), κ1 = 2(µ−δ1)
σ2 , and κ2 = 2(µ−δ2)

σ2 . We

also define

E(x, y) = sx+y
0 exp

((
µx+

σ2

2
x2 + σ2xy

)
t1 +

(
µy +

σ2

2
y2

)
T

)
and

I1n = Θ+
1 (α2, α4, α5)−Θ+

1 (α2, α3, α5)−Θ+
1 (α1, α4, α5) + Θ+

1 (α1, α3, α5),

I2n = Θ+
2 (α2, α4, α5)−Θ+

2 (α2, α3, α5)−Θ+
2 (α1, α4, α5) + Θ+

2 (α1, α3, α5),

I3n = Θ−3 (α2, α7, α8)−Θ−3 (α2, α6, α8)−Θ−3 (α1, α7, α8) + Θ−3 (α1, α6, α8),

I4n = Θ−4 (α2, α7, α8)−Θ−4 (α2, α6, α8)−Θ−4 (α1, α7, α8) + Θ−4 (α1, α6, α8),

where

Θε
2(x, y, z) = Φ3

(
x− µt1 − γnσ2t1

σ
√
t1

,
y − µt2 − γnσ2t1

σ
√
t2

,
z + µT + γnσ

2t1

σ
√
T

;

ε

√
t1
t2
,−ε

√
t1
T
,−
√
t1
t2

)
,

Θε
1(x, y, z) = Θε

2

(
x− σ2t1, y − σ2t2, z + σ2T

)
,

Θε
4(x, y, z) = Θε

2

(
x+ κ2σ

2t1, y + 2µt1 + (2γn − κ2)σ2t1, z − 2µt1 − (2γn − κ2)σ2t1
)
,

Θε
3(x, y, z) = Θε

4

(
x+ σ2t1, y − σ2t2, z + σ2T

)
,
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with ε = 1 or −1 and Φ3(·, ·, · ; ρ12, ρ13, ρ23) being the distribution function of trivari-

ate standard normal with correlations ρ12, ρ13 and ρ23, and

α1 = ln
Lt1
s0

, α2 = ln
Ut1
s0

, α3 = ln
Lt2
s0β

2n , α4 = ln
Ut2
s0β

2n ,

α5 = ln
s0β

2n

K
, α6 = ln

s0Lt2β
2n

L2
t1

, α7 = ln
s0Ut2β

2n

L2
t1

, α8 = ln
L2
t1

s0Kβ
2n .

Proof of Corollary 5.5.2. Let π(s) = (s − K)+ in Theorem 5.5.1 and define Xt =

ln St
S0

. After some simple calculations, we have

W (2)
π (s0, t1, t2, T ) =

∞∑
n=−∞

(
βn

Lt1

)γn+κ2

Lκ2t1
(
β2nJ1n −KJ2n

)
−

∞∑
n=−∞

(
βn

Lt1

)γn−κ2 1

β2n

(
L2
t1
J3n − β2nKJ4n

)
,

where

J1n = E
[
Sγnt1 ST1 (α1 < Xt1 < α2, α3 < Xt2 < α4,−XT < α5)

]
,

J2n = E
[
Sγnt1 1 (α1 < Xt1 < α2, α3 < Xt2 < α4,−XT < α5)

]
,

J3n = E
[
Sγn−κ2−2
t1 ST1 (α1 < Xt1 < α2, α6 < Xt2 − 2Xt1 < α7, 2Xt1 −XT < α8)

]
,

J4n = E
[
Sγn−κ2t1 1 (α1 < Xt1 < α2, α6 < Xt2 − 2Xt1 < α7, 2Xt1 −XT < α8)

]
.

Then it is sufficient to show that

J1n = E(γn, 1)I1n, J2n = E(γn, 0)I2n,

J3n = E(γn − κ2 − 2, 1)I3n, J4n = E(γn − κ2, 0)I4n.

Note that by the definition of E(x, y), we have E(x, y) = Es0

[
Sxt1S

y
T

]
. Applying the

Esscher transform factorization (2.8), we can rewrite each of the expectation above

as the product of E(x, y) and a trivariate normal probability under some transformed
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measure with certain choices of x and y. Let us take J3n as an example.

J3n = E(γn − κ2 − 2, 1)

× Pr (α1 < Xt1 < α2, α6 < Xt2 − 2Xt1 < α7, 2Xt1 −XT < α8;h) ,

where h = (γn−κ2−2, 0, 1)′. We need to show that the probability in the expression

above is equal to I3n. In fact, this two-sided probability can be easily rewritten

in terms of four one-sided probabilities, and it is only necessary to identify the

mean vector and the covariance matrix of the trivariate normal vector (Xt1 , Xt2 −

2Xt1 , 2Xt1 −XT )′ under the transformed measure with index h. It is easy to verify

that the mean vector and the covariance matrix of the triplet (Xt1 , Xt2 , XT )′ under

the original measure are respectively given by

m =


µt1

µt2

µT

 and Q =


σ2t1 σ2t1 σ2t1

σ2t1 σ2t2 σ2t2

σ2t1 σ2t2 σ2T

 .

Because of the transformation
Xt1

Xt2 − 2Xt1

2Xt1 −XT

 = R


Xt1

Xt2

XT

 with R =


1 0 0

−2 1 0

2 0 −1

 ,

the mean vector and the covariance matrix of (Xt1 , Xt2 − 2Xt1 , 2Xt1 −XT )′ under

the transformed measure with index h can be respectively expressed as

R(m+Qh) and RQR′.

We standardize the trivariate normal vector and the result follows immediately. The

other three quantities J1n, J2n and J4n can be computed in a similar fashion.
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5.5.3 Numerical examples

We perform the numerical valuation of the formula in Corollary 5.5.2. We

examine various choices of barrier levels, curvature rates and monitoring periods.

The common parameter values are: s0 = 1000, K = 1000, r = 0.05, σ = 0.3, t2 = 0.4

and T = 0.5. The left end-point t1 of the monitoring window has values 0.1, 0.2

or 0.3. To obtain the time-0 arbitrage-free price, we let µ = r − 1
2
σ2 and multiply

the discount factor e−rT in the formula. The related trivariate normal probabilities

are computed using the function “pmvnorm” in the R package “mvtnorm” which

employs an algorithm proposed by Genz (1992). The results are provided in Table

5.3 where we also compare them with the prices of standard double knock-out call

options (SDKOCall), in which case t1 = 0 and t2 = T = 0.5.

Table 5.3: Window double knock-out call vs. standard double knock-out call

δ1/δ2 L/U t1 = 0.1 t1 = 0.2 t1 = 0.3 SDKOCall

0.1/-0.1 0/∞ 96.35 96.35 96.35 96.35

400/1600 91.19 91.20 91.41 85.88

500/1500 84.88 84.95 85.54 76.57

600/1400 72.92 73.18 74.63 61.48

700/1300 53.56 54.40 57.19 40.54

0/0 0/∞ 96.35 96.35 96.35 96.35

400/1600 88.20 88.22 88.50 80.06

500/1500 79.61 79.68 80.40 67.88

600/1400 64.89 65.15 66.71 50.23

700/1300 43.77 44.53 47.16 28.90

-0.1/0.1 0/∞ 96.35 96.35 96.35 96.35

400/1600 84.00 84.02 84.37 72.22

500/1500 72.85 72.93 73.74 57.30

600/1400 55.65 55.91 57.49 38.10

700/1300 33.93 34.56 36.88 18.22
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The option values are observed to decrease with the narrowing of the barrier

interval or the monitoring window, as a consequence of the increasing likelihood

for the options to expire worthless upon breaching the barriers. Two extreme cases

are also investigated. One is L = 0 and U = ∞, and the result reduces to $96.35,

the price of vanilla call options regardless of the monitoring period. The other is

t1 = 0 and t2 = 0.5. In this case, the barriers are visible during the entire lifetime

of the contract and the results become the prices of standard double knock-out call

(SDKOCall), which are listed in the last column of Table 5.3 as benchmarks. These

numbers are copied directly from Table 4.1, not computed using the formula given

by Corollary 5.5.2, because when t1 = 0 and t2 = 0.5, the formula is invalid for

implementation as the trivariate normal probabilities reduce to univariate normal

probabilities.

5.6 Appendix

5.6.1 Proof of Proposition 5.4.4

Proof. First we can verify that given s = (s1, s2, · · · , sm)′,

C∗h(s) = E

[(
m∏
i=1

(SiT )wi −K

)+

1 (LT < S1T < UT )

]

= swE

[
exp

(
m∑
i=1

wiXiT

)
1

(
ln
LT
s1

< X1T < ln
UT
s1

,

m∑
i=1

wiXiT > ln
K

sw

)]

−KPr

(
ln
LT
s1

< X1T < ln
UT
s1

,
m∑
i=1

wiXiT > ln
K

sw

)
. (5.43)

Applying the Esscher transform factorization (2.8), we further express the last ex-

pectation in (5.43) as

E

[
exp

(
m∑
i=1

wiXiT

)]
Pr

(
ln
LT
s1

< X1T < ln
UT
s1

,−
m∑
i=1

wiXiT < ln
sw

K
;w

)
,
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where w after the semicolon indicates that the probability is calculated under the

transformed measure with index w. Note that
∑m

i=1 wiXiT = w′XT follows normal

distribution with mean w′µT and variance w′ΣwT . Hence,

E

[
exp

(
m∑
i=1

wiXiT

)]
= exp

(
w′µT +

1

2
w′ΣwT

)
.

Now it is only necessary to identify the distribution of the vector(
X1T ,−

m∑
i=1

wiXiT

)′
under the new measure. Note that(

X1T ,−
m∑
i=1

wiXiT

)′
= ν ′XT ,

where ν = (e,−w) is an m × 2 matrix with e = (1, 0, · · · , 0)′. Then the random

vector ν ′XT has a bivariate normal distribution. As a result of the discussion at

the end of Example 2.5.1, one can show the mean vector and the covariance matrix

under the transformed measure are respectively given by

ν ′(µ+ Σw)T =

 µ1T + e′ΣwT

−w′µT −w′ΣwT


2×1

and

ν ′ΣνT =

 σ2
1T −e′ΣwT

−e′ΣwT w′ΣwT


2×2

.

On the left-hand sides of the identities above, the product of the vector (matrix)

and the scalar T is taken entry-wise. Now we can compute (5.43) by standardizing

the normal vectors and the desired result follows.
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CHAPTER 6

PRICING BARRIER OPTIONS IN JUMP-DIFFUSION
MODELS

6.1 Introduction

Jump-diffusion processes have been extensively considered in insurance and

finance as a standard modeling tool. For actuaries, the use of pure jump processes

can be traced back to the fundamental work of Filip Lundberg in collective risk

theory, where the aggregate claims were modeled by compound Poisson processes.

See, for example, Gerber (1970, 1972) and Dufresne and Gerber (1991b), where a

Brownian motion was added to the compound Poisson process. Jump diffusions are

also widely used to model an insurer’s liabilities. For example, Cummins (1988)

and Duan and Yu (2005) evaluated the risk-based premiums of insurance guaranty

funds in jump diffusions. It is analytically convenient if the distribution of indi-

vidual claim size is a mixture (or a combination) of exponential distributions, and

quantities such as ruin probability and expected discounted dividends until ruin

can be determined in explicit forms. See, for example, Dufresne and Gerber (1988,

1989, 1991a,b), Chan (1990), Gerber and Shiu (1998a, 2005), Chan, Gerber and

Shiu (2006), Gerber, Shiu and Smith (2006) and Avanzi and Gerber (2008).

Jump diffusions also find their popularity in finance. Jump-diffusion mod-

els are able to capture dramatic changes in the underlyings, and naturally exhibit

some significant empirical facts such as leptokurtosis and implied volatility smiles,

which the traditional BS framework cannot account for. Merton (1976) modeled
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stock price movements by adding an independent compound Poisson process to a

Brownian motion and assuming the jump magnitude is normally distributed. To

obtain particular tractability for path-dependent options, Kou (2002) proposed a

jump-diffusion model where the jump magnitude follows an asymmetric double ex-

ponential distribution. To generalize the model in Kou (2002), Cai, Chen and Wan

(2009) and Cai and Kou (2011) respectively considered a mixture and a combina-

tion of exponential distributions as the distribution of the jump magnitude. Besides

analytical convenience, the benefit of assuming combinations of exponential distri-

butions for jump sizes is that they can be used to approximate the distribution of

any jump size in the sense of weak convergence. See Cai and Kou (2011) for some

numerical examples where combinations of exponential distributions were used to

estimate heavy-tail distributions including Gamma, Pareto and Weibull. For mod-

els based on general Lévy processes, one can see Carr et al. (2003), Cont and Tankov

(2004) and reference therein.

The volatilities of asset returns estimated from empirical data are basically

stochastic and clustered; such phenomena cannot be captured under diffusions with

deterministic volatilities. Therefore, models incorporating stochastic volatilities

were proposed to fit clustering effects and long-term behavior. See, for example,

Heston (1993), Bates (1996), Duffie, Pan and Singleton (2000), Carr et al. (2003)

and Alòs, Chen and Rheinländer (2016).

The difficulty in pricing barrier options under jump-diffusion models mainly

comes from the fact that the boundary crossing can be realized by either touching

the boundary or jumping across the boundary, which should be treated separately.

One method is to establish a partial integro-differential equation that the option

value satisfies and solve it numerically. Some techniques such as variational methods

and extrapolation have been developed by, for example, Feng, Linetsky and Mar-

cozzi (2004) and Feng and Linetsky (2008), to efficiently solve this type of equations.
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The other method is to identify the joint distribution of the jump-diffusion process

at maturity and its exit times through Laplace transform inversion. In general, this

Laplace transform is difficult, if not impossible, to derive analytically. However,

for particular cases where the distribution of the jump magnitude is a mixture or

combination of exponential distributions, the Laplace transforms associated with

the one-sided and two-sided exit times can be obtained explicitly in fairly simple

forms, partially because of the memoryless property. See, for example, Kou and

Wang (2004), Kou, Petrella and Wang (2005), Cai, Chen and Wan (2009) and Cai

and Kou (2011). See also Gerber, Shiu and Yang (2013) who obtained correspond-

ing Laplace transforms based on the Wiener-Hopf factorization. A recent study can

be found in Alòs, Chen and Rheinländer (2016) which valued barrier options under

stochastic volatility models based on a general self-duality.

In the approach pioneered by Kou and his co-authors, it is not as easy to

get the Laplace transform for curved boundaries as for flat boundaries, and double

exponential distribution has to be assumed for the jump size to obtain closed-form

solutions. Our purpose is to derive pricing formulas for knock-out options with

exponential boundaries, arbitrary payoffs, and more flexible jump distributions. In

our model, the underlying asset price process {St} is modeled by the dynamic

St = S0 exp

(
µt+ σWt +

Nt∑
i=1

Yi

)
, t ≥ 0, (6.1)

where {Wt} is a standard Brownian motion, {Nt} is a Poisson process with intensity

λ and {Yi}i≥1 are jump sizes and are independent and identically distributed (i.i.d.)

with a common density function fY (y). We further assume {Wt}, {Nt} and {Yi}i≥1

are mutually independent. The sum part
{∑Nt

i=1 Yi

}
is usually called a compound

Poisson process.

Our work can be viewed as an extention of Shao and Wang (2012) who studied

the distributions of one-sided and two-sided exit times of {ln(St/S0)} with respect
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to linear boundaries (and more general non-linear boundaries). We shall extend to

derive the joint distributions of ln(ST/S0) and the exit times where T is the matu-

rity time. In fact, as in Shao and Wang (2012), our pricing formulas are also valid

for more general counting processes and jump sizes as long as the joint distribu-

tion of (Y1, Y2, . . . , Yn) is available for all n ≥ 1. However, for risk-neutral valuation

purpose, a (homogeneous) Poisson process and i.i.d. jump sizes should be assumed

in our discussion. We also point out that we will only calculate the (discounted)

expected values under the physical measure. Therefore, our formula is valid in no-

arbitrage pricing only if the asset price process has the same jump-diffusion form

under the selected risk-neutral measure, which holds if the distribution of the jump

size belongs to the exponential family (See Corollary 1 and the remark after it in

Kou (2002)). This definitely includes the well-known models proposed in Merton

(1976) and Kou (2002).

The remainder of this chapter is organized as follows. Section 6.2 briefly re-

views the basic set-up for option pricing in jump-diffusion models (such as models

in Merton (1976) and Kou (2002)), preparing for risk-neutral valuation and the

numerical analysis thereafter. Section 6.3 studies up-and-out options with single

exponential boundary, and Section 6.4 studies double knock-out options with ex-

ponential boundaries. Section 6.5 describes how to implement our pricing formulas

and some numerical examples are provided. Section 6.6 talks about an immediate

application of our method to pricing a step double knock-out option with a set of

piecewise exponential boundaries in the BS economy.

6.2 The setting for risk-neutral pricing

We follow the basic setting for option pricing given in Kou (2002, 2007). The

market is incomplete when jumps are incorporated into asset prices and thus the
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risk-neutral measure is not unique. Within an equilibrium framework, Kou (2002)

demonstrated that a risk-neutral measure can be chosen under which the asset price

process takes the same jump-diffusion form as in (6.1), given that the distribution

of {Yi}i≥1 belongs to the exponential family. In our discussion, we assume the

underlying asset does not pay any dividends. We will take a risk-neutral measure

as given and assume under that measure,

St = S0 exp

(
µt+ σWt +

Nt∑
i=1

Yi

)
, t ≥ 0, (6.2)

where the drift is expressed as

µ = r − σ2

2
−
(
E
[
eY1
]
− 1
)
λ

with r being the constant risk-free interest rate. Note that the discounted asset

price process {e−rtSt} with the given parameter µ is a martingale.

In Merton (1976), {Yi}i≥1 follow i.i.d. normal distributions and

fY (y) =
1√
v
φ

(
y −m
v

)
,

where φ(·) is the density function of standard normal, m is the mean and v > 0 is

the standard deviation. The drift under the risk-neutral measure is given by

µ = r − σ2

2
−
(
em+ v2

2 − 1
)
λ.

In Kou (2002), {Yi}i≥1 follow i.i.d. two-sided exponential distributions and

fY (y) = p · η1e
−η1y1(y ≥ 0) + (1− p) · η2e

η2y1(y < 0),

where 0 ≤ p ≤ 1, η1 > 1 and η2 > 0. The condition η1 > 1 guarantees the existence

of E[eY1 ]. The drift under the risk-neutral measure is given by

µ = r − σ2

2
−
(

pη1

η1 − 1
+

(1− p)η2

η2 + 1
− 1

)
λ.

We remark that a variety of other jump size distributions can also be incorporated
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into the model (6.2) such as Bernoulli distribution, Gamma distribution, a mixture

(or a combination) of exponential distributions and so on.

Here we also want to reconsider the risk-neutral valuation from a viewpoint

of Esscher transforms. When the market is incomplete, the method of Esscher

transforms gives a general and unambiguous solution by leading to a unique Esscher

risk-neutral measure, which can be determined by solving the equation (2.9) where

the Lévy process is given by

ln
St
S0

= µt+ σWt +
Nt∑
i=1

Yi.

One can easily show that the moment-generating functions of this Lévy process

under the physical measure and the new measure with index a∗ are respectively

written as

E

[(
St
S0

)z]
= exp

{(
µz +

σ2z2

2
+
(
E
[
ezY1

]
− 1
)
λ

)
t

}
,

and

E

[(
St
S0

)z
; a∗
]

= exp

{((
µ+ a∗σ2

)
z +

σ2z2

2
+
(
E
[
ezY1 ; a∗

]
− 1
)
λE
[
ea
∗Y1
])

t

}
,

from which we can conclude that {St} takes the same jump-diffusion form under

the physical measure and the risk-neutral measure if Y1 is in the same distribution

family under these two measures. This essentially means the jump size distribution

belongs to the exponential family, as evidenced by Corollary 1 in Kou (2002).

6.3 Single-barrier options

The objective of this section is to derive an explicit formula for the price of

up-and-out options with a time-varying boundary Bt = Beδt. In particular, we are
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interested in calculating the expectation

Es0

[
π(ST )1

(
St < Beδt, 0 ≤ t ≤ T

)]
, s0 < B. (6.3)

We can rewrite the asset price as

St = S0 exp

(
Xt +

Nt∑
i=1

Yi

)
,

where {Xt} is a Brownian motion defined by

Xt = µt+ σWt, t ≥ 0. (6.4)

By variable transformations and change of drift, one can easily show that the ex-

pectation (6.3) is equivalent to

E

[
ψ

(
XT +

NT∑
i=1

Yi

)
1

(
Xt +

Nt∑
i=1

Yi < b, 0 ≤ t ≤ T

)]
. (6.5)

for some function ψ(x) and some b > 0. We can recover (6.3) by letting ψ(x) =

π
(
s0e

δT+x
)
, b = ln B

s0
, and replacing the drift term µ by µ − δ in (6.5). Therefore,

we shall focus on the evaluation of (6.5) in this section thereafter. Shao and Wang

(2012) calculated the boundary crossing probability, which is equal to expectation

(6.5) with ψ(x) = 1. We will show that the method in Shao and Wang (2012) can

be carried out to calculate (6.5) for an arbitrary function ψ(x).

Notice that we can easily rewrite the knock-out event as{
Xt +

Nt∑
i=1

Yi < b, 0 ≤ t ≤ T

}
=

{
Xt < b−

Nt∑
i=1

Yi, 0 ≤ t ≤ T

}
. (6.6)

In light of (6.6), the problem of the jump diffusion delimited by the fixed boundary

can be translated into the problem of a linear Brownian motion delimited by a

stochastic boundary which is a step function in time and moves according to the

Poisson process {Nt} (For example, see Figure 6.1 for an illustration). In particular,

we partition the time interval [0, T ] with arrival times of the Poisson process up to

time T and piecewise evaluate the event given by (6.6).
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b

Y1
Y2 Y3

Y4

TT1 T2 T3 T4

b

T

−Y1 −Y2
−Y3

−Y4

T1 T2 T3 T4

Figure 6.1: The jump-diffusion process with an upper boundary b given NT = 4

For n ≥ 1, let Tn denote the arrival time of the n-th jump for the Poisson

point process {Nt}. In particular, we define

T0 = 0, Tn+1 = inf {t > Tn|Nt− 6= Nt} , n ≥ 0.

It is a well-known result that the joint distribution of (T1, T2, · · · , Tn) conditional

on NT = n is the same as the distribution of the order statistics of n independent

uniform random variables in (0, T ). Let Fn(t1, t2, · · · , tn) denote the corresponding
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density function. Then

Fn(t1, t2, · · · , tn) =
n!

T n
, 0 < t1 < t2 < · · · < tn < T. (6.7)

For notional convenience, we define the cumulative jump size Ŷk =
∑k

i=1 Yi, k ≥ 0,

with the convention
∑

i∈∅ = 0. By conditioning on NT , we can express (6.5) as

E
[
ψ
(
XT + ŶNT

)
1

(
Xt + ŶNt < b, 0 ≤ t ≤ T

)]
=
∞∑
n=0

Pr(NT = n)E

[
ψ
(
XT + Ŷn

)
1

(
Xt + ŶNt < b, 0 ≤ t ≤ T

) ∣∣∣∣NT = n

]
. (6.8)

The last expectation can be further evaluated by conditioning on the first n arrival

times. Based on the reasoning right after (6.6), we have

E

[
ψ
(
XT + Ŷn

)
1

(
Xt + ŶNt < b, 0 ≤ t ≤ T

) ∣∣∣∣NT = n

]
= E

[
ψ
(
XT + Ŷn

) n−1∏
k=0

1

(
Xt < b− Ŷk, Tk ≤ t < Tk+1

)
× 1

(
Xt < b− Ŷn, Tn ≤ t ≤ T

) ∣∣∣∣NT = n

]
. (6.9)

Here we use the convention
∏

k∈∅ = 1. Because {Xt}, {Ŷk} and {Nt} are mutually

independent, and because we know the joint density functions of (Y1, Y2, · · · , Yn) and

(T1, T2, · · · , Tn) given NT = n, it is only necessary to calculate the expectation (6.9)

for every non-negative n given Tk = tk and Yk = yk for fixed tk and yk, 0 ≤ k ≤ n,

which essentially corresponds to the value of an up-and-out option restricted by an

(n + 1)-period step boundary in the BS framework. Borrowing an idea from Shao

and Wang (2012), we shall show inductively that this (n+ 1)-period step boundary

can reduce to a single-period step boundary, which has been studied thoroughly in

Chapter 4.

Let us explain how to deal with (6.9) for n = 0 and n = 1. When n = 0,

because we assume {NT} is independent of {Xt}, we can easily reduce (6.9) to

E [ψ (XT )1 (Xt < b, 0 ≤ t ≤ T )] ,
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which is recognized as the value of an up-and-out option in the BS framework.

When n = 1, given the density function F1(t1) defined by (6.7) and the density

function fY (y), we can express (6.9) as∫ T

0

F1(t1)dt1

∫
R

fY (y1)dy1E
[
ψ (XT + y1)1 (Xt < b, 0 ≤ t < t1)

× 1 (Xt < b− y1, t1 ≤ t ≤ T )
]
. (6.10)

Note that {Xt, t > t1} and {Xt, t < t1} are independent given Xt1 = x1 due to the

independent increments property of Brownian motions. Therefore, conditional on

Xt1 = x1, the expectation in (6.10) is evaluated in the following manner.

E [ψ (XT + y1)1 (Xt < b, 0 ≤ t < t1)1 (Xt < b− y1, t1 ≤ t ≤ T )]

=

∫ b∧(b−y1)

−∞
φt1(x1)Pr(Xt < b, 0 ≤ t ≤ t1|Xt1 = x1)

× E [ψ (XT + y1)1 (Xt < b− y1, t1 ≤ t ≤ T ) |Xt1 = x1] dx1

=

∫ b∧(b−y1)

−∞
φt1(x1)Pr(Xt < b, 0 ≤ t ≤ t1|Xt1 = x1)

× E [ψ (XT−t1 + x1 + y1)1 (Xt < b− x1 − y1, 0 ≤ t ≤ T − t1)] dx1,

where φt1(x1) denotes the density function of Xt1 and the last step utilizes the in-

dependent and stationary increments property of Brownian motions. In the last

integral, the conditional probability and the expectation have closed-form formulas,

which will be given in Lemma 6.3.1. In fact, the conditional probability is already

mentioned in Example 2.2.2, and the expectation corresponds to the value of an

up-and-out option in the BS framework with modified payoff function, barrier level

and maturity time. For n ≥ 2, we can evaluate (6.9) in a similar fashion. A general

proof will be given right after Theorem (6.3.2).
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Lemma 6.3.1. For b > 0, define two auxiliary functions

H1(b, x, T ) = Pr(Xt < b, 0 ≤ t < T |XT = x), x < b,

Hψ
2 (b, y, T ) = E [ψ(XT + y)1 (Xt < b, 0 ≤ t ≤ T )] , y ∈ R.

Then we have

H1(b, x, T ) = 1− e−
2b(b−x)
σ2T , (6.11)

Hψ
2 (b, y, T ) = E[ψ(XT + y)1 (XT < b)]

− e
2µb

σ2 E [ψ(XT + y + 2b)1 (XT < −b)] . (6.12)

Proof of Lemma 6.3.1. Formula (6.11) is an immediate result of (2.4). Formula

(6.12) can be obtained from (4.12) where the payoff function π(s) = ψ(ln(s/s0)+y)

and the barrier B = s0e
b. Note that (6.11) can also be derived from (6.12) where

y = 0 and ψ(z) = 1(z ∈ dx).

Theorem 6.3.2. For a function ψ(x) and b > 0, we have

E
[
ψ
(
XT + ŶNT

)
1

(
Xt + ŶNt < b, 0 ≤ t ≤ T

)]
=
∞∑
n=0

{
λne−λT

∫
· · ·
∫
SnT

dt1 . . . dtn

∫
· · ·
∫
Rn

dy1 . . . dyn

∫ a1

−∞
dx1 · · ·

∫ an

−∞
dxn

×
n∏
k=1

[
fY (yk)φtk−tk−1

(xk)H1 (b− zk−1, xk, tk − tk−1)
]

×Hψ
2 (b− zn, zn, T − tn)

}
, (6.13)

where SnT = {(t1, t2, · · · , tn)|0 < t1 < t2 < · · · < tn < T}, fY (y) is the density

function of Y1 and φt(x) is the density function of Xt. The expressions of H1

and Hψ
2 are given by (6.11) and (6.12) respectively. For every k ≥ 1, we define

zk =
∑k

i=1(xi + yi) with z0 = 0 and ak = (b− zk−1) ∧ (b− zk−1 − yk). Here we use
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the conventions
∑

i∈∅ = 0 and
∏

i∈∅ = 1.

Proof of Theorem 6.3.2. Let us sketch the proof. From (6.8) and (6.9), we have

E
[
ψ
(
XT + ŶNT

)
1

(
Xt + ŶNt < b, 0 ≤ t ≤ T

)]
=
∞∑
n=0

Pr(NT = n)

∫
· · ·
∫
SnT
Fndt1 · · · dtn

∫
· · ·
∫
Rn

n∏
k=1

fY (yk)dy1 · · · dyn

× E

[
ψ (XT + ŷn)

n∏
k=0

1 (Xt < b− ŷk, tk ≤ t < tk+1)

]
, (6.14)

where Fn = Fn(t1, t2, · · · , tn) is the joint density function of the first n arrival times

conditional on NT = n, which is given by (6.7), fY (y) is the density function of Y1,

and for fixed n ≥ 0, we define t0 = 0 and tn+1 = T . Note that by defining tn+1 = T ,

we can absorb the last indicator in (6.9) into the product. The expectation in

(6.14) only involves Brownian motion {Xt} and can be evaluated inductively in the

following way. Conditional on Xt1 = x1, the expectation in (6.14) is written as∫ a1

−∞
φt1(x1)E

[
ψ (XT + ŷn)

n∏
k=0

1 (Xt < b− ŷk, tk ≤ t < tk+1)

∣∣∣∣Xt1 = x1

]
dx1,

where a1 = b ∧ (b− y1) and φt1(x1) denotes the density function of Xt1 . The upper

limit a1 can be derived from the inspection of the first two indicators in (6.14) with

k = 0, 1. By the independent increments property of Brownian motions, one can

easily show {Xt, t > t1} and {Xt, t < t1} are independent given Xt1 = x1. Therefore,

the conditional expectation above can be expressed as

Pr (Xt < b, 0 ≤ t < t1|Xt1 = x1)

× E

[
ψ (XT + ŷn)

n∏
k=1

1 (Xt < b− ŷk, tk ≤ t < tk+1)

∣∣∣∣Xt1 = x1

]
= H1(b, x1, t1)

× E

[
ψ (XT−t1 + x1 + ŷn)

n∏
k=1

1 (Xt < b− x1 − ŷk, tk − t1 ≤ t < tk+1 − t1)

]
,
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where H1(b, x1, t1) is defined in Lemma 6.3.1, and we remove the condition Xt1 = x1

by using the stationary increments property of {Xt}. We treat the last expectation

in a similar manner by conditioning on Xt2−t1 = x2 and noting that {Xt, t > t2− t1}

and {Xt, t < t2 − t1} are independent given Xt2−t1 = x2. In particular, we have

E

[
ψ (XT−t1 + x1 + ŷn)

n∏
k=1

1 (Xt < b− x1 − ŷk, tk − t1 ≤ t < tk+1 − t1)

]

=

∫ a2

−∞
φt2−t1(x2)Pr (Xt < b− x1 − ŷ1, 0 ≤ t < t2 − t1|Xt2−t1 = x2)

× E

[
ψ (XT−t2 + x̂2 + ŷn)

n∏
k=2

1 (Xt < b− x̂2 − ŷk, tk − t2 ≤ t < tk+1 − t2)

]
dx2,

=

∫ a2

−∞
φt2−t1(x2)H1(b− x̂1 − ŷ1, x2, t2 − t1)

× E

[
ψ (XT−t2 + x̂2 + ŷn)

n∏
k=2

1 (Xt < b− x̂2 − ŷk, tk − t2 ≤ t < tk+1 − t2)

]
dx2,

where a2 = (b− x̂1− ŷ1)∧(b− x̂1− ŷ2). Again, the last expectation can be computed

similarly conditional on Xt3−t2 = x3. We carry out this procedure for n times and

the desired result follows given formula (6.12) for Hψ
2 .

Remark 6.3.1. In formula (6.13), {Yi}i≥1 in fact are not necessarily i.i.d. ran-

dom variables. The formula is valid as long as we know the joint density of

(Y1, Y2, · · · , Yn) for all n ≥ 1. However, when the i.i.d. assumption is violated,

the setting for our risk-neutral valuation requires further investigation.

The formula presented in Theorem 6.3.2 is an infinite sum and should be

truncated in practical computation. Because the probability for a large number of

jumps to occur before time T tends to be very small, one should expect that not

many terms of the infinite sum is required for good convergence. To measure the

truncation error, we assume that the function ψ(x) is bounded: ψ(x) ≤ Cψ when
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x < b for some constant Cψ. We express the right-hand side of (6.14) as

∞∑
n=0

Pr(NT = n)An =
∞∑
n=0

(λT )n

n!
e−λTAn,

where An represents the multiple integral on the right-hand side of (6.14). It is not

difficult to see that An ≤ Cψ. Hence, for a positive integer M ,

∑
n>M

(λT )n

n!
e−λTAn ≤ Cψ

∑
n>M

(λT )n

n!
e−λT ,

where the truncated infinite sum

∑
n>M

(λT )n

n!
e−λT =

∞∑
n=0

(λT )n

n!
e−λT × (λT )M+1n!

(n+M + 1)!
≤ (λT )M+1

(M + 1)!
.

Then it follows that for a pre-specified ε > 0, we are able to find a large enough M

such that Cψ (λT )M+1

(M+1)!
< ε. Then we can truncate the infinite sum at M + 1 finite

terms and the truncation error is at most ε, which is not affected by the distribution

of the jump sizes {Yi}i≥1. Note that when x < b,

(s0e
x −K)+ ≤ (s0e

b −K)+, (K − s0e
x)+ ≤ K.

Hence, our analysis above applies to both call and put options as special cases.

Remark 6.3.2. Our method can also be used to value knock-out options with a

downstream barrier. For b < 0, the expectation

E

[
ψ

(
XT +

NT∑
i=1

Yi

)
1

(
Xt +

Nt∑
i=1

Yi > b, 0 ≤ t ≤ T

)]
can be evaluated in a similar way as in Theorem 6.3.2. When ψ(x) = 1, one

may interpret the expectation above as the survival function of the time-until-ruin

random variable where the surplus process starts at an initial capital −b > 0. In

this regard, {Yi}i≥1 usually only take negative values in order to model individual

claim sizes.
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6.4 Double-barrier options

In this section, we shall consider the valuation of a double knock-out option

where the underlying asset price St is modeled by (6.2) and is restricted by two

exponential boundaries. Our formulation here is the same as in Section 4.4 where

the BS framework is assumed: the upper boundary is Ut = Ueδ1t and the lower

boundary is Lt = Leδ2t with Ueδ1T > Leδ2T . The last inequality ensures that the

two boundaries do not intersect before the maturity time T . We want to calculate

the following expectation.

Es0 [π(ST )1(Lt < St < Ut, 0 ≤ t ≤ T )] , L < s0 < U. (6.15)

Through the change of variables ψ(x) = π(s0e
x), u = ln U

s0
and l = ln L

s0
, we can

easily rewrite the expectation (6.15) as

E
[
ψ
(
XT + ŶNT

)
1

(
lt < Xt + ŶNt < ut, 0 ≤ t ≤ T

)]
, l < 0 < u, (6.16)

where we have defined Ŷk =
∑k

i=1 Yi, k ≥ 0, as the cumulative jump size and

ut = u + δ1t, lt = l + δ2t are two linear boundaries. The inequality Ueδ1T > Leδ2T

is equivalent to uT > lT , which guarantees that the two linear boundaries do not

intersect before time T .

Conditioning on the number of jumps before maturity, we have

E
[
ψ
(
XT + ŶNT

)
1

(
lt < Xt + ŶNt < ut, 0 ≤ t ≤ T

)]
=
∞∑
n=0

Pr(NT = n)E

[
ψ
(
XT + Ŷn

)
1

(
lt < Xt + ŶNt < ut, 0 ≤ t ≤ T

) ∣∣∣∣NT = n

]
.

(6.17)

The expectation on the right-hand side of (6.17) is evaluated conditional on the first

n arrival times of the Poisson process {Nt}. By the same reasoning for the case of
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one-sided boundary, we can show that for n ≥ 0,

E

[
ψ
(
XT + Ŷn

)
1

(
lt < Xt + ŶNt < ut, 0 ≤ t ≤ T

) ∣∣∣∣NT = n

]

= E

[
ψ
(
XT + Ŷn

) n−1∏
k=0

1

(
lt − Ŷk < Xt < ut − Ŷk, Tk ≤ t < Tk+1

)
× 1

(
lt − Ŷn < Xt < ut − Ŷn, Tn ≤ t ≤ T

) ∣∣∣∣NT = n

]
,

(6.18)

where we use the convention
∏

k∈∅ = 1. Again, the remaining work is to calculate

the last expectation for every non-negative n given Tk = tk and Yk = yk, 0 ≤ k ≤ n,

which essentially corresponds to the value of a double-knock out option with a two-

sided (n + 1)-period step boundary in the BS framework, and this (n + 1)-period

step boundary, through inductive reasoning, can reduce to a two-sided single-period

boundary, which has been discussed in Chapter 4 as one of our main results.

The explicit formula for (6.16) is derived based on the following results in the

BS model.

Lemma 6.4.1. Let ut = u + δ1t and lt = l + δ2t with l < 0 < u and lT < uT for

some time horizon T > 0. Define two auxiliary functions

L1(u, l, x, T ) = Pr (lt < Xt < ut, 0 ≤ t < T |XT = x) , lT < x < uT ,

Lψ2 (u, l, y, T ) = E [ψ(XT + y)1(lt < Xt < ut, 0 ≤ t ≤ T )] , y ∈ R.

Then we have

L1(u, l, x, T )

=
∞∑

m=−∞

Km(u, l) exp

{
2m(l − u)(x− µT −m(l − u))

σ2T

}

−
∞∑

m=−∞

K̂m(u, l) exp

{
2(mu− (m− 1)l)(x− µT −mu+ (m− 1)l)

σ2T

}
, (6.19)
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and

Lψ2 (u, l, y, T )

=
∞∑

m=−∞

Km(u, l)E
[
ψ (XT + y + 2m(l − u))

× 1 (lT < XT + 2m(l − u) < uT )
]

−
∞∑

m=−∞

K̂m(u, l)E
[
ψ (XT + y + 2mu− (2m− 2)l)

× 1 (lT < XT + 2mu− (2m− 2)l < uT )
]
, (6.20)

where

Km(u, l) = exp
{

((m− 1)l −mu)γm +m(l − u)κ2

}
,

K̂m(u, l) = exp
{

((m− 1)l −mu)(γm − κ2)
}
,

and γm = m(κ2 − κ1), κ1 = 2(µ−δ1)
σ2 and κ2 = 2(µ−δ2)

σ2 .

Proof of Lemma 6.4.1. It is not difficult to see that Lψ2 essentially corresponds to

the value of a double knock-out option with two exponential boundaries, and we

can immediately recover its formula from (4.34) in Theorem 4.4.4 by letting π(s) =

ψ(ln(s/s0) + y), U = s0e
u and L = s0e

l. To derive formula (6.19), first note that

Pr (lt < Xt < ut, 0 ≤ t < T |XT = x) =
Pr (XT ∈ dx & lt < Xt < ut, 0 ≤ t < T )

Pr (XT ∈ dx)
,

and then apply the formula for Lψ2 with y = 0 and ψ(z) = 1(z ∈ dx).

In terms of L1 and Lψ2 , the following result presents an explicit formula for

the expectation (6.16) as an infinite sum of multiple integrals.
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Theorem 6.4.2. Let ut = u + δ1t and lt = l + δ2t with l < 0 < u and lT < uT for

a time horizon T > 0. For a function ψ(x), we have

E
[
ψ
(
XT + ŶNT

)
1

(
lt < Xt + ŶNt < ut, 0 ≤ t ≤ T

)]
=
∞∑
n=0

{
λne−λT

∫
· · ·
∫
SnT

dt1 · · · dtn
∫
· · ·
∫
Rn

dy1 . . . dyn

∫ d1

c1

dx1 · · ·
∫ dn

cn

dxn

×
n∏
k=1

[
fY (yk)φtk−tk−1

(xk)L1

(
utk−1

− zk−1, ltk−1
− zk−1, xk, tk − tk−1

)]
× Lψ2 (utn − zn, ltn − zn, zn, T − tn)

}
, (6.21)

where SnT = {(t1, t2, · · · , tn)|0 < t1 < t2 < · · · < tn < T}, fY (y) is the density func-

tion of Y1 and φt(x) is the density function of Xt. The expressions of L1 and Lψ2 are

given by (6.19) and (6.20) respectively. For every k ≥ 1, we define zk =
∑k

i=1(xi +

yi), ck = (ltk − zk−1) ∨ (ltk − zk−1 − yk) and dk = (utk − zk−1) ∧ (utk − zk−1 − yk).

Here we use the conventions
∑

i∈∅ = 0 and
∏

i∈∅ = 1.

Proof of Theorem 6.4.2. We shall only give an outline. Define t0 = 0 and tn+1 = T

for every n ≥ 0. It follows from (6.17) and (6.18) that we only need to calculate

E

[
ψ (XT + ŷn)

n∏
k=0

1 (lt < Xt + ŷk < ut, tk ≤ t < tk+1)

]
, (6.22)

for fixed yi and ti, 1 ≤ i ≤ n. Conditioning on Xt1 = x1, we can express (6.22) as∫ d1

c1

φt1(x1)Pr (lt < Xt < ut, 0 ≤ t < t1|Xt1 = x1)

× E

[
ψ (XT + ŷn)

n∏
k=1

1 (lt < Xt + ŷk < ut, tk ≤ t < tk+1)

∣∣∣∣Xt1 = x1

]
dx1

=

∫ d1

c1

φt1(x1)L1(u, l, x1, t1)

× E

[
ψ (XT−t1 + x1 + ŷn)

n∏
k=1

1
(
lt1 + δ2t < Xt + x1 + ŷk < ut1 + δ1t,

tk − t1 ≤ t < tk+1 − t1
)]

dx1,
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where the limits c1 = lt1 ∨ (lt1 − ŷ1) and d1 = ut1 ∧ (ut1 − ŷ1) follow from the inspec-

tion of the first two indicators in (6.22) with k = 0, 1. The formula for L1 is given

by (6.19). We can continue to evaluate the expectation above in a similar way by

conditioning on Xt2−t1 = x2. Repeating this inductive reasoning for n times yields

the formula (6.21).

In practical implementation of formula (6.21), the infinite sum should be trun-

cated to finite terms. In addition, the functions L1 and Lψ2 are expressed as doubly

infinite sums and should also be truncated. From the discussion in Section 4.4.3

about the convergence of the double-barrier option pricing formula, one can con-

clude that the formula for Lψ2 will be rapidly convergent as long as ψ(x) is bounded

over the interval (lT , uT ). Since L1 is derived from Lψ2 with ψ(z) = 1(z ∈ dx), its

formula is also convergent. In the numerical analysis, only a few terms are needed

for accurate estimates of L1 and Lψ2 , and the computation is very time-efficient.

Similar to the discussion right after Remark 6.3.1, the overall truncation error can

also be estimated.

6.5 Numerical examples based on Monte Carlo simulations

In this section, we will describe how to numerically implement the formulas

(6.13) and (6.21). Some numerical examples will be given in the jump-diffusion

models where the jump size follows normal distribution, double exponential distri-

bution and Gamma distribution.

Note that H1 and Hψ
2 in (6.13) and L1 and Lψ2 in (6.21) are all expecta-

tions (the probabilities can be viewed as the expectations of indicator functions),

so we can regard the infinite sums in (6.13) and (6.21) as expectations with respect

to the sources of randomness {NT}, {Ti, 1 ≤ i ≤ NT}, {XTi , 1 ≤ i ≤ NT} and
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{Yi, 1 ≤ i ≤ NT}. It indicates that we can compute the pricing formulas using

Monte Carlo simulations. The procedure is as follows.

(1) Generate the total number of jumps n from Poisson distribution with pa-

rameter λT .

(2) Generate n consecutive arrival times ti, 1 ≤ i ≤ n. This can be achieved

by first simulating n i.i.d. uniform random variables in [0, T ] and ranking them in

the ascending order.

(3) Generate the jump sizes yi, 1 ≤ i ≤ n, from the predetermined distribution

with density function fY (y).

(4) Generate independent random numbers xi, 1 ≤ i ≤ n, from normal distri-

bution with mean µ(ti−ti−1) and variance σ2(ti−ti−1). Note that we do not directly

simulate a multivariate normal vector (Xt1 , Xt2−t1 , · · · , Xtn−tn−1) by the virtue of

the multiple integrals with respect to xi given in (6.13) and (6.21).

(5) Calculate the integrands in (6.13) and (6.21). When n = 0 in step (1),

one can skip (2) to (4) and directly calculate Hψ
2 (b, 0, T ) and Lψ2 (u, l, 0, T ) using

formulas (6.12) and (6.20).

(6) Repeat steps (1) to (5) for a large enough number of times and compute

the Monte Carlo estimator and its standard error.

We in particular follow the procedure above to price an up-and-out call option

with an exponential boundary Bt = Beδt within a variety of parameter choices. To

apply formula (6.13), we need to let ψ(x) = (s0e
x+δT −K)+ where K is the strike

price and b = ln B
s0

, and also replace µ by µ − δ. We further assume the strike K

is below the terminal barrier level BeδT to avoid the trivial case. Recall that in

Merton’s model, the drift is given by

µ = r − σ2

2
−
(
em+ v2

2 − 1
)
λ,
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and in Kou’s model, the drift is given by

µ = r − σ2

2
−
(

pη1

η1 − 1
+

(1− p)η2

η2 + 1
− 1

)
λ.

The third model we consider in our numerical analysis is a Gamma distribution

with the density function

fY (y) =
γkyk−1e−γy

(k − 1)!
, γ > 1.

Then the drift is given by

µ = r − σ2

2
−

((
γ

γ − 1

)k
− 1

)
λ.

The commom parameter values are: s0 = 1000, K = 1100, B = 1300, T = 1,

r = 0.05, σ = 0.2. We perform N = 5 × 106 simulations. For Merton’s model, we

consider m = −0.1, v = 0.15, m = 0.1, v = 0.1, or m = 0.2, v = 0.1. For Kou’s

model, we consider p = 0.6 and η1 = η2 = 20, η1 = η2 = 30 or η1 = η2 = 40.

For the Gamma distribution model, we consider k = 2, γ = 40, k = 3, γ = 30

or k = 5, γ = 40. We also allow the curvature δ of the barrier and the intensity

λ of the Poisson process to vary to examine their impacts on the option values.

The simulation results are given in the following tables. Inside the brackets are the

standard errors of the Monte Carlo estimators.

In our numerical examples, the average computational time is about 15 min-

utes, much faster than the crude Monte Carlo method. The latter requires us to

simulate the entire sample path of the price process before maturity time, which is

achieved by discretization. One can then reduce the corresponding discretization

error by shortening the time step in the path generation, but this will substantially

increase the computational time. On the other hand, however, our algorithm is not

as time-efficient as those proposed in, for example, Kou and Wang (2004), Kou,

Petrella and Wang (2005), Feng and Linetsky (2008) and Cai and Kou (2011). The

advantage of our model is that it allows a more general assumption for the jump
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size distribution and the barriers can also depend on time through exponential func-

tions. Therefore, we achieve a good balance between model complexity and solution

tractability.

Table 6.1: Up-and-out call with an exponential boundary when the jump size follows
normal distrbution

δ λ m = −0.1, v = 0.15 m = 0.1, v = 0.1 m = 0.2, v = 0.1

0.1 1 24.8980(1.003×10−2) 18.7074(1.128×10−2) 12.1652(1.110×10−2)

2 21.7000(1.246×10−2) 14.4307(1.286×10−2) 7.6757(1.095×10−2)

3 18.1979(1.329×10−2) 11.6204(1.298×10−2) 5.4275(1.007×10−2)

0 1 8.7885(3.631×10−3) 6.8680(4.331×10−3) 4.2393(4.211×10−3)

2 7.1761(4.439×10−3) 4.9969(4.989×10−3) 2.4254(4.198×10−3)

3 5.7939(4.748×10−3) 3.8491(5.072×10−3) 1.6236(3.868×10−3)

-0.1 1 0.8098(3.791×10−4) 0.6623(5.284×10−4) 0.3983(5.268×10−4)

2 0.6442(4.750×10−4) 0.4607(6.254×10−4) 0.2052(5.430×10−4)

3 0.5223(5.244×10−4) 0.3405(6.520×10−4) 0.1298(5.133×10−4)

Table 6.2: Up-and-out call with an exponential boundary when the jump size follows
double exponential distribution

δ λ η1 = η2 = 20 η1 = η2 = 30 η1 = η2 = 40

0.1 1 24.7507(1.025×10−2) 25.5186(1.010×10−2) 25.8019(1.002×10−2)

2 23.4421(1.310×10−2) 24.8942(1.309×10−2) 25.4500(1.304×10−2)

3 22.2491(1.465×10−2) 24.3056(1.483×10−2) 25.1179(1.486×10−2)

0 1 9.3967(3.956×10−3) 9.7780(3.907×10−3) 9.9324(3.872×10−3)

2 8.7164(5.125×10−3) 9.4212(5.153×10−3) 9.7215(5.152×10−3)

3 8.1260(1.786×10−3) 9.0911(5.918×10−3) 9.5154(5.949×10−3)

-0.1 1 0.9142(4.560×10−4) 0.9563(4.463×10−4) 0.9742(4.377×10−4)

2 0.8388(6.050×10−4) 0.9135(6.024×10−4) 0.9467(5.949×10−4)

3 0.7722(6.927×10−4) 0.8744(7.035×10−4) 0.9221(7.026×10−4)
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Table 6.3: Up-and-out call with an exponential boundary when the jump size follows
Gamma distribution

δ λ k = 2, γ = 40 k = 3, γ = 30 k = 5, γ = 40

0.1 1 24.6936(1.210×10−2) 18.0269(1.743×10−2) 13.5670(2.146×10−2)

2 22.2322(1.421×10−2) 14.6423(1.819×10−2) 10.9810(2.255×10−2)

3 20.1494(1.521×10−2) 12.4098(1.696×10−2) 9.7343(2.011×10−2)

0 1 9.3058(4.850×10−3) 6.7811(6.094×10−3) 5.2861(6.863×10−3)

2 8.5459(5.841×10−3) 5.5728(6.487×10−3) 4.2283(7.043×10−3)

3 7.7903(6.336×10−3) 4.5923(6.159×10−3) 3.5218(6.206×10−3)

-0.1 1 0.8926(6.193×10−4) 0.6520(7.392×10−4) 0.5259(7.905×10−4)

2 0.8411(7.593×10−4) 0.5502(8.197×10−4) 0.4219(8.407×10−4)

3 0.7765(8.344×10−4) 0.4493(8.085×10−4) 0.3382(7.789×10−4)

The expected jump magnitude is equal to m in Merton’s model, equal to

p
η1
− 1−p

η2
in Kou’s model and equal to k

γ
in the Gamma distribution model. Certain

patterns can be observed from the numbers in Tables 6.1, 6.2 and 6.3: the option

values tend to decrease as the upstream barrier drops, the jumps become frequent,

or the expected jump magnitude grows. These trends are consistent with our finan-

cial intuition that a knock-out option loses its value when there is a greater chance

for the barrier to be breached.

6.6 The BS model revisited: double knock-out options with piecewise
exponential boundaries

A step-barrier option has a barrier that is a step function in time. Guillaume

(2010) derived a closed-form solution for a 2-period step double knock-out option

and proposed a Monte Carlo algorithm to recursively compute an n-period double

knock-out option based the 2-period counterpart. Moreover, the step-barrier can

also be a set of piecewise exponential functions in time, which case was considered
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in Kunitomo and Ikeda (1992) to estimate more general curved boundaries, but

nevertheless no explicit formula was given. In this section, we shall present an

immediate application to pricing an (n+ 1)-period step-barrier option restricted by

two piecewise exponentially time-varying boundaries.

Let us return to the BS framework and let the underlying asset price St =

S0e
Xt with Xt = µt + σWt. For a fixed n ≥ 1, we form an (n + 1)-period time

partition 0 = t0 < t1 < · · · < tn < tn+1 = T , and based on this partition we define

the time-varying boundaries Ut and Lt by

Ut =
n∑
k=0

U (k)eδ1,kt1(tk ≤ t < tk+1),

Lt =
n∑
k=0

L(k)eδ2,kt1(tk ≤ t < tk+1).

Then Ut and Lt are piecewise exponential functions in time. In some cases, it is

possible to approximate a general curved boundary using piecewise functions like Ut

and Lt. For a double knock-out option delineated by Ut and Lt, we are interested

in calculating the expectation

Es0 [π(ST )1 (Lt < St < Ut, 0 ≤ t ≤ T )]

= Es0

[
π(ST )

n∏
k=0

1
(
L(k)eδ2,kt < St < U (k)eδ1,kt, tk ≤ t < tk+1

)]
,

with L(0) < s0 < U (0). Of course, we always assume that the two boundaries

never intersect before time T . Define two linear functions u
(k)
t = u(k) + δ1,kt and

l
(k)
t = l(k) + δ2,kt where u(k) = ln U(k)

s0
and l(k) = ln L(k)

s0
for 0 ≤ k ≤ n. Then the

expectation above is equivalent to

E

[
ψ(XT )

n∏
k=0

1

(
l
(k)
t < Xt < u

(k)
t , tk ≤ t < tk+1

)]
(6.23)

with ψ(x) = π(s0e
x). The expectation (6.23) can be evaluated by the inductive

method used in the proof of Theorem 6.4.2. In particular, we obtain the following.
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Theorem 6.6.1. Let u
(k)
t = u(k) + δ1,kt and l

(k)
t = l(k) + δ2,kt, k = 0, 1, . . . , n,

with l(0) < 0 < u(0). For a function ψ(x), we rewrite the two auxiliary functions

defined in Lemma 6.4.1 as L1(u, l, x, T ; δ1, δ2) and Lψ2 (u, l, y, T ; δ1, δ2) to indicate

their dependence on the two curvatures δ1 and δ2. Then we have

E

[
ψ(XT )

n∏
k=0

1

(
l
(k)
t < Xt < u

(k)
t , tk ≤ t < tk+1

)]

=

∫ f1

e1

dx1 · · ·
∫ fn

en

dxn

×
n∏
k=1

[
φtk−tk−1

(xk)L1

(
u

(k−1)
tk−1

− x̂k−1, l
(k−1)
tk−1

− x̂k−1, xk, tk − tk−1; δ1,k−1, δ2,k−1

)]
× Lψ2

(
u

(n)
tn − x̂n, l

(n)
tn − x̂n, x̂n, T − tn; δ1,n, δ2,n

)
, (6.24)

where x̂k =
∑k

i=1 xi with x̂0 = 0, ek =
(
l
(k−1)
tk

− x̂k−1

)
∨
(
l
(k)
tk
− x̂k−1

)
, fk =(

u
(k−1)
tk

− x̂k−1

)
∧
(
u

(k)
tk
− x̂k−1

)
for 1 ≤ k ≤ n, and φt(x) denotes the density

function of Xt.

We omit the proof of Theorem 6.6.1 because it is merely an intermediate step

when we prove Theorem 6.4.2.

Similar to the procedure described in Section 6.5, we can numerically imple-

ment the formula (6.24) using Monte Carlo simulations. We generate n independent

normal random variables xk, k = 1, 2, . . . , n, where xk has mean µ(tk − tk−1) and

variance σ2(tk − tk−1) with t0 = 0 and compute the integrand in (6.24); then we

repeat this procedure for a large enough number of times and compute the Monte

Carlo estimator and its standard error.
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Alòs, E., Chen, Z., Rheinländer, T., Valuation of barrier options via a general self-
duality. Mathematical Finance 26(3): 492–515.

Anderson, T.W., 1960. A modification of the sequential probability ratio test to
reduce the sample size. The Annals of Mathematical Statistics 31(1): 165–197.

Augustyniak, M., Boudreault, M., 2015. On the importance of hedging dynamic
lapses in variable annuities. Risk&Rewards 66: 12–16.

Avanzi, B., Gerber, H.U., 2008. Optimal dividends in the dual model with diffusion.
ASTIN Bulletin 38(2): 653–667.

Bates, D.S., 1996. Jumps and stochastic volatility: exchange rate processes implicit
in Deutsche Mark options. The Review of Financial Studies 9(1): 69–107.

Bernard, C., Hardy, M., Mackay, A., 2014. State-dependent fees for variable annutity
guarantees. ASTIN Bulletin 44(3): 559–585.

Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. The
Journal of Political Economy 81(3): 637–654.

Buchen, P., 2012. An Introduction to Exotic Option Pricing. CRC Press.

Buchen, P., Konstandatos, O., 2009. A new approach to pricing double-barrier
options with arbitrary payoffs and exponential boundaries. Applied Mathematical
Finance 16(6): 497–515.

Cai, N., Chen, N., Wan, X., 2009. Pricing double-barrier options under a flexible
jump diffusion model. Operations Research Letters 37(3): 163–167.

Cai, N., Kou, S.G., 2011. Option pricing under a mixed-exponential jump diffusion
model. Management Science 57(11): 2067–2081.

Carr, P., 1995. Two extensions to barrier option valuation. Applied Mathematical
Finance 2(3): 173–209.

Carr, P., Chou, A., 1997. Breaking barriers: static hedging of barrier securities.
Risk 10(9): 139–145.

Carr, P., Chou, A., 2002. Hedging complex barrier options. Working Paper.

Carr, P., Geman, H., Madan, D.B., Yor, M., 2003. Stochastic volatility for Lévy
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