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1 Introduction

Professors Hwang, Chang and Wu are to be congratulated for this interesting paper. The authors study ex ante

insurance guaranty schemes. In particular, capital forbearance mechanism and stochastic interest rate are incorpo-

rated in their model, and an explicit formula for the risk-based premium of the insurance guaranty fund is derived. I

am especially interested in Section 2.3 and Appendix A. In this discussion, I shall provide an alternative derivation of

the fair premium P (0) given by formula (13) in the paper using the actuarial method of Esscher transform (Gerber

and Shiu 1994, 1996; Shiryaev 1999; Bingham and Kiesel 2013).

The paper decomposes P (0) into three parts: the premium for the audit window component P a, the premium for the

capital forbearance component P c, and the premium for the grace period component P ε. It follows from formulas

(5) to (8) in the paper that P (0) is given by

P (0) = P a + P c + P ε,

with

P a := EQ
[
exp

(
−
∫ τ

0

r(t)dt

)
(γL(τ)−A(τ)) I{τ<T}

]
, (D1)

P c := EQ

[
exp

(
−
∫ T

0

r(t)dt

)
(γL(T )−A(T )) I{τ>T, βL(T )>A(T )}

]
, (D2)

P ε := EQ

[
exp

(
−
∫ T+ε

0

r(t)dt

)
(γL(T + ε)−A(T + ε))+ I{τ>T, βL(T )<A(T )<αL(T )}

]
. (D3)

Here, τ = inf{t > 0|A(t) < ηL(t)} is the default time, T is the audit time, ε is the length of the grace period, A(t)

and L(t) are the time-t values of the insurer’s assets and liabilities, respectively. Note from (D.1) that the time of

payment τ , which is the default time, occurs before the audit time T ; so we must wonder how τ can be determined

without auditing.
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2 Financial framework and derivation of the risk-neutral measure

In this section, we shall briefly discuss the financial model in the paper and show in detail how a risk-neutral measure

is found. Moreover, we shall relate this framework to a geomeric Brownian motion model, which will lead to our

alternative derivation in the next section.

The authors consider the Vasicek interest rate model:

dr(t) = κ
(
θ − r(t)

)
dt+ σrdWr(t). (D4)

Vasicek (1977) assumes that, in setup (D.4), the market price of interest rate risk for all bonds is a constant, which

is denoted by λr in this paper. Then a change of measure can be made such that, under the new measure, denoted

by Q,

WQ
r (t) := Wr(t) + λrt (D5)

becomes a standard Brownian motion.

In addition to fixed-income securities, a stock index fund is introduced and its dynamic is assumed to be of the form

dS(t)

S(t)
= µ(t)dt+ σ1dWr(t) + σ2dWS(t), (D6)

where (Wr(t),WS(t))
′

is a standard two-dimensional Brownian motion under the physical measure P .

Defining WQ
S (t) by

WQ
S (t) := WS(t) +

∫ t

0

µ(s)− r(s)− σ1λr
σ2

ds, (D7)

we see that (D.6) can be rewritten as

dS(t)

S(t)
= r(t)dt+ σ1dWQ

r (t) + σ2dWQ
S (t), (D8)

where
(
WQ
r (t),WQ

S (t)
)′

becomes a standard two-dimensional Brownian motion under the risk-neutral measure Q.

Briefly speaking, the interpretation of (D.8) is that, in a risk-neutral world, all risky securities are expected to earn

at the same instantaneous rate as the risk-free cash bond.

By the Girsanov Theorem, the Radon-Nikodym derivative for constructing the measure Q is

dQ

dP

∣∣∣∣
T̃

= exp

(
−1

2

∫ T̃

0

λ(t)
′
λ(t)dt−

∫ T̃

0

λ(t)
′
dW (t)

)
,

with T̃ being a sufficiently long time horizon, λ(t) :=
(
λr,

µ(t)−r(t)−σ1λr
σ2

)′
and W (t) := (Wr(t),WS(t))

′
.

It is worthwhile to mention that the measure Q depends on the value of λr, which is exogenously specified. Hence,

there are infinitely many risk-neutral measures.

The paper assumes that the insurer invests its assets in a stock index fund, a rolling-horizon bond with fixed horizon
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date R, and a risk-free cash bond in fixed proportions:

dA(t)

A(t)
= w1

dS(t)

S(t)
+ w2

dBR(t)

BR(t)
+ w3r(t)dt, (D9)

where wi, i = 1, 2, 3, represent the proportions of assets invested in the corresponding securities.

Obviously, w1 + w2 + w3 = 1. It is assumed that all wi are fixed numbers so that {X(t)} defined below in (D.12) is

a (linear) Brownian motion.

Combining (D.8), (D.9) and equation (3) in the paper, the risk-neutral process of the asset value is

dA(t)

A(t)
= r(t)dt+ σA,rdW

Q
r (t) + σA,SdWQ

S (t), (D10)

with σA,r := w1σ1 + w2σR and σA,S := w1σ2.

Define WQ
A (t) :=

σA,rW
Q
r (t)+σA,SW

Q
S (t)

σA
with σA :=

√
σ2
A,r + σ2

A,S , then

dA(t)

A(t)
= r(t)dt+ σAdWQ

A (t). (D11)

Solving (D.11) yields

exp

(
−
∫ t

0

r(u)du

)
A(t) = A(0)exp (X(t)) , (D12)

with X(t) := at+ σAW
Q
A (t) and a = − 1

2σ
2
A as given on page 100.

The paper models the liability process in the form

L(t) = L(0)exp

(∫ t

0

r(u)du

)
. (D13)

Remarks:

(1) The Vasicek interest rate model is not arbitrage-free in the sense that its time-0 bond prices cannot match the

current bond prices in the market (as there are not enough parameters in the model). Also, interest rates can be

negative.

(2) The expression of λS given at the top of page 100 in the paper seems incorrect: λS , and thus the risk-neutral

measure Q defined on page 99, should be independent of the asset allocation (w1, w2).

(3) By Ito’s Lemma, or directly from Rutkowski (1999), the volatility of the rolling bond BR(t) is calculated to be

− 1−e−κR
κ σr := −σR, where 1−e−κR

κ can be interpreted as the bond’s duration. Therefore, we suggest that σR and

λr in equation (3) in the paper be replaced by −σR and −λr, repectively, although this change really makes no

difference in the subsequent derivation.

(4) Due to the simple structure of the liability process, the generalization to stochastic interest rate does not add

any technical difficulty in deriving the fair premium.

3 An alternative derivation of P (0)

Before giving the alternative derivations of P a, P c and P ε, we shall first rewrite them in more recognizable forms.

Note that A(τ) = ηL(τ) by the definition of τ , and that combining (D.12) and (D.13) yields A(t)
L(t) = A(0)

L(0) e
X(t). Let

m(t) be the running minimum up to time t of X(·); then τ < T is equivalent to m(T ) 6 lnηL(0)A(0) . Therefore, (D.1)
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to (D.3) can be rewritten as

P a = (γ − η)L(0)PrQ (m(T ) 6 B) ,

P c = γL(0)PrQ (m(T ) > B,X(T ) < B2)−A(0)EQ
[
eX(T )I{m(T )>B,X(T )<B2}

]
,

P ε = γL(0)PrQ (m(T ) > B,B2 < X(T ) < B1, X(T + ε) < B3)

−A(0)EQ
[
eX(T+ε)I{m(T )>B,B2<X(T )<B1,X(T+ε)<B3}

]
,

where B := lnηL(0)A(0) , B1 := lnαL(0)A(0) , B2 := lnβL(0)A(0) , B3 := lnγL(0)A(0) .

We shall see that pricing P (0) is reduced to evaluating the joint probability distribution of a linear Brownian motion

and its running minimum, which can be obtained by the following proposition.

Proposition D1 Let Xµ(t) = µt + σW (t), where W (t) is a standard Brownian motion. Denote by mµ(t) the

running minimum of Xµ(·) up to time t, i.e., mµ(t) = min
06s6t

Xµ(s). Then for real numbers z and y 6 min{x, 0}, and

for 0 < t < t1,

Pr (mµ(t) 6 y,Xµ(t) > x,Xµ(t1) < z) = eRyPr (Xµ(t) > x− 2y,Xµ(t1) < z − 2y) ,

where R := 2µ
σ2 .

Here, the symbol R is used because it is the usual notation for the adjustment coefficient in actuarial risk the-

ory. Note that the “<” after Xµ(t1) can be replaced by “>”. When µ is zero, the result is reduced to the well-known

Reflection Principle of Brownian motion. A proof of this proposition is provided at the end of the discussion.

3.1 Derivation of P a

Directly applying Proposition D1 when µ = a, σ = σA, x = y = B, and z →∞ gives the distribution of m(T ):

PrQ (m(T ) 6 B) = PrQ (X(T ) 6 B) + PrQ (m(T ) 6 B,X(T ) > B)

= PrQ (X(T ) 6 B) + eRBPrQ (X(T ) > −B)

= N

(
B − aT
σA
√
T

)
+ eRBN

(
B + aT

σA
√
T

)
,

which is formula (A2) on page 110.

3.2 Derivation of P c

The derivation of P c is very similar to that of P ε, and thus we omit this part for the sake of brevity.

3.3 Derivation of P ε

We first derive the formula for PrQ (m(T ) > B,B2 < X(T ) < B1, X(T + ε) < B3). Notice that we can rewrite it as

the difference of two probabilities:

PrQ (m(T ) > B,X(T ) > B2, X(T + ε) < B3)− PrQ (m(T ) > B,X(T ) > B1, X(T + ε) < B3) . (D14)

4



Each probability in (D.14) can be evaluated according to Proposition D1. The first probability is

PrQ (X(T ) > B2, X(T + ε) < B3)− PrQ (m(T ) 6 B,X(T ) > B2, X(T + ε) < B3)

= PrQ (X(T ) > B2, X(T + ε) < B3)− eRBPrQ (X(T ) > B2 − 2B,X(T + ε) < B3 − 2B) ,

and the second probability is

PrQ (X(T ) > B1, X(T + ε) < B3)− eRBPrQ (X(T ) > B1 − 2B,X(T + ε) < B3 − 2B) .

It then follows that an explicit expression for PrQ (m(T ) > B,B2 < X(T ) < B1, X(T + ε) < B3) is

PrQ (X(T ) < B1, X(T + ε) < B3)− PrQ (X(T ) < B2, X(T + ε) < B3)

− eRB
{

PrQ (X(T ) < B1 − 2B,X(T + ε) < B3 − 2B)− PrQ (X(T ) < B2 − 2B,X(T + ε) < B3 − 2B)
}

= N (d1, e1, ρ)−N (d5, e1, ρ)− eRB {N (d3, e2, ρ)−N (d6, e2, ρ)} , (D15)

where ρ =
√

T
T+ε is the correlation coefficient between X(T ) and X(T + ε), and d1, d3, d5, d6, e1, e2 are defined in

Lemma 3 on page 112.

The derivation of EQ
[
eX(T+ε)I{m(T )>B,B2<X(T )<B1,X(T+ε)<B3}

]
can be significantly simplified by the factorization

formula in the method of Esscher transform. Specifically,

EQ
[
eX(T+ε)I{m(T )>B,B2<X(T )<B1,X(T+ε)<B3}

]
= EQ

[
eX(T+ε)

]
× EQ

[
I{m(T )>B,B2<X(T )<B1,X(T+ε)<B3}; 1

]
= 1× PrQ (m(T ) > B,B2 < X(T ) < B1, X(T + ε) < B3; 1) .

EQ
[
eX(T+ε)

]
= 1 because {eX(t)} is a Q-martingale or simply by explicit calculation. Under the Esscher-transformed

probability measure indexed by 1, {X(t)} is still a linear Brownian motion, with the same volatility σ2
A, but with a

changed drift

a+ 1× σ2
A = −a

because a = − 1
2σ

2
A. Therefore, a formula for EQ

[
eX(T+ε)I{m(T )>B,B2<X(T )<B1,X(T+ε)<B3}

]
is readily obtained from

(D.15) by merely substituting all a in (D.15) with −a.

We shall conclude the discussion by sketching a proof of Proposition D1. Again, the method of Esscher transform

plays a key role.

Proof of Proposition D1

First, let µ = 0 and we restate the Reflection Principle of Brownian motion in the following way:

By the strong Markov property of standard Brownian motion, the two events

{m0(t) 6 y,X0(t) > x,X0(t1) < z} and {2y −X0(t) > x, 2y −X0(t1) < z}
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have the same probability.

Thus we are prompted to make the drift of Xµ(t) become zero. This can be achieved by considering a factorization

based on the Esscher transform with index −R2 . For 0 < t < t1,

Pr (mµ(t) 6 y,Xµ(t) > x,Xµ(t1) < z)

= E
[
e−

R
2 Xµ(t1) × eR2 Xµ(t1)I{mµ(t)6y,Xµ(t)>x,Xµ(t1)<z}

]
= E

[
e−

R
2 Xµ(t1)

]
× E

[
e
R
2 Xµ(t1)I{mµ(t)6y,Xµ(t)>x,Xµ(t1)<z};−

R

2

]
= E

[
e−

R
2 Xµ(t1)

]
× E

[
e
R
2 X0(t1)I{m0(t)6y,X0(t)>x,X0(t1)<z}

]
.

The Reflection Principle implies that the last expectation is

E
[
e
R
2 X0(t1)I{m0(t)6y,X0(t)>x,X0(t1)<z}

]
= E

[
e
R
2 (2y−X0(t1))I{2y−X0(t)>x,2y−X0(t1)<z}

]
= eRyE

[
e−

R
2 X0(t1)I{X0(t)<2y−x,X0(t1)>2y−z}

]
= eRyE

[
e
R
2 X0(t1)I{X0(t)>x−2y,X0(t1)<z−2y}

]
,

where the last step is due to the fact that X0(·) and −X0(·) have the same distribution.

Finally, rewrite E
[
e
R
2 X0(t1)I{X0(t)>x−2y,X0(t1)<z−2y}

]
as E

[
e
R
2 Xµ(t1)I{Xµ(t)>x−2y,Xµ(t1)<z−2y};−R2

]
and hence,

Pr (mµ(t) 6 y,Xµ(t) > x,Xµ(t1) < z)

= E
[
e−

R
2 Xµ(t1)

]
× eRyE

[
e
R
2 Xµ(t1)I{Xµ(t)>x−2y,Xµ(t1)<z−2y};−

R

2

]
= eRyPr (Xµ(t) > x− 2y,Xµ(t1) < z − 2y) .

We reverse the factorization in the last step and the proof is complete.
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