Study Guide
for the M.S. Graduate Core Exam
Applied Statistics (22S:164-165)

The following texts are suggested as references:
Abraham & Ledolter, Introduction to Regression Modeling, (Duxbury)
Lawson, Design and Analysis of Experiments using R (CRC Press)
Oehlert, A First Course in Design and Analysis of Experiments (Freeman)
Weisberg, Applied Linear Regression (Wiley)

Topics:
1. The simple linear regression model
 a. model assumptions
 b. least squares estimation
 c. properties of least squares estimators
 d. partitioning the total variation
 e. hypothesis tests on slope and intercept
 f. confidence intervals for slope, intercept, mean response, predicted value
 g. regression through the origin
 h. coefficient of multiple determination (R²)
 i. simultaneous inference on slope and intercept
 j. residual plots
 k. normal probability plots

2. Multiple linear regression model
 a. all of the same subtopics listed for the simple linear regression model
 b. joint, partial, and sequential F-tests
 c. F-tests for the general linear hypothesis
 d. polynomial regression
 e. F-test for lack-of-fit
 f. Multicollinearity and variance inflation factors
 g. indicator variables
 h. F-tests for submodels involving indicators and continuous predictors (e.g., parallel trends)

3. Model selection
 a. selection criteria, including PRESS, Cp, AIC, and BIC
 b. sequential variable selection procedures

4. Residual analysis and influence diagnostics
 a. residual plots
 b. standardized, studentized, and externally studentized residuals
 c. added variable plots
 d. leverage, hat matrix, and properties thereof
 e. influence diagnostics such as Cook’s distances, DFFITS, etc.
 f. autocorrelation and Durbin-Watson test
g. nonconstant variance

5. Single factor, fixed effects
 a. completely randomized designs and the role of randomization
 b. ANOVA, F-tests, expected mean square, power
 c. regression approach
 d. using SAS
 e. estimation of effects
 f. multiple comparisons, contrasts, orthogonal polynomials
 g. residual plots
 h. transformation of the response variable
 i. power and sample size
 j. single factor, random effects: ANOVA, F-tests, EMS, estimation of variance components

6. Factorial designs
 a. factorial structure
 b. no interaction
 c. interaction, more than one observation per cell
 d. interaction, one observation per cell
 e. polynomials and division of interaction effects
 f. unequal cell sizes

7. Block designs
 a. role of blocking
 b. randomized complete-block designs
 c. Latin Square Designs, replicating Latin Squares
 d. blocking of factorials
 e. incomplete blocks, confounding in 2k designs

8. Complex designs
 a. random effects
 b. mixed models
 c. repeated measures
 d. crossed and nested factors
 e. split plot designs
 f. rules for expected mean squares
 g. variances of means and contrasts
 h. crossover designs
 i. power and sample size
 j. restricted and unrestricted models
 k. EMS and estimation of variance components
 l. PROC MIXED, ls means and differences

9. Other topics
 a. power transformations
 b. weighted and generalized least squares
 c. variance-stabilizing transformations
 d. Box-Cox and Box-Tidwell procedures to obtain transformations
e. analysis of covariance
f. unbalanced data, GLM approach, estimable functions
g. missing data (empty cells)
h. Tukey’s one degree of freedom for nonadditivity