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Abstract

Consider an insurance company exposed to a stochastic economic environment that
contains two kinds of risk. The first kind is the insurance risk caused by traditional
insurance claims, and the second kind is the financial risk resulting from investments.
Its wealth process is described in a standard discrete-time model in which, during each
period, the insurance risk is quantified as a real-valued random variable X equal to
the total amount of claims less premiums, and the financial risk as a positive random
variable Y equal to the reciprocal of the stochastic accumulation factor. This risk
model builds an efficient platform for investigating the interplay of the two kinds
of risk. We focus on the ruin probability and the tail probability of the aggregate
risk amount. Assuming that every convex combination of the distributions of X and
Y is of strongly regular variation, we derive some precise asymptotic formulas for
these probabilities with both finite and infinite time horizons, all in the form of linear
combinations of the tail probabilities of X and Y . Our treatment is unified in the
sense that no dominating relationship between X and Y is required.

Keywords: asymptotics; convolution equivalence; financial risk; insurance risk;
ruin probabilities; (strongly) regular variation; tail probabilities
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1 Introduction

As summarized by Norberg (1999), an insurance company which invests its wealth in a

financial market is exposed to two kinds of risk. The first kind, called insurance risk, is the

∗Corresponding author.
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traditional liability risk caused by insurance claims, and the second kind, called financial

risk, is the asset risk related to risky investments. The interplay of the two risks unavoidably

leads to a complicated stochastic structure for the wealth process of the insurance company.

Paulsen (1993) proposed a general continuous-time risk model in which the cash flow of

premiums less claims is described as a semimartingale and the log price of the investment

portfolio as another semimartingale. Since then the study of ruin in the presence of risky

investments has experienced a vital development in modern risk theory; some recent works

include Paulsen (2008), Klüppelberg and Kostadinova (2008), Heyde and Wang (2009),

Hult and Lindskog (2011), Bankovsky et al. (2011), and Hao and Tang (2012). During

this research, much attention has been paid to an important special case of Paulsen’s set-

up, the so-called bivariate Lévy-driven risk model, in which the two semimartingales are

independent Lévy processes fulfilling certain conditions so that insurance claims dominate

financial uncertainties.

A well-known folklore says that risky investments may impair the insurer’s solvency just

as severely as do large claims; see Norberg (1999), Kalashnikov and Norberg (2002), Frolova

et al. (2002), and Pergamenshchikov and Zeitouny (2006).

In this paper, we describe the insurance business in a discrete-time risk model in which

the two risks are quantified as concrete random variables. This discrete-time risk model

builds an efficient platform for investigating the interplay of the two risks. The ruin proba-

bilities of this model have been investigated by Nyrhinen (1999, 2001), Tang and Tsitsiashvili

(2003, 2004), Collamore (2009), and Chen (2011), among many others.

Concretely, for each n ∈ N = {1, 2, . . .}, denote by Xn the insurer’s net loss (the total

amount of claims less premiums) within period n and by Yn the stochastic discount factor

(the reciprocal of the stochastic accumulation factor) over the same time period. Then the

random variables X1, X2, . . . and Y1, Y2, . . . represent the corresponding insurance risks

and financial risks, respectively. In this framework, we consider the stochastic present values

of aggregate net losses specified as

S0 = 0, Sn =
n∑
i=1

Xi

i∏
j=1

Yj, n ∈ N, (1.1)

and consider their maxima

Mn = max
0≤k≤n

Sk, n ∈ N. (1.2)

If (X1, Y1), (X2, Y2), . . . form a sequence of independent and identically distributed

(i.i.d.) random pairs fulfilling −∞ ≤ E lnY1 < 0 and E ln (|X1| ∨ 1) <∞, then, by Lemma

1.7 of Vervaat (1979), Sn converges almost surely (a.s.) as n→∞. In this case, denote by
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S∞ the a.s. limit. Clearly, Mn is non-decreasing in n and

0 ≤Mn ≤
n∑
i=1

(Xi ∨ 0)
i∏

j=1

Yj.

Thus, if −∞ ≤ E lnY1 < 0 and E ln (X1 ∨ 1) < ∞, then Mn also converges a.s. to a limit,

denoted by M∞, as n→∞.

We conduct risk analysis of the insurance business through studying the tail probabilities

of Sn and Mn for n ∈ N ∪ {∞}. The study of tail probabilities is of fundamental interest

in insurance, finance, and, in particular, quantitative risk management. Moreover, the

tail probability of Mn with n ∈ N ∪ {∞} is immediately interpreted as the finite-time or

infinite-time ruin probability.

In most places of the paper, we restrict ourselves to the standard framework in which

X1, X2, . . . form a sequence of i.i.d. random variables with generic random variable X

and common distribution F = 1 − F on R = (−∞,∞), Y1, Y2, . . . form another sequence

of i.i.d. random variables with generic random variable Y and common distribution G on

(0,∞), and the two sequences are mutually independent.

Under the assumption that the insurance risk X has a regularly-varying tail dominat-

ing that of the financial risk Y , Tang and Tsitsiashvili (2003, 2004) obtained some precise

asymptotic formulas for the finite-time and infinite-time ruin probabilities. The dominating

relationship between X and Y holds true if we consider the classical Black–Scholes market

in which the log price of the investment portfolio is modelled as a Brownian motion with

drift and, hence, Y has a lognormal tail, lighter than every regularly-varying tail. However,

empirical data often reveal that the lognormal model significantly underestimates the finan-

cial risk. It shows particularly poor performance in reflecting financial catastrophes such as

the recent Great Recession since 2008. This intensifies the need to investigate the opposite

case where the financial risk Y has a regularly-varying tail dominating that of the insurance

risk X. In this case, the stochastic quantities in (1.1) and (1.2) become much harder to

tackle with the difficulty in studying the tail probability of the product of many independent

regularly-varying random variables. Tang and Tsitsiashvili (2003) gave two examples for

this opposite case illustrating that, as anticipated, the finite-time ruin probability is mainly

determined by the financial risk. Chen and Xie (2005) also studied the finite-time ruin

probability of this model and they obtained some related results applicable to the case with

the same heavy-tailed insurance and financial risks.

In this paper, under certain technical conditions, we give a unified treatment in the

sense that no dominating relationship between the two risks is required. That is to say, the

obtained formulas hold uniformly for the cases in which the insurance risk X is more heavy-

tailed than, less heavy-tailed than, and equally heavy-tailed as the financial risk Y . In our
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main result, under the assumption that every convex combination of F and G is of strongly

regular variation (see Definition 2.1 below), we derive some precise asymptotic formulas for

the tail probabilities of Sn and Mn for n ∈ N ∪ {∞}. All the obtained formulas appear to

be linear combinations of F and G. Hence, if one of F and G dominates the other, then

this term remains in the formulas but the other term is negligible; otherwise, both terms

should simultaneously present. These formulas are in line with the folklore quoted before,

confirming that whichever one of the insurance and financial risks with a heavier tail plays

a dominating role in leading to the insurer’s insolvency.

In the rest of this paper, Section 2 displays our results and some related discussions

after introducing the assumptions, Section 3 prepares some necessary lemmas, and Section

4 proves the results.

2 Preliminaries and results

Throughout this paper, all limit relationships hold for x→∞ unless otherwise stated. For

two positive functions a(·) and b(·), we write a(x) . b(x) or b(x) & a(x) if lim sup a(x)/b(x) ≤
1, write a(x) ∼ b(x) if both a(x) . b(x) and a(x) & b(x), and write a(x) � b(x) if both

a(x) = O(b(x)) and b(x) = O(a(x)). For a real number x, we write x+ = x ∨ 0 and

x− = −(x ∧ 0).

2.1 Assumptions

We restrict our discussions within the scope of regular variation. A distribution U on R is

said to be of regular variation if U(x) > 0 for all x and the relation

lim
x→∞

U(xy)

U(x)
= y−α, y > 0,

holds for some 0 ≤ α < ∞. In this case we write U ∈ R−α. However, such a condition is

too general to enable us to derive explicit asymptotic formulas for the tail probabilities of

the quantities defined in (1.1) and (1.2). To overcome this difficulty, our idea is to employ

some existing results and techniques related to the well-developed concept of convolution

equivalence.

A distribution V on [0,∞) is said to be convolution equivalent if V (x) > 0 for all x and

the relations

lim
x→∞

V (x− y)

V (x)
= eαy, y ∈ R, (2.1)

and

lim
x→∞

V 2∗(x)

V (x)
= 2c <∞ (2.2)
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hold for some α ≥ 0, where V 2∗ stands for the 2-fold convolution of V . More generally, a

distribution V on R is still said to be convolution equivalent if V (x)1(x≥0) is. In this case

we write V ∈ S(α). Relation (2.1) itself defines a larger class denoted by L(α). It is known

that the constant c in relation (2.2) is equal to

V̂ (α) =

∫ ∞
−∞

eαxV (dx) <∞;

see Cline (1987) and Pakes (2004). We shall use the notation V̂ (·) as above for the moment

generating function of a distribution V throughout the paper. The class S(0) coincides

with the well-known subexponential class. Examples and criteria for membership of the

class S(α) for α > 0 can be found in Embrechts (1983) and Cline (1986). Note that the

gamma distribution belongs to the class L(α) for some α > 0 but does not belong to the

class S(α). Hence, the inclusion S(α) ⊂ L(α) is proper. Recent works in risk theory using

convolution equivalence include Klüppelberg et al. (2004), Doney and Kyprianou (2006),

Tang and Wei (2010), Griffin and Maller (2012), Griffin et al. (2012), and Griffin (2013).

For a distribution U on R, define

V (x) = 1− U(ex)

U(0)
, x ∈ R, (2.3)

which is still a proper distribution on R. Actually, if ξ is a real-valued random variable

distributed as U , then V denotes the conditional distribution of ln ξ on ξ > 0. For every

α ≥ 0, it is clear that U ∈ R−α if and only if V ∈ L(α). We now introduce a proper subclass

of the class R−α.

Definition 2.1 A distribution U on R is said to be of strongly regular variation if V defined

by (2.3) belongs to the class S(α) for some α ≥ 0. In this case we write U ∈ R∗−α.

Examples and criteria for membership of the class R∗−α can be given completely in

parallel with those in Embrechts (1983) and Cline (1986). This distribution class turns out

to be crucial for our purpose. Clearly, if ξ follows U ∈ R∗−α for some α ≥ 0 then

Eξα+ = U(0)E
(

eα ln ξ
∣∣ ξ > 0

)
<∞

since the conditional distribution of ln ξ on ξ > 0 belongs to the class S(α).

Our standing assumption is as follows:

Assumption 2.1 Every convex combination of F and G, namely pF + (1 − p)G for 0 <

p < 1, belongs to the class R∗−α.

Some interesting special cases of Assumption 2.1 include:
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(a) F ∈ R∗−α and G(x) = o(F (x)); or, symmetrically, G ∈ R∗−α and F (x) = o(G(x)).

(b) F ∈ R∗−α, G ∈ R−α, and G(x) = O(F (x)); or, symmetrically, G ∈ R∗−α, F ∈ R−α,

and F (x) = O(G(x)).

(c) F ∈ R∗−α, G ∈ R∗−α, and the function b(x) = F (ex)/G(ex) is O-regularly varying (that

is to say, b(xy) � b(x) for every y > 0).

For (a) and (b), recall a fact that, if V1 ∈ L(α), V2 ∈ L(α), and V1(x) � V2(x), then

V1 ∈ S(α) and V2 ∈ S(α) are equivalent; see Theorem 2.1(a) of Klüppelberg (1988) and

the sentences before it. This fact can be restated as that, if U1 ∈ R−α, U2 ∈ R−α, and

U1(x) � U2(x), then U1 ∈ R∗−α and U2 ∈ R∗−α are equivalent. By this fact the verifications

of (a) and (b) are straightforward. For (c), by Theorem 2.0.8 of Bingham et al. (1987),

the relation b(xy) � b(x) holds uniformly on every compact y-set of (0,∞). Then the

verification can be done by using Theorems 3.4 and 3.5 of Cline (1987).

2.2 The main result

In this subsection, we assume that {X,X1, X2, . . .} and {Y, Y1, Y2, . . .} are two independent

sequences of i.i.d. random variables with X distributed as F on R and Y as G on (0,∞).

Under Assumption 2.1, by Lemma 3.5 below (with n = 2), we have

Pr (XY > x) = Pr (X+Y > x) ∼ EY αF (x) + EXα
+G(x).

Note that both EY α and EXα
+ are finite under Assumption 2.1. The moments of Y will

appear frequently in the paper, so we introduce a shorthand µα = EY α for α ≥ 0 to help

with the presentation. Starting with this asymptotic formula and proceeding with induction,

we shall show in our main result that the relations

Pr (Mn > x) ∼ AnF (x) +BnG(x) (2.4)

and

Pr (Sn > x) ∼ AnF (x) + CnG(x) (2.5)

hold for every n ∈ N, where the coefficients An, Bn, and Cn are given by

An =
n∑
i=1

µiα, Bn =
n∑
i=1

µi−2
α EMα

n−i+1, Cn =
n∑
i=1

µi−2
α ESαn−i+1,+.

Furthermore, we shall seek to extend relations (2.4) and (2.5) to n = ∞. For this

purpose, it is natural to assume µα < 1 (which excludes the case α = 0) to guarantee

the finiteness of the constants A∞, B∞, and C∞. Note in passing that µα < 1 implies
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−∞ ≤ E lnY < 0, which is an aforementioned requirement for S∞ and M∞ to be a.s. finite.

Straightforwardly,

A∞ =
µα

1− µα
<∞.

It is easy to see that

EMα
∞ ≤ E

(
∞∑
i=1

Xi,+

i∏
j=1

Yj

)α

<∞. (2.6)

Actually, when 0 < α ≤ 1 we use the elementary inequality (
∑∞

i=1 xi)
α ≤

∑∞
i=1 x

α
i for

any nonnegative sequence {x1, x2, . . .}, and when α > 1 we use Minkowski’s inequality. In

order for S∞ to be a.s. finite, we need another technical condition E ln (X− ∨ 1) <∞. The

finiteness of ESα∞,+ can be verified similarly to (2.6). Applying the dominated convergence

theorem to the expressions for Bn and Cn, we obtain

B∞ =
EMα

∞
µα (1− µα)

<∞, C∞ =
ESα∞,+

µα (1− µα)
<∞. (2.7)

Now we are ready to state our main result, whose proof is postponed to Subsections

4.1–4.3.

Theorem 2.1 Let {X,X1, X2, . . .} and {Y, Y1, Y2, . . .} be two independent sequences of i.i.d.

random variables with X distributed as F on R and Y as G on (0,∞). Under Assumption

2.1, we have the following:

(a) Relations (2.4) and (2.5) hold for every n ∈ N;

(b) If µα < 1 then relation (2.4) holds for n =∞;

(c) If µα < 1 and E ln (X− ∨ 1) <∞ then relation (2.5) holds for n =∞.

As we pointed out before, Theorem 2.1 does not require a dominating relationship be-

tween F and G. Even in assertions (b) and (c) where µα < 1 is assumed, there is not

necessarily a dominating relationship between F and G, though the conditions on F and G

become not exactly symmetric any more. Additionally, Theorems 5.2(3) and 6.1 of Tang

and Tsitsiashvili (2003) are two special cases of our Theorem 2.1(a) with G(x) = o(F (x))

and F (x) = o(G(x)), respectively.

Since the famous work of Kesten (1973), the tail probabilities of S∞ and M∞ have been

extensively investigated, mainly in the framework of random difference equations and most

under so-called Cramér’s condition that µα = 1 holds for some α > 0. Traditional random

difference equations appearing in the literature are often different from ones such as (4.1)

and (4.3) below associated to our model. Nevertheless, under our standard assumptions on

{X1, X2, . . .} and {Y1, Y2, . . .}, these subtle differences are not essential and the existing re-

sults can easily be transformed to our framework. We omit such details here. Corresponding
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to our model, Kesten’s (1973) work shows an asymptotic formula of the form Cx−α assum-

ing, among others, that Y fulfills Cramér’s condition and X fulfills a certain integrability

condition involving Y . Kesten’s constant C, though positive, is generally unknown. See

Enriquez et al. (2009) for a probabilistic representation for this constant. Goldie (1991)

studied the same problem but in a broader scope and he simplified Kesten’s argument.

Note that Cramér’s condition is essentially used in these works. Among few works on this

topic beyond Cramér’s condition we mention Grey (1994) and Goldie and Grübel (1996).

For the case where F ∈ R−α for some α > 0, µα+ε < ∞ for some ε > 0, and µα < 1,

indicating that the insurance risk dominates the financial risk, Grey’s (1994) work shows a

precise asymptotic formula similar to ours. Goldie and Grübel (1996) interpreted the study

in terms of perpetuities in insurance and finance and they derived some rough asymptotic

formulas. Corresponding to our model, their results show that S∞ exhibits a light tail if X

is light tailed and Pr(Y ≤ 1) = 1, while S∞ must exhibit a heavy tail once Pr(Y > 1) > 0,

regardless of the tail behavior of X, all being consistent with the consensus on this topic

that risky investments are dangerous. We also refer the reader to Hult and Samorodnit-

sky (2008), Collamore (2009), Blanchet and Sigman (2011), and Hitczenko and Weso lowski

(2011) for recent interesting developments on the topic.

In contrast to these existing results, we do not require Cramér’s condition or a domi-

nating relationship between F and G in Theorem 2.1(b, c). The coefficients B∞ and C∞

appearing in our formulas, though still generally unknown, assume transparent structures

as given in (2.7), which enable one to easily conduct numerical estimates.

The condition µα < 1 in Theorem 2.1(b, c) is made mainly to ensure the finiteness of B∞

and C∞. However, it excludes some apparently simpler cases such as G ∈ R∗0 and classical

random walks (corresponding to Pr(Y = 1) = 1). The tail behavior of the maximum

of a random walk with negative drift, especially with heavy-tailed increments, has been

systematically investigated by many people; see, e.g. Feller (1971), Veraverbeke (1977),

Korshunov (1997), Borovkov (2003), Denisov et al. (2004), and Foss et al. (2011), among

many others. The study of random walks hints that the tail probabilities of S∞ and M∞

behave essentially differently between the cases µα < 1 and µα = 1. Actually, if µα = 1,

then all of An, Bn, and Cn diverge to ∞ as n→∞, and Theorem 2.1 leads to

lim
x→∞

Pr (S∞ > x)

F (x) +G(x)
= lim

x→∞

Pr (M∞ > x)

F (x) +G(x)
=∞.

This fails to give precise asymptotic formulas for Pr (S∞ > x) and Pr (M∞ > x), though

still consistent with Kesten and Goldie’s formula Cx−α since F (x) + G(x) = o(x−α). For

this case, intriguing questions include how to capture the precise asymptotics other than

Kesten and Goldie’s for Pr (S∞ > x) and Pr (M∞ > x) and how to connect the asymptotics
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for Pr (Mn > x) and Pr (Sn > x) as x∧ n→∞ to Kesten and Goldie’s formula Cx−α. The

approach developed in the present paper seems not efficient to give a satisfactory answer to

either of these questions.

Admittedly, the standard complete independence assumptions on the two sequences

{X1, X2, . . .} and {Y1, Y2, . . .}, though often appearing in the literature, are not of practical

relevance. However, Theorem 2.1 offers new insights into the tail probabilities of the sums in

(1.1) and their maxima in (1.2), revealing the interplay between the insurance and financial

risks. Furthermore, extensions that incorporate various dependence structures into the

model are expected and usually without much difficulty. We show in the next subsection a

simple example for such extensions.

2.3 An extension

As done by Chen (2011), in this subsection we assume that {(X, Y ), (X1, Y1), (X2, Y2), . . .}
is a sequence of i.i.d. random pairs with (X, Y ) following a Farlie–Gumbel–Morgenstern

(FGM) distribution

π(x, y) = F (x)G(y)
(
1 + θF (x)G(y)

)
, θ ∈ [−1, 1], x ∈ R, y > 0, (2.8)

where F on R and G on (0,∞) are two marginal distributions. In view of the decomposition

π = (1 + θ)FG− θF 2G− θFG2 + θF 2G2, (2.9)

the FGM structure can easily be dissolved. Hereafter, for a random variable ξ and its

i.i.d. copies ξ1 and ξ2, denote by ξ̌ a random variable identically distributed as ξ1 ∨ ξ2

and independent of all other sources of randomness. Under Assumption 2.1, by (2.9) and

Lemma 3.5 below, we can conduct an induction procedure to obtain

Pr (Mn > x) ∼ A′nF (x) +B′nG(x) (2.10)

and

Pr (Sn > x) ∼ A′nF (x) + C ′nG(x) (2.11)

for every n ∈ N, where

A′n =
(
(1− θ)µα + θEY̌ α

) n∑
i=1

µi−1
α ,

B′n =
n∑
i=1

µi−1
α

(
(1− θ) E (Mn−i +Xn−i+1)α+ + θE

(
Mn−i + X̌n−i+1

)α
+

)
,

C ′n =
n∑
i=1

µi−1
α

(
(1− θ) E (Sn−i +Xn−i+1)α+ + θE

(
Sn−i + X̌n−i+1

)α
+

)
.

9



Additionally, under the conditions of Theorem 2.1(b, c), letting n→∞ leads to

A′∞ =
1

1− µα
(
(1− θ)µα + θEY̌ α

)
,

B′∞ =
1

1− µα

(
(1− θ) E (M∞ +X)α+ + θE

(
M∞ + X̌

)α
+

)
,

C ′∞ =
1

1− µα

(
(1− θ) E (S∞ +X)α+ + θE

(
S∞ + X̌

)α
+

)
,

where X and X̌ are independent of M∞ and S∞. It is easy to verify the finiteness of B′∞

and C ′∞.

We summarize the analysis above into the following corollary and will show a sketch of

its proof in Subsection 4.4.

Corollary 2.1 Let {(X, Y ), (X1, Y1), (X2, Y2), . . .} be a sequence of i.i.d. random pairs with

common FGM distribution (2.8). Under Assumption 2.1, we have the following:

(a) Relations (2.10) and (2.11) hold for every n ∈ N;

(b) If µα < 1 then relation (2.10) holds for n =∞;

(c) If µα < 1 and E ln (X− ∨ 1) <∞ then relation (2.11) holds for n =∞.

As a sanity check, letting θ = 0, the results in Corollary 2.1 coincide with those in

Theorem 2.1.

3 Lemmas

In this section, we prepare a series of lemmas, some of which are interesting in their own

right. We first recall some well-known properties of distributions of regular variation and

convolution equivalence. If U ∈ R−α for some 0 ≤ α < ∞, then for every ε > 0 and every

b > 1 there is some constant x0 > 0 such that Potter’s bounds

1

b

(
y−α−ε ∧ y−α+ε

)
≤ U(xy)

U(x)
≤ b

(
y−α−ε ∨ y−α+ε

)
(3.1)

hold whenever x ≥ x0 and xy ≥ x0; see Theorem 1.5.6(iii) of Bingham et al. (1987). Since

U ∈ R−α if and only if V defined by (2.3) belongs to L(α), Potter’s bounds above can easily

be restated in terms of a distribution V ∈ L(α) as that, for every ε > 0 and every b > 1

there is some constant x0 > 0 such that the inequalities

1

b

(
e−(α+ε)y ∧ e−(α−ε)y) ≤ V (x+ y)

V (x)
≤ b

(
e−(α+ε)y ∨ e−(α−ε)y) (3.2)
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hold whenever x ≥ x0 and x+ y ≥ x0. By Lemma 5.2 of Pakes (2004), if V ∈ S(α) then it

holds for every n ∈ N that

lim
x→∞

V n∗(x)

V (x)
= n

(
V̂ (α)

)n−1

. (3.3)

The first lemma below describes an elementary property of convolution equivalence.

Lemma 3.1 Let η1, . . . , ηn be n ≥ 2 i.i.d. real-valued random variables with common

distribution V ∈ S(α) for some α ≥ 0. Then

lim
c→∞

lim
x→∞

Pr (
∑n

i=1 ηi > x, η1 > c, η2 > c)

V (x)
= 0.

Proof. For every x ≥ 0 and c ≥ 0, write

Pr

(
n∑
i=1

ηi > x, η1 > c, η2 > c

)

= Pr

(
n∑
i=1

ηi > x

)
− 2 Pr

(
n∑
i=1

ηi > x, η1 ≤ c

)
+ Pr

(
n∑
i=1

ηi > x, η1 ≤ c, η2 ≤ c

)
= I1(x)− 2I2(x, c) + I3(x, c). (3.4)

By relation (3.3), we have

lim
x→∞

I1(x)

V (x)
= n

(
V̂ (α)

)n−1

and

lim
x→∞

I2(x, c)

V (x)
= lim

x→∞

∫ c

−∞

Pr
(∑n−1

i=1 ηi > x− y
)

V (x− y)

V (x− y)

V (x)
V (dy)

= (n− 1)
(
V̂ (α)

)n−2
∫ c

−∞
eαyV (dy),

where in the last step we used V ∈ L(α) and the dominated convergence theorem. Similarly,

lim
x→∞

I3(x, c)

V (x)
= lim

x→∞

∫ c

−∞

∫ c

−∞

Pr
(∑n−2

i=1 ηi > x− y1 − y2

)
V (x)

V (dy1)V (dy2)

= (n− 2)
(
V̂ (α)

)n−3
(∫ c

−∞
eαyV (dy)

)2

.

Plugging these limits into (3.4) yields the desired result.

Hereafter, for n ≥ 2 distributions V1, . . . , Vn, denote by Vp =
∑n

i=1 piVi a convex

combination of V1, . . . , Vn, where p ∈ ∆ = {(p1, . . . , pn) ∈ (0, 1)n :
∑n

i=1 pi = 1}.
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Lemma 3.2 Let V1, . . . , Vn be n ≥ 2 distributions and let α ≥ 0. The following are

equivalent:

(a) Vp ∈ S(α) for every p ∈ ∆;

(b) Vp ∈ S(α) for some p ∈ ∆ and the relation

Vi(x− y)− eαyVi(x) = o

(
n∑
j=1

Vj(x)

)
(3.5)

holds for every y ∈ R and every i = 1, . . . , n.

Proof. First prove that (b) implies (a). Denote by p∗ this specific element in ∆ such that

Vp∗ ∈ S(α). For every p ∈ ∆, it is easy to see that Vp(x) �
∑n

j=1 Vj(x) � Vp∗(x) and that

Vp ∈ L(α) by (3.5). Thus, Vp ∈ S(α) follows from the closure of the class S(α) under weak

equivalence as mentioned in the last paragraph of Subsection 2.1.

For the other implication, we only need to use (a) to verify (3.5). For arbitrarily fixed

0 < ε < 1 and every i = 1, . . . , n, each of the sums Vi(x) + ε
∑n

j=1,j 6=i Vj(x) and
∑n

j=1 Vj(x)

is proportional to a convolution-equivalent tail. Thus,∣∣Vi(x− y)− eαyVi(x)
∣∣ ≤ ∣∣∣∣∣(Vi(x− y)− eαyVi(x)

)
+ ε

n∑
j=1,j 6=i

(
Vj(x− y)− eαyVj(x)

)∣∣∣∣∣
+ ε

n∑
j=1,j 6=i

∣∣Vj(x− y)− eαyVj(x)
∣∣

≤

∣∣∣∣∣
(
Vi(x− y) + ε

n∑
j=1,j 6=i

Vj(x− y)

)
− eαy

(
Vi(x) + ε

n∑
j=1,j 6=i

Vj(x)

)∣∣∣∣∣
+ ε

n∑
j=1

Vj(x− y) + εeαy
n∑
j=1

Vj(x)

= o (1)

(
Vi(x) + ε

n∑
j=1,j 6=i

Vj(x)

)
+ 2ε (eαy + o(1))

n∑
j=1

Vj(x).

By the arbitrariness of ε, relation (3.5) follows.

The following lemma shows the usefulness of convolution equivalence in dealing with

the tail probability of the sum of independent random variables. Note that the lemma does

not require any dominating relationship among the individual tails. Additionally, in view

of Lemma 3.2, letting α = 0 in Lemma 3.3 retrieves Theorem 1 of Li and Tang (2010).

Lemma 3.3 Let V1, . . . , Vn be n ≥ 2 distributions on R and let α ≥ 0. If Vp ∈ S(α) for

every p ∈ ∆, then V1 ∗ · · · ∗ Vn ∈ S(α) and

V1 ∗ · · · ∗ Vn(x) ∼
n∑
i=1

(
n∏

j=1,j 6=i

V̂j(α)

)
Vi(x). (3.6)
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Proof. Clearly, we only need to prove relation (3.6). Introduce n independent random

variables η1, . . . , ηn with distributions V1, . . . , Vn, respectively. For every x ≥ 0 and 0 ≤
c ≤ x/n,

V1 ∗ · · · ∗ Vn(x) = Pr

(
n∑
i=1

ηi > x,

n⋃
j=1

(ηj > c)

)
.

According to whether or not there is exactly only one (ηj > c) occurring in the union, we

split the probability on the right-hand side into two parts as

V1 ∗ · · · ∗ Vn(x) = I1(x, c) + I2(x, c). (3.7)

First we deal with I1(x, c). For a real vector y = (y1, . . . , yn−1)′, write Σ =
∑n−1

k=1 yk, and

for each j = 1, . . . , n, write(
n∏

k=1,k 6=j

dVk

)
(y) = V1(dy1) · · ·Vj−1(dyj−1)Vj+1(dyj) · · ·Vn(dyn−1).

We have

I1(x, c) =
n∑
j=1

Pr

(
n∑
i=1

ηi > x, ηj > c,
n⋂

k=1,k 6=j

(ηk ≤ c)

)

=
n∑
j=1

∫ c

−∞
· · ·
∫ c

−∞
Vj (x− Σ)

(
n∏

k=1,k 6=j

dVk

)
(y)

=

∫ c

−∞
· · ·
∫ c

−∞

(
n∑
j=1

Vj (x− Σ)

)(
n∑
h=1

(
n∏

k=1,k 6=h

dVk

)
(y)

)

−
n∑
j=1

n∑
h=1,h6=j

∫ c

−∞
· · ·
∫ c

−∞
Vj (x− Σ)

(
n∏

k=1,k 6=h

dVk

)
(y).

Since
∑n

j=1 Vj (x) is proportional to a convolution-equivalent tail, by the dominated conver-

gence theorem,

I1(x, c) ∼

(
n∑
j=1

Vj (x)

)∫ c

−∞
· · ·
∫ c

−∞
eαΣ

(
n∑
h=1

(
n∏

k=1,k 6=h

dVk

)
(y)

)

−
n∑
j=1

n∑
h=1,h6=j

∫ c

−∞
· · ·
∫ c

−∞
Vj (x− Σ)

(
n∏

k=1,k 6=h

dVk

)
(y)

=
n∑
j=1

Vj (x)

∫ c

−∞
· · ·
∫ c

−∞
eαΣ

(
n∏

k=1,k 6=j

dVk

)
(y)

−
n∑
j=1

n∑
h=1,h6=j

∫ c

−∞
· · ·
∫ c

−∞

(
Vj (x− Σ)− eαΣVj (x)

)( n∏
k=1,k 6=h

dVk

)
(y).
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Hence, it follows from (3.5) and the dominated convergence theorem that

lim
c→∞

lim
x→∞

I1(x, c)∑n
i=1

(∏n
j=1,j 6=i V̂j(α)

)
Vi(x)

= 1. (3.8)

Next we turn to I2(x, c). Write η̃ = max{η1, . . . , ηn}, which has a convolution-equivalent

tail proportional to
∑n

j=1 Vj (x), and let η̃1, . . . , η̃n be i.i.d. copies of η̃. Clearly,

I2(x, c) = Pr

(
n∑
i=1

ηi > x,
⋃

1≤j<k≤n

(ηj > c, ηk > c)

)

≤
∑

1≤j<k≤n

Pr

(
n∑
i=1

η̃i > x, η̃j > c, η̃k > c

)
.

Thus, by Lemma 3.1,

lim
c→∞

lim sup
x→∞

I2(x, c)∑n
i=1

(∏n
j=1,j 6=i V̂j(α)

)
Vi(x)

≤ lim
c→∞

lim
x→∞

I2(x, c)∑n
j=1 Vj (x)

lim sup
x→∞

∑n
j=1 Vj (x)∑n

i=1

(∏n
j=1,j 6=i V̂j(α)

)
Vi(x)

= 0. (3.9)

Plugging (3.8) and (3.9) into (3.7) yields the desired result.

Due to the connection between convolution equivalence and strongly regular variation,

we can restate Lemmas 3.2 and 3.3 in terms of strongly regular variation. Actually, the

next lemma shows an equivalent condition for Assumption 2.1.

Lemma 3.4 Let U1, . . . , Un be n ≥ 2 distributions and let α ≥ 0. The following are

equivalent:

(a) Up ∈ R∗−α for every p ∈ ∆;

(b) Up ∈ R∗−α for some p ∈ ∆ and the relation

Ui(x/y)− yαUi(x) = o

(
n∑
j=1

Uj(x)

)

holds for every y > 0 and every i = 1, . . . , n.

The lemma below expands the tail probability of the product of independent, non-

negative, and strongly regular random variables, forming an analogue of the well-known

Breiman’s theorem in a different situation. For Breiman’s theorem, see Breiman (1965) and

Cline and Samorodnitsky (1994).

14



Lemma 3.5 Let ξ1, . . . , ξn be n ≥ 2 independent nonnegative random variables with dis-

tributions U1, . . . , Un, respectively, and let α ≥ 0. If Up ∈ R∗−α for every p ∈ ∆, then the

distribution of
∏n

i=1 ξi belongs to the class R∗−α and

Pr

(
n∏
i=1

ξi > x

)
∼

n∑
i=1

(
n∏

j=1,j 6=i

Eξαj

)
Ui(x).

The next lemma shows Kesten’s bound for convolution tails without the usual require-

ment V̂ (α) ≥ 1. It improves Lemma 5.3 of Pakes (2004) for the case 0 < V̂ (α) < 1.

Lemma 3.6 Let V be a distribution on R. If V ∈ S(α) for some α ≥ 0, then for every

ε > 0 there is some constant K > 0 such that the relation

V n∗(x) ≤ K
(
V̂ (α) + ε

)n
V (x)

holds for all n ∈ N and all x ≥ 0.

Proof. When V̂ (α) ≥ 1, the assertion has been given in Lemma 5.3 of Pakes (2004). Hence,

we only need to consider V̂ (α) < 1 (for which α > 0 must hold). Let {η, η1, η2, . . .} be a

sequence of i.i.d. random variables with common distribution V , and set c = −α−1 ln V̂ (α) >

0. Clearly,

V n∗(x) = Pr

(
n∑
i=1

(ηi + c) > x+ nc

)
.

Note that the distribution of η + c still belongs to the class S(α) and Eeα(η+c) = 1. Hence,

for every δ > 0, by Lemma 5.3 of Pakes (2004), there is some constant K1 > 0 such that,

for all n ∈ N and all x ≥ 0,

V n∗(x) ≤ K1(1 + δ)n Pr (η + c > x+ nc) = K1(1 + δ)nV (x+ (n− 1)c) . (3.10)

By (3.2), there are some constants K2 > 0 and x0 > 0 such that, for all n ∈ N and all

x ≥ x0,

V (x+ (n− 1)c) ≤ K2e−(α−δ)(n−1)cV (x) . (3.11)

Plugging (3.11) into (3.10) and noticing that e−αc = V̂ (α), we have, for all n ∈ N and all

x ≥ x0,

V n∗(x) ≤ K1K2e(α−δ)c
(

(1 + δ)ecδV̂ (α)
)n
V (x). (3.12)

For 0 ≤ x < x0, we choose an integer n0 ≥ x0/c. Then, for 0 ≤ x < x0 and n > n0, using

the same derivations as in (3.10)–(3.12), we obtain

V n∗(x) ≤ K1(1 + δ)nV (x+ n0c+ (n− n0 − 1)c)

≤ K1K2e(α−δ)(n0+1)c
(

(1 + δ)ecδV̂ (α)
)n
V (x+ n0c)

≤ K1K2e(α−δ)(n0+1)c
(

(1 + δ)ecδV̂ (α)
)n
V (x) . (3.13)
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At last, for 0 ≤ x < x0 and 1 ≤ n ≤ n0, it is obvious that

V n∗(x) ≤ 1 ≤

(
(1 + δ)ecδV̂ (α)

)n
(

(1 + δ)ecδV̂ (α)
)n0

∧ 1

V (x)

V (x0)
. (3.14)

A combination of (3.12)–(3.14) gives that, for some constant K > 0 and for all n ∈ N and

all x ≥ 0,

V n∗(x) ≤ K
(

(1 + δ)ecδV̂ (α)
)n
V (x) .

By setting δ to be small enough such that (1 + δ)ecδV̂ (α) ≤ V̂ (α) + ε, we complete the

proof.

The following lemma will be crucial in proving Theorem 2.1(b, c).

Lemma 3.7 Let {X,X1, X2, . . .} be a sequence of (arbitrarily dependent) random variables

with common distribution F on R, let {Y, Y1, Y2, . . .} be another sequence of i.i.d. random

variables with common distribution G on [0,∞), and let the two sequences be mutually

independent. Assume that there is some distribution U ∈ R∗−α for α > 0 such that

F (x) +G(x) = O(U(x)).

Assume also that µα < 1. Then

lim
n→∞

lim sup
x→∞

1

U(x)
Pr

(
∞∑

i=n+1

Xi

i∏
j=1

Yj > x

)
= 0. (3.15)

Proof. Choose some large constant K1 > 0 such that the inequality F (x)∨G(x) ≤ K1U(x)

holds for all x ∈ R, and then introduce a nonnegative random variable X∗ with a distribution

F ∗(x) =
(
1−K1U(x)

)
+
, x ≥ 0.

Clearly, F (x) ≤ F ∗(x) ≤ K1U(x) for all x ≥ 0 and F ∗(x) = K1U(x) for all large x. The

inequality F (x) ≤ F ∗(x) for all x ≥ 0 means that X is stochastically not greater than X∗,

denoted by X ≤st X
∗. Moreover, since U ∈ R∗−α, there is some large but fixed constant

t > 0 such that K1

∫∞
t
zαU(dz) < 1− µα. For this fixed t, define

t0 = inf{s ≥ t : K1U(s) ≤ G(t)},

and then introduce another nonnegative random variable Y ∗ with a distribution

G∗(x) = G(x)1(0≤x<t) +G(t)1(t≤x<t0) +
(
1−K1U(x)

)
1(x≥t0).
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Clearly, E (Y ∗)α < 1, G(x) ≤ G∗(x) ≤ K1U(x) for all x > 0, and G∗(x) = K1U(x) for all

x ≥ t0. Thus, Y ≤st Y
∗. Let Y ∗1 , Y ∗2 , . . . be i.i.d. copies of Y ∗ independent of X∗.

Choose some 0 < ε < α ∧ (1− E (Y ∗)α) such that E (Y ∗)α−ε < 1. By Lemma 3.6, there

is some constant K2 > 0 such that, for all i ∈ N and all x ≥ 1,

Pr

(
i∏

j=1

Y ∗j > x

)
= Pr

(
i∑

j=1

lnY ∗j > lnx

)
≤ K2 (E (Y ∗)α + ε)

i
G∗(x). (3.16)

Noticeably, the derivation in (3.16) tacitly requires that Y ∗1 , . . . , Y ∗j are positive. Neverthe-

less, in case G∗ assigns a mass at 0, the upper bound in (3.16) is still correct and can easily

be verified by conditioning on
⋂i
j=1

(
Y ∗j > 0

)
. By Lemma 3.5,

Pr (X∗Y ∗ > x) ∼ K1 (E (X∗)α + E (Y ∗)α)U(x). (3.17)

Moreover, by (3.1), there is some constant x0 > 0 such that, for all x > x0 and xy > x0,

U(xy) ≤ (1 + ε)
(
y−α−ε ∨ y−α+ε

)
U(x). (3.18)

Now we start to estimate the tail probability in (3.15). Choosing some large n such that∑∞
i=n+1 1/i2 ≤ 1. Clearly, for all x > x0,

Pr

(
∞∑

i=n+1

Xi

i∏
j=1

Yj > x

)
≤ Pr

(
∞∑

i=n+1

Xi

i∏
j=1

Yj >
∞∑

i=n+1

x

i2

)

≤
∞∑

i=n+1

Pr

(
Xi

i∏
j=1

Yj >
x

i2

)

≤

 ∑
i>
√
x/x0

+
∑

n<i≤
√
x/x0

Pr

(
X∗

i∏
j=1

Y ∗j >
x

i2

)

= I1(x) + I2(n, x), (3.19)

where I2(n, x) is understood as 0 in case n + 1 >
√
x/x0. First we deal with I1(x). By

Chebyshev’s inequality,

I1(x) ≤ x−αE (X∗)α
∑

i>
√
x/x0

i2α (E (Y ∗)α)
i
.

This means that I1(x) converges to 0 at least semi-exponentially fast since E (Y ∗)α < 1.

Thus,

lim
x→∞

I1(x)

U(x)
= 0. (3.20)
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Next we deal with I2(n, x). We further decompose it into three parts as

I2(n, x) =
∑

n<i≤
√
x/x0

Pr

(
X∗

i∏
j=1

Y ∗j >
x

i2
, 0 < X∗ ≤ x

i2

)

+
∑

n<i≤
√
x/x0

Pr

(
X∗ >

x

i2
,

i∏
j=1

Y ∗j > 1

)

+
∑

n<i≤
√
x/x0

Pr

(
X∗

i∏
j=1

Y ∗j >
x

i2
,

i∏
j=1

Y ∗j ≤ 1

)

= I21(n, x) + I22(n, x) + I23(n, x). (3.21)

By conditioning on X∗ and then applying (3.16)–(3.18), we obtain

I21(n, x) ≤ K2

∑
n<i≤
√
x/x0

(E (Y ∗)α + ε)
i
Pr
(
X∗Y ∗ >

x

i2

)
∼ K1K2 (E (X∗)α + E (Y ∗)α)

∑
n<i≤
√
x/x0

(E (Y ∗)α + ε)
i
U
( x
i2

)
≤ (1 + ε)K1K2 (E (X∗)α + E (Y ∗)α)U (x)

∑
n<i≤
√
x/x0

i2(α+ε) (E (Y ∗)α + ε)
i
.

Since E (Y ∗)α + ε < 1, it follows that

lim
n→∞

lim sup
x→∞

I21(n, x)

U(x)
= 0. (3.22)

Applying both (3.16) and (3.18), we have

I22(n, x) ≤ (1 + ε)K1K2G∗ (1)U (x)
∑

n<i≤
√
x/x0

i2(α+ε) (E (Y ∗)α + ε)
i
,

which implies that

lim
n→∞

lim sup
x→∞

I22(n, x)

U(x)
= 0. (3.23)

Similarly, applying (3.18) twice,

I23(n, x) ≤ K1

∑
n<i≤
√
x/x0

∫ 1

0

U

(
x

i2y

)
Pr

(
i∏

j=1

Y ∗j ∈ dy

)

≤ (1 + ε)K1

∑
n<i≤
√
x/x0

U
( x
i2

) (
E (Y ∗)α−ε

)i
≤ (1 + ε)2K1U (x)

∑
n<i≤
√
x/x0

i2(α+ε)
(
E (Y ∗)α−ε

)i
,
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which, together with E (Y ∗)α−ε < 1, gives that

lim
n→∞

lim sup
x→∞

I23(n, x)

U(x)
= 0. (3.24)

A combination of relations (3.19)–(3.24) completes the proof.

4 Proofs

4.1 Proof of Theorem 2.1(a)

We first prove relation (2.4). It is easy to verify that

Mn
d
= (Xn +Mn−1)+ Yn, n ∈ N, (4.1)

where
d
= denotes equality in distribution; see also Theorem 2.1 of Tang and Tsitsiashvili

(2003). We proceed with induction. For n = 1, it follows from Lemma 3.5 that

Pr (M1 > x) = Pr (X1,+Y1 > x) ∼ µαF (x) + EXα
+G(x) = A1F (x) +B1G(x). (4.2)

Thus, relation (2.4) holds for n = 1. Now we assume by induction that relation (2.4) holds

for n − 1 ≥ 1 and prove it for n. By this induction assumption and Assumption 2.1, we

know that every convex combination of the distributions of Xn and Mn−1 belongs to the

class R∗−α ⊂ S(0). Applying Lemma 3.3 with α = 0, we have

Pr (Xn +Mn−1 > x) ∼ (1 + An−1)F (x) +Bn−1G(x),

which, together with Assumption 2.1, implies that every convex combination of the distri-

butions of Xn +Mn−1 and Yn belongs to the class R∗−α. Applying Lemma 3.5, we obtain

Pr (Mn > x) = Pr
(
(Xn +Mn−1)+ Yn > x

)
∼ µα Pr (Xn +Mn−1 > x) + E (Xn +Mn−1)α+G(x)

∼ AnF (x) +BnG(x).

Therefore, relation (2.4) holds for n.

Next we turn to relation (2.5). Introduce a sequence of random variables {Tn;n ∈ N}
through the recursive equation

Tn = (Xn + Tn−1)Yn, n ∈ N, (4.3)

equipped with T0 = 0. It is easy to see that Sn
d
= Tn for n ∈ N. Then the proof of relation

(2.5) can be done by using the recursive equation (4.3) and going along the same lines as

in the proof of relation (2.4) above.
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4.2 Proof of Theorem 2.1(b)

Note that An and Bn increasingly converge to the finite constants A∞ and B∞. Also recall

Lemma 3.7. Hence, for every δ > 0, there is some large integer n0 such that both

(A∞ − An0) + (B∞ −Bn0) ≤ δ (4.4)

and

Pr

(
∞∑

i=n0+1

Xi,+

i∏
j=1

Yj > x

)
. δ

(
F (x) +G(x)

)
(4.5)

hold. Now we start to deal with Pr (M∞ > x). On the one hand, for every ε > 0, by

Theorem 2.1(a), relation (4.5), and Assumption 2.1, in turn, we obtain

Pr (M∞ > x) ≤ Pr (Mn0 > (1− ε)x) + Pr

(
∞∑

i=n0+1

Xi,+

i∏
j=1

Yj > εx

)
. An0F ((1− ε)x) +Bn0G((1− ε)x) + δ

(
F (εx) +G(εx)

)
∼ (1− ε)−α

(
An0F (x) +Bn0G(x)

)
+ δε−α

(
F (x) +G(x)

)
≤
(
(1− ε)−αA∞ + δε−α

)
F (x) +

(
(1− ε)−αB∞ + δε−α

)
G(x). (4.6)

On the other hand, by Theorem 2.1(a) and relation (4.4),

Pr (M∞ > x) ≥ Pr (Mn0 > x) & (A∞ − δ)F (x) + (B∞ − δ)G(x). (4.7)

By the arbitrariness of δ and ε in (4.6) and (4.7), we obtain relation (2.4) for n =∞.

4.3 Proof of Theorem 2.1(c)

First we establish an asymptotic upper bound for Pr (S∞ > x). As in the proof of Theorem

2.1(b), for every δ > 0, suitably choose some large integer n0 such that relations (4.4), (4.5),

and the relation

−δ ≤ C∞ − Cn0 ≤ δ (4.8)

hold simultaneously. For every ε > 0, by Theorem 2.1(a), relation (4.5), Assumption 2.1,

and relation (4.8), in turn, we obtain

Pr (S∞ > x) ≤ Pr (Sn0 > (1− ε)x) + Pr

(
∞∑

i=n0+1

Xi,+

i∏
j=1

Yj > εx

)
.
(
An0F ((1− ε)x) + Cn0G((1− ε)x)

)
+ δ

(
F (εx) +G(εx)

)
∼ (1− ε)−α

(
An0F (x) + Cn0G(x)

)
+ δε−α

(
F (x) +G(x)

)
≤
(
(1− ε)−αA∞ + δε−α

)
F (x) +

(
(1− ε)−α (C∞ + δ) + δε−α

)
G(x).
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Since δ and ε are arbitrary positive constants, it follows that

Pr (S∞ > x) . A∞F (x) + C∞G(x).

For the corresponding asymptotic lower bound, as analyzed in the proof of Theorem

2.1(a), it suffices to prove that

Pr (T∞ > x) & A∞F (x) + C∞G(x), (4.9)

where T∞ is the weak limit of the sequence {Tn;n ∈ N} defined by (4.3). We apply the

method developed by Grey (1994) to prove (4.9). Consider the stochastic difference equation

T∞
d
= (X + T∞)Y, (4.10)

which inherits a stochastic structure from (4.3). Note that the weak solution of (4.10) exists

and is unique. Furthermore, the limit distribution of Tn is identical to this unique solution

and, hence, it does not depend on the starting random variable T0. See Vervaat (1979) and

Goldie (1991) for these and related statements.

It is easy to check that q = Pr (T∞ > 0) > 0; see the proof of Theorem 1 of Grey

(1994) for a similar argument. Construct a new starting random variable T̃0 independent of

{X1, X2, . . . ;Y1, Y2, . . .} with tail

Pr
(
T̃0 > x

)
= q Pr (XY > x) 1(x≥0) + Pr (T∞ > x) 1(x<0). (4.11)

Starting with T̃0, the recursive equation (4.3) generates the sequence {T̃n;n ∈ N} corre-

spondingly. Comparing (4.11) with (4.10), we see that T̃0 and, hence, every T̃n are stochas-

tically not greater than T∞; namely, it holds for all x ∈ R and all n ∈ {0} ∪ N that

Pr (T∞ > x) ≥ Pr
(
T̃n > x

)
. (4.12)

Furthermore, it holds that

Pr
(
T̃0 > x

)
∼ q Pr (X+Y > x) ∼ qµαF (x) + qEXα

+G(x),

where the last step is analogous to (4.2). Thus, by Assumption 2.1, the distribution of T̃0

belongs to the class R∗−α. Then, by going along the same lines of the proof of Theorem

2.1(a) and using equation (4.3) starting with T̃0, we obtain

Pr
(
T̃n > x

)
∼ ÃnF (x) + C̃nG(x) (4.13)

with

Ãn =
n∑
i=1

µiα + qµn+1
α , C̃n =

n∑
i=1

µi−2
α ET̃αn−i+1,+ + qµnαEXα

+.
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Since T̃n weakly converges to T∞
d
= S∞ and µα < 1, it is easy to see that limn→∞ Ãn =

A∞ and limn→∞ C̃n = C∞, with the latter subject to a straightforward application of the

dominated convergence theorem. Thus, substituting (4.13) into (4.12) and letting n → ∞
on the right-hand side of the resulting formula, we arrive at relation (4.9) as desired.

4.4 Sketch of the proof of Corollary 2.1

Clearly, the recursive equations (4.1), (4.3), and the identity Sn
d
= Tn for n ∈ N still hold

since {(X1, Y1), (X2, Y2), . . .} is a sequence of i.i.d. random pairs. Introduce four independent

random variables X ′, X̌ ′, Y ′, and Y̌ ′ with distributions F , F 2, G, and G2, respectively, and

let them be independent of {(X1, Y1), (X2, Y2), . . .}. Using decomposition (2.9), we have

Pr (Mn > x) = Pr
(
(Xn +Mn−1)+ Yn > x

)
= (1 + θ) Pr

(
(X ′ +Mn−1)+ Y

′ > x
)
− θPr

((
X̌ ′ +Mn−1

)
+
Y ′ > x

)
− θPr

(
(X ′ +Mn−1)+ Y̌

′ > x
)

+ θPr
((
X̌ ′ +Mn−1

)
+
Y̌ ′ > x

)
. (4.14)

When n = 1, applying Lemma 3.5 to each term on the right-hand side of (4.14) gives

Pr (M1 > x) = Pr (X1,+Y1 > x) ∼ A′1F (x) +B′1G(x). (4.15)

Then, as in the proof of Theorem 2.1(a), proceeding with induction according to (4.14) leads

to (2.10). Relation (2.11) can be derived similarly. This proves Corollary 2.1(a).

Corollary 2.1(b, c) can be verified by the similar ideas used in proving Theorem 2.1(b, c).

The key ingredient is establishing a relation similar to (3.15). Write Z = XY , Z1 = X1Y1,

Z2 = X2Y2, and so on. It follows from (4.15) that

Pr (Z > x) +G(x) � F (x) +G(x).

As in the proof of Lemma 3.7, we can construct independent random variables Z∗ and Y ∗

both with tails equal to K1

(
F (x) +G(x)

)
for all large x such that Z ≤st Z

∗, Y ≤st Y
∗, and

E (Y ∗)α < 1. For some large n such that
∑∞

i=n+1 1/i2 ≤ 1, we write

Pr

(
∞∑

i=n+1

Xi

i∏
j=1

Yj > x

)
≤ Pr

(
∞∑

i=n+1

Xi

i∏
j=1

Yj >

∞∑
i=n+1

x

i2

)

=
∞∑

i=n+1

Pr

(
Zi

i−1∏
j=1

Yj >
x

i2

)

≤
∞∑

i=n+1

Pr

(
Z∗

i−1∏
j=1

Y ∗j >
x

i2

)
.
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Then, going along the same lines of the rest of the proof of Lemma 3.7, we obtain

lim
n→∞

lim sup
x→∞

1

F (x) +G(x)
Pr

(
∞∑

i=n+1

Xi

i∏
j=1

Yj > x

)
= 0,

which suffices for our purpose.
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