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Abstract. Deletions and amplifications of the human genomic DNA copy number are

the cause of numerous diseases such as various forms of cancer. Therefore, the detection

of DNA copy number variations (CNV) is important in understanding the genetic basis

of disease. Various techniques and platforms have been developed for genome-wide

analysis of DNA copy number, such as array-based comparative genomic hybridization

(aCGH) and high-resolution mapping using high-density tiling oligonucleotide arrays.

Since complicated biological and experimental processes are involved in these platforms,

data can be contaminated by outliers. Inspired by the robustness property of the LAD

regression, we propose a penalized LAD regression with the fused lasso penalty for

detecting CNV. This method incorporates the spatial dependence and sparsity of CNV

into the analysis and is computationally feasible for high-dimensional array-based data.

We evaluate the proposed method using simulation studies, which indicate that it can

correctly detect the numbers and locations of the true breakpoints while controlling

the false positives appropriately. We demonstrate the proposed method on two real

data examples.

Key words and phrases. DNA copy number, break points, false discovery rate,

lasso, fused lasso, LAD regression.

1 Introduction

Deletions and amplifications of the human genomic DNA copy number are the causes

of numerous diseases. They are also related to phenotypic variation in the normal

population. Therefore, the detection of DNA copy number variation (CNV) is

important in understanding the genetic basis of disease such as various types of cancer.

Several techniques and platforms have been developed for genome-wide analysis of
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DNA copy number, including comparative genomic hybridization (CGH) (Kallioniemi

et al. (1992)), array-based comparative genomic hybridization (aGCH) (Pinkel et al.

(1998), Snijders et al. (2001)), commercially available single nucleotide polymorphism

(SNP) arrays (Zhao et al. (2004)) and high-resolution mapping using high-density

tiling oligonucleotide arrays (HR-CGH) (Urban et al. (2006)). These platforms have

been used with microarrays. Each microarray consists of tens of thousands of genomic

targets or probes, sometimes referred to as markers, which are spotted or printed on

a glass surface. In an aCGH experiment a DNA sample of interest (test sample), and

a reference sample are differentially labelled with dyes, typically Cy3 and Cy5, and

mixed. The combined sample is then hybridized to the microarray and imaged, which

results in test and reference intensities for all the markers. The goal of the analysis

of DNA copy number data is to partition the whole genome into segments where copy

numbers change between contiguous segments, and subsequently to quantify the copy

number in each segment. Therefore, identifying the locations of copy number changes

is the key step in the analysis of DNA copy number data.

Several methods have been proposed to identify the breakpoints of copy number

changes. Jong et al. (2003) developed a genetic local search algorithm to localize

the breakpoints along the chromosome. Olshen et al. (2004) proposed a binary

segmentation procedure (CBS) to look for two breakpoints at a time by considering

the segment as a circle. Fridlyand et al. (2004) used an unsupervised hidden markov

model (HMM) approach to classify each chromosome into different states representing

different copy numbers. Wang et al. (2005) proposed a hierarchical clustering algorithm

to select interesting clusters by controlling the false discovery rate (FDR). Hsu et

al. (2005) used a wavelets approach for denoising the data to uncover the true copy

number changes. Lai and Zhao (2005) used a t-test to detect copy number alterations
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by aggregating information from replicated arrays.

Of particular relevance to the proposed method is the work of Huang et al. (2005),

which is the first to model the problem of CNV detection in the framework of penalized

regression. This work used a least squares (LS) regression model with the least absolute

penalty on the differences between the copy numbers of the neighboring markers. This

method can be recast into a LS regression with the Lasso penalty, and thus is called

the Lasso based (LB) method by the authors. The LB method imposes smoothness

on the copy numbers along the chromosome. But it does not take into account the

sparsity in the copy number variations. Here the sparsity means that there is only

a small number of positions where changes occur in the copy numbers. In addition,

because the LS regression is not robust, the LB method can be affected by the outliers.

Since complicated experimental processes are involved in a microarray experiment,

data generated from such experiment can be contaminated by outliers. Inspired by

the robustness property of the least absolute deviations (LAD) approach, we propose a

penalized LAD regression with the fused lasso penalty for detecting CNV. We call this

method LAD-FL. By use of the LAD loss function, the proposed method is resistant

to outliers. By use of the fused Lasso penalty, it incorporates spatial dependence and

sparsity of CNV data sets into the analysis.

The remainder of this paper is organized as follows. In Section 2, we describe the

LAD-FL method and propose an approach for computing the LAD-FL estimator. In

Section 3, we present a method for calculating false discovery rate (FDR) in the context

of the LAD-FL method. In Section 4, we use simulations to evaluate the performance

of LAD-FL. In Section 5, we analyze two CNV data sets to illustrate the proposed

method. Concluding remarks are given in Section 6.
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2 LAD regression with the fused Lasso penalty for

CNV analysis

Consider an array of CGH profiles. For the ith profile, let yij be the log2 ratio of

the intensities of the red over green channels of marker i on a chromosome, where the

red and green channels measure the intensities of the test (e.g. cancer) and reference

(e.g. normal) samples. We assume that the intensities have been properly normalized.

Following Huang et al. (2005), the observed yi can be considered a realization of the

true relative copy number βi at marker i plus a random noise,

yi = βi + εi, i = 1 · · ·n, (2.1)

where n is the number of markers on a given chromosome. Our task is to make inference

about βi’s based on the observed yi’s. There are three factors that should be taken

into account. First, there may be outliers in the observed yi’s, so a robust procedure

is needed. Second, the signals βi’s have the spatial dependence because the true copy

numbers of the nearby markers are the same except in the regions where the copy

numbers change abruptly. Third, copy number changes only occur at a few locations

in the chromosome, most of the βi’s should be zero. Based on these considerations, we

propose the criterion

n∑
i=1

|yi − βi|+ λ1

n∑
i=1

|βi|+ λ2

n∑
i=2

|βi − βi−1|, (2.2)

where λ1 and λ2 are two tuning parameters determined by cross validation. Let β =

(β1, · · · , βn)′. The estimate of β is the value β̂ that minimizes (2.2). In this criterion,

we use the absolute loss to reduce the influence of outliers. And the penalty we use

is fused Lasso (Tibshirani et al. 2005). Therefore, we call β̂ the LAD-FL estimator.

In (2.2), the term
∑n

i=2 |βi − βi−1| provides a measurement of the smoothness of the
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parameters βi’s, which reflects the spatial dependence of the signals. Thus penalizing

this smoothness measure forces the estimates of βi’s to be smooth. The term
∑n

i=1 |βi|

is a Lasso penalty. Penalizing this term leads to sparse nonzero estimates.

2.1 Computation

We now describe our approach for computing β̂. Let y = (y1, · · · , yn)′. Let Uλ1 =

diag (λ1/2, λ1, · · · , λ1) be a n× n diagonal matrix. Define a n× n matrix

Vλ1,λ2 =




λ1/2 0 0 . . . 0 0

0 −λ2 λ2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −λ2 λ2




.

Consider a new response vector y∗ = (y′,0′,0′)′ and a new design matrix X∗ =

[I,U′
λ1

,V′
λ1,λ2

]′. Then (2.2) can be written as

L(β, λ1, λ2) = |y∗ −X∗β|.

For every fixed λ1 and λ2, this is the objective function of a LAD regression problem.

Therefore, we can use the existing programs such as the R quantreg package to

compute β̂.

2.2 Determining the tuning parameters

It is important to choose the tuning parameters λ1 and λ2 appropriately, which

determine the smoothness and sparsity of the estimates β̂i’s. In one extreme, if λ1 = 0

and λ2 = 0, then the estimate of βi is simply yi. This obviously leads to too many

estimated non-zero relative ratios. In the other extreme, if λ1 and λ2 are very large,

then all the β̂i’s are forced to be zero regardless of the data, which is not reasonable.
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We use a cross validation method to select (λ1, λ2). We divide the data sequence

{y1, . . . , yn} into two subsequences. The first subsequence consists of yi’s with odd

subscripts, that is, {y1, y3, . . . , }. The second one consists of {y2, y4, . . .}. We use the

odd/even subsequence as the training set, and the left subsequence as the test set. We

start from large enough λ1 and λ2, which will get all the 0 coefficients (it means that

the breakpoint set is null). In our simulation and data analysis examples, we find that

starting from (λ1, λ2) = (1, 1) works well. We decrease the values of the two parameters

step by step till λ1 = λ2 = 0, in that case there is no penalties. For example, by step

length 0.1, we want to find the best combination of λ1 and λ2 in a square [0, 1]× [0, 1]

such that the combination minimizes
∑[n/2]

i=1 |y2i − ŷ2i−1|+
∑[n/2]

i=1 |y2i−1 − ŷ2i|, the sum

of prediction error for test data.

3 Estimation of FDR

Using λ1 and λ2 selected by the cross-validation method described above, we compute

β̂. Let µi = βi − βi−1 and µ̂i = β̂i − β̂i−1. Let B = {i : µ̂i 6= 0}, which is the set of

locations where there is change in estimated relative copy numbers. The elements in B

are potential breakpoints. However some of the nonzero estimation of the jumps may

not be significant and can also lead to false positives. Similar to Huang et al (2005),

we first use the stationary bootstrap sampling to test the significance of the elements

in B, and then estimate the false discovery rate (FDR). The schemes for stationary

bootstrap sampling and calculating FDR are presented in this section.
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3.1 Stationary bootstrap sampling

Because of the dependence among the observations, standard bootstrap methods for the

independent data are not applicable here. We use the stationary bootstrap sampling

method (Politis and Romano (1994)). This method is designed for resampling from a

stationary sample. In the present setting, we proceed as follows.

Step 1. We pick one observation randomly from the original observations, say yi1 .

Step 2. With probability q, we select a new observation randomly from the original

observation, say yi2 . It could happen that yi1=yi2 . And with probability 1− q, we set

yi2 to be yi1+1.

Step 3. Repeat step 2 n times to obtain a bootstrap sample of size n.

Step 4. Repeat Steps 1, 2 and 3 to get N new data sets.

3.2 Estimation of the p-values and FDR

Suppose N stationary bootstrap data sets are generated. For marker i, we denote µ̂∗ik

as the estimation of µi from the kth bootstrap data set, and divide the N bootstrap

data sets into three categories, Ki0, Ki1 and Ki2, where

Ki0 ≡ {k : |µ̂∗ik| = |µ̂i|, 1 ≤ k ≤ N},

Ki1 ≡ {k : |µ̂∗ik| > |µ̂i|, 1 ≤ k ≤ N},

Ki2 ≡ {k : |µ̂∗ik| < |µ̂i|, 1 ≤ k ≤ N}.

The p-value at marker i is calculated as

p̂i =
|Ki0|
2N

+
|Ki1|
N

, i = 1, · · · , n.

The question of whether there is a significant copy number change at a position

can be restated as a hypothesis testing problem. The null hypothesis is that marker
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i does not belong to any gain/loss region. When all the positions are considered

simultaneously, it becomes a multiple test problem. We use the FDR approach to

adjust for multiple comparisons (Benjamini and Hochberg (1995)). The FDR is defined

as the expectation of the proportion of false positive results. Let p be a cutoff value.

We define

F̂DR =
number of markers picked under null hypothesis

number of markers picked in the observed data

=
p× total number of markers

number of markers whose p−values are less than p

as the estimator of FDR ( Storey (2002) and Efron and Tibshirani (2002)).

In our study, we choose q = 0.35 and p = 0.01 if there is no other specification.

4 Simulation studies

We evaluate the performance of the LAD-FL method for detecting CNV using

three simulation examples. Suppose there are 1000 markers equally spaced along a

chromosome. All observed log2 rations are generated from

yi = β0i + εi, i = 1, · · · , 1000, (4.1)

where β0i’s are the true log2 ratios of these 1000 markers. They are set up to have

three altered regions along the chromosome which correspond to quadraploid, triploid

and monoploid states, respectively. All random noises εi’s are simulated from three

different models as AR(2) model, AR(1) model and independent model.

Example 1. This example uses the Example 1: This example uses the same set-up as

in Huang et al. (2005). All β0i’s are given in Table 1. The standard deviations of ε in
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Table 1: The true log2 ratios corresponding to three altered regions along the

chromosome in Example 1 and 2.

i 1-100 101-150 151-450 451-600 601-900 901-1000

β0i 0 1 0 0.59 0 -1

these three models are the same.

εi = ei0, ei0 ∼ N(0, 0.152), i = 1, · · · , 1000.

εi = 0.60εi−1 + ei1, ei1 ∼ N(0, 0.122), i = 1, · · · , 1000.

εi = 0.60εi−1 + 0.20εi−2 + ei2, ei2 ∼ N(0, 0.102), i = 1, · · · , 1000.

Example 2: To evaluate the robustness property of the LAD-FL estimator, we simulate

eij’s from double exponential (dbexp) distributions in three models. And the standard

deviations of ε in these three models are also the same. Example 2 shares the same

β0i’s with Example 1.

εi = ei0, ei0/18 ∼ standard dbexp, i = 1, · · · , 1000.

εi = 0.77εi−1 + ei1, ei1/17 ∼ standard dbexp, i = 1, · · · , 1000.

εi = 0.60εi−1 + .20εi−2 + ei2, ei2/18 ∼ standard dbexp, i = 1, · · · , 1000.

Example 3. In order to demonstrate the performance of the LAD-FL method under

both sparsity and smoothness conditions, for all three models in Example 2, we set the

true log2 ratios β0i’s to be extremely sparse as given in Table 2.

Table 2: The the true log2 ratios corresponding to three altered regions along the

chromosome in Example 3.

i 1-100 101-110 111-450 451-460 461-980 981-1000

β0i 0 1 0 0.59 0 -1
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To take into account the unevenly distributed density of markers along the

chromosome, we draw one marker from every two markers randomly. Thus we create

two subsets with 500 non-equally spaced markers for each data set in all three examples.

We simulate 20 data sets for every model in each example. To demonstrate the

robustness property of the LAD-FL method, we generate 2 outliers in each data set.

Both LB and LAD-FL are applied to detect the number of the significant breakpoints.

We run stationary bootstrap sampling 1000 times. The simulation results are given in

Table 3.

For each example, we calculate the average number and its standard deviation (in

the parenthesis) of all detected breakpoints in each of the 20 data sets. They are listed

in the first row of each method. We then calculate the average number of detected

breakpoints within and beyond 2 markers of the true breakpoints in every data set.

They are listed in the second row of each method. We also count the total number of

outliers which are falsely identified as breakpoints. They are listed in the third row of

each method.

The results in Table 3 show that the LAD-FL method is more robust than the LB

method in all three models. The LAD-FL method detects breakpoints more accurately

than the LB method. We can also see that the LB method tends to identify outliers

as breakpoints, especially for those data sets that are very sparse (e.g. Example 3).

Figure 1 plots two simulated sparse data sets generated from AR(1) and independent

models in Example 3. There are two outliers in each data set. All detected breakpoints

are indicated by vertical lines. The LB method catches falsely the two outliers as

breakpoints in this data set. The LB method catches falsely two outliers as breakpoints

in these data sets. In addition to those outliers, the LB model also detects more

breakpoints falsely than the LAD-FL method. This is not surprising since unlike
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Table 3: Simulation results. There are 5 true break points out of 500 non-equally

spaced markers for each data set. In total, there are 40 outliers for all 20 data sets in

each scenario.

Methods LAD-FL LB

Models AR(2) AR(1) Ind. AR(2) AR(1) Ind.

Example 1 4.8(0.41)1 4.9 (0.72) 4.5 (0.61) 5.9 (0.85) 6.3 (1.18) 7.85 (1.53)

4.82, 03 4.85, 0.1 4.5, 0 5.45, 0.45 5.35, 0.95 5.25, 2.6

No outlier4 1 outlier No outlier 7 outliers 8 outliers 15 outliers

Example 2 4.85 (0.49) 4.75 (0.64) 4.5 (0.61) 5.35 (0.76) 5.45 (0.76) 6.9 (1.37)

4.8, 0.05 4.65, 0.1 4.35, 0.15 4.95, 0.4 5.05, 0.4 6.0, 0.9

No outlier 1 outlier 2 outliers 4 outliers 3 outliers 11 outliers

Example 3 5.05 (0.51) 5.05 (0.82) 5.45 (0.76) 6.15 (2.28) 7.6 (1.39) 9.35 (1.42)

4.9, 0.15 4.65, 0.4 5.0, 0.45 3.9, 2.25 4.95, 2.65 5.75, 3.6

No outlier No outlier 3 outlier 9 outliers 17 outliers 31 outliers
1The average number (with standard deviation) of all detected breakpoints; 2 The detected breakpoints within 2

markers of the true breakpoints on average; 3The detected breakpoints beyond 2 markers of the true breakpoints on

average; 4 The number of outliers which are falsely identified as breakpoints out of total 40 outliers .

LAD-FL, LB does not take into account the sparsity property of the data set.

5 Two real data sets

To illustrate the LAD-FL method, we analyze two datasets. Following Huang et al.

(2005), we apply two empirical conditions for a marker to be a possible breakpoint.

(i) The difference of the means of the two subsegments is greater than .35.
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(ii) At least one of the subsegments has a mean greater than .35.

We apply the LAD-FL method to detect breakpoints as follows,

S1. First we use the cross-validation method as given in Section 2 to choose the

tuning parameters. Once the tuning parameters Once the tuning parameters are

chosen, we can compute β̂i’s. Let µ̂i = β̂i − β̂i−1, for i > 1 and µ̂1 = β̂1. Those

nonzero µ̂i’s satisfying the empirical conditions (i) and (ii) are considered to be

the candidates of breakpoints.

S2. Using the stationary bootstrap sampling method to get N = 500 bootstrap data

sets. From these new data sets, we obtain N estimates of the jump value at each

marker using the chosen tuning parameters in S1. Then we use the method in

Section 3 to estimate the p-value and choose all significant breakpoints.

5.1 Bacterial Artificial Chromosome (BAC) array

The BAC data set is generated by Snijders et al. (2001). It consists of single

experiments on 15 fibroblast cell lines. Each array contains measurements for 2276

mapped BACs spotted in triplicates. There were either one or two alterations in each

cell line as identified by spectral karyotyping. There were 15 chromosomes with partial

alterations and 8 whole chromosomal alterations. The variable used for analysis is the

normalized average of the log2 ratio of test sample over reference sample, as processed

by the authors.

Snijders et al. (2001) used spectral karyotyping to confirm that there are 15

chromosomes of BAC array data set which have partial alterations. The LAD-

FL method identifies 14 partial chromosomal alterations of them except the one on

chromosome 15 in GM07081. See (f) in Figure 3. By using the LB method in Huang
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(2005), five single points are detected as breakpoints. But they are not confirmed in

Snijders et al. (2001). The LAD-FL method does not identify them as breakpoints

either. These five single points are from chromosome 8 of GM13031, chromosome 8 of

GM01535, choromsome 8 of GM05296, choromsome 22 of GM13330 and choromsome

23 of GM07081. See (a)–(f) in Figure 3. Figure 4 shows that, like LB, LAD-FL also

identifies breakpoints from chromosome 23 of GM01535 and GM05296, which are not

confirmed by spectral karotyping.

5.2 Human chromosome 22q11 data

Urban et al. (2006) applied high-resolution CGH (HR-CGH) technology to the analysis

of CNV on chromosome 22q11. The DNA samples are collected from patients who have

Cat-Eye syndrome, 22q11 deletion syndrome (also called velocardiofacial syndrome

or DiGeorge syndrome) and some other symptoms. A large proportion of 22q11DS

patients develop learning disabilities and attention-deficit hyperactivity disorder and

there are large variations in the symptoms of these patients. For example, patients 03-

154 and 97-237 have the typical LCR A → D deletion, but they exhibit considerable

variation in their symptoms which may be associated with the deletion size. Therefore,

it is very important to apply a method to accurately detect the sizes of deletion regions.

These Human chromosome 22q11 data sets consist of the measurements on

chromosome 22 of 12 patients. There are about 372,000 features in the microarray

datasets for each patient. In order to apply the LAD-FL method, we partition the

whole chromosome into several segments and then apply the method to each segment.

We set the cutoff value p to be 0.001 in our analysis. The LAD-FL method is able

to identify all the blocks with break points detected in Urban et al. (2006). It can

also detect the accurate breakpoints for DNA block deletion and amplification. For

14



example, Figure 5 show the results for the data from patients 03-154 and 97-237. This

plot suggests that the deletion sizes for these two patients are different. In addition,

Patient 03-154 appears to have another deletion region, which was not detected by

Urban et al. (2006).

6 Concluding remarks

An appealing feature of the proposed LAD-FL method is its resistance against

outliers. This robustness property is inherited from the LAD regression, which is

useful in reducing the possibility of false positive findings due to outlying intensity

measurements. This property is demonstrated in the generating models used in our

simulation studies. The fused Lasso penalty in the LAD-FL method incorporate

both sparsity and smoothness properties of copy number data. Computationally, the

LAD-FL estimator can be computed using the existing efficient programs for LAD

regression, since both the loss and penalty functions use the same L1 norm. While

our simulation studies and real data analysis indicate that the LAD-FL method is a

useful and robust approach for CNV analysis, there are some important questions

that call for further work. For example, in the proposed LAD-FL method, it is

assumed that the intensity data have already been properly normalized. It would

be useful to examine how sensitive the method is to different normalization methods,

or perhaps consider the possibility of incorporating normalization into an integrated

model. Another interesting question is regarding the theoretical properties of LAD-

FL. It would be interesting to consider under what conditions on the smoothness and

sparsity of the underlying copy number process the LAD-FL is able to correctly detect

the breakpoints with high probability.
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Figure 1: Compare LAD-FL and LB for AR1 model of a dataset in Example 3.
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Figure 2: Compare LAD-FL and LB for independent model of a dataset in Example

3.
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Figure 3: In (a)−(e), LAD-FL is consistent with spectral karyotyping, no breakpoint

is detected. However LB detected 5 single points as breakpoints in these choromsomes.

Not like spectral karyotyping, neither LAD-FL nor LB detects any breakpoint in (f).

Blue dots are the observation. Red dots are the estimates from LAD-FL.
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Figure 4: Both LAD-FL and LB detect alterations in these 2 chromosomes. Blue dots

are the observation. Red dots are the estimates by using the LAD-FL method. The

vertical line marked the location for detected breakpoints by from LAD-FL.
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Figure 5: Human Chormosom 22q11 datasets of patient 03-154 and patient 97-237.

The first two plots are the observations of 180,000 markers. The last two plots are the

observations (gray) and estimates (blue) from LAD-FL.
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