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Abstract

Motivated by the common problem of constructing predictive distributions for daily
asset returns over horizons of one to several trading days, this article introduces a new
model for time series. This model is a generalization of the Markov normal mixture
model in which the mixture components are themselves normal mixtures, and it is a
speci�c case of an arti�cial neural network model with two hidden layers. The article
characterizes the implications of the model for time series in two ways. First, it derives
the restrictions placed on the autocovariance function and linear representation of
integer powers of the time series in terms of the number of components in the mixture
and the roots of the Markov process. Second, it uses the prior predictive distribution of
the model to study the implications of the model for some interesting functions of asset
returns. The article uses the model to construct predictive distributions of daily S&P
500 returns 1971-2005, US dollar �UK pound returns 1972-1998, and one- and ten-
year maturity bonds 1987-2006. It compares the performance of the model for these
returns with ARCH and stochastic volatility models using the predictive likelihood
function. The model�s performance is about the same as its competitors for the bond
returns, better than its competitors for the S&P 500 returns, and much better than its
competitors for the dollar-pound returns. In- and out-of-sample validation exercises
with predictive distributions identify some remaining de�ciencies in the model and
suggest potential improvements. The article concludes by using the model to form
predictive distributions of one- to ten-day returns during volatile episodes for the
S&P 500, dollar-pound and bond return series.
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The conditional distributions of future asset returns are important in �nancial markets,
being central to market outcomes like the pricing of derivatives and to reporting tasks like
assessing value at risk. This importance is re�ected in the applied econometrics literature, in
which literally hundreds of articles have been devoted to the application of models to asset
returns in scores of �nancial markets. Many of these studies use the autoregressive condi-
tionally heteroskedastic (ARCH) family of models introduced by Engle (1983) and Bollerslev
(1986). Other studies use stochastic volatility (SV) models �rst developed by Taylor (1986),
both in continuous time (Lo (1988)) and discrete time (Jacquier et al. (1994)). A few more
have taken an explicitly seminonparametric (SNP) approach (Gallant and Tauchen (1989)).
Asset returns are among the best data in econometrics. They are available daily for

many assets and studies that use trade-by-trade data are increasingly common. They are
records of market outcomes, and because errors in price records would always have negative
consequences for one party to a trade they are very accurate compared with most other
economic data. Studies using thousands of observations on asset returns are not uncommon.
Section 1.1 introduces four examples of daily returns, used in this article: 35 years of daily
returns on the Standard and Poors (S&P) 500 index for U.S. equity markets, over 25 years
of daily returns on the dollar-pound exchange rate, and 20 years of daily returns on one-
and ten-year maturity bonds.
There is no theoretically compelling parametric model of asset returns, or even a set of

such models. (A theoretically compelling model is not the same as one that is convenient,
be it for purposes of inference or for pricing derivatives.) Given this fact and the richness
of asset return data, the dominance of models with a half-dozen or fewer parameters in
the applied econometric asset return literature, and the relative dearth of alternatives like
SNP models, is puzzling. The premise of our undertaking is that careful application of
models that impose very weak restrictions on asset return dynamics should yield conditional
distributions of asset returns that are superior to those using tightly parameterized models,
and that premise is con�rmed in this article.
In any applied econometric undertaking, the characteristics of the data and the technol-

ogy to be used for inference are important, if not critical, factors in the choice of model.
Section 1.1 describes some of the important characteristics of the asset return data studied
here, including those that are the most challenging for the econometrician. Our inference
technology is subjective Bayesian using Markov chain Monte Carlo (BMCMC) to recover
the posterior distributions from which conditional distributions of asset returns are then
constructed. Section 1.2 brie�y reviews the aspects of this methodology most important to
the conditional distribution modeling exercise.
Our approach in creating a model was to think about generalizations of parametric mod-

els that would be natural for BMCMC. We began with Markov normal mixture models,
sometimes known as hidden Markov models, which have long been established in statistics
(Lindgren (1978); Tyssedal and Tjøstheim (1988)) and econometrics (Chib (1996); Ryden
et al. (1998)), but have some clear limitations in modeling asset returns �for example, the
combination of absence of serial correlation in conjunction with conditional heteroskedastic-
ity requires large models and the absence of serial correlation is di¢ cult to impose. This led
us to a generalization of these models in which the components mixed are non-Gaussian and
are themselves mixtures of normal distributions: the hierarchical Markov normal mixture
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(HMNM) model. Section 2.1 describes this model which, it turns out, can also be regarded
as a restricted Markov normal mixture (MNM) model of much higher order, or as a spe-
ci�c case of an arti�cial neural network model with two hidden layers (Kuan and White
(1992)). The HMNM model is parametric and places restrictions on moments, and Section
2.2 provides some compact theoretical characterizations of these restrictions.
The BMCMC inference technology has implications for applied econometric research

that have emerged slowly, and undoubtedly are not yet fully appreciated (at least by us).
An important secondary objective of this article is to emphasize these implications and illus-
trate them in the context of the primary objective of constructing conditional distributions
of future asset returns using the HMNM model. One implication is that the properties of
the model, including its strengths and limitations in the application at hand, can be well-
understood using prior predictive distributions, described in Section 1.2 and applied to our
asset return data in Section 2.3. This can be done before setting about the generally much
more time-consuming task of formal inference, and as a by-product provides a systematic
way to develop substantive, subjective prior distributions for a large number of parameters.
This exercise, which can be undertaken for any approach to inference, not just BMCMC,
can greatly enhance the productivity of applied econometric research because it can iden-
tify poorly speci�ed models before rather than after most of the work is done. Section 2.4
summarizes the BMCMC posterior simulator and documents its computational e¢ ciency,
which enables us to carry out in a few days the exercises with thousands of posterior dis-
tributions, on which many of the results in the balance of the article are based, that would
be conducted over decades in actual applications. Moreover, we are able to undertake this
entire exercise using quite a few variants of the HMNM model.
Section 3 evaluates these HMNM models from three perspectives. The �rst perspective

is comparison with some competitors �several ARCH models and a SV model. The com-
parison is based on predictive likelihood ratios, described in Section 3.1. These ratios have
the same theoretically compelling grounding as Bayes factors, but do not have the latter�s
sensitivity to the prior distribution. The short summary is that for the bond return series
the HMNMmodel performs as well as the strongest competitor, for S&P returns it performs
signi�cantly better, and for the dollar-pound return series it performs overwhelmingly bet-
ter. The concluding section provides a more detailed summary, and the full details are in
Section 3.2. That section also makes some less systematic comparisons with a¢ ne models
and a wider variety of SV models for the S&P 500 return series, and the comparison again
favors the HMNM models.
The second approach to evaluation (Section 3.3) summarizes the characteristics of con-

ditional distributions for horizons of one to ten days based on the HMNM model posterior
distributions simulated for each trading day for each asset return. In a well-speci�ed model
the c.d.f.s of these distributions, evaluated at realized returns, should be uniformly dis-
tributed and those for one-day horizons should be independent. The uniform distribution
turns out to be an accurate description for one-day horizons, but deteriorates as the horizon
lengthens. The one-day c.d.f.s clearly exhibit positive autocorrelation.
The �nal approach to evaluation (Section 3.4) utilizes the posterior predictive distribu-

tions of the characteristics of asset returns identi�ed in Section 1.1. The posterior predictive
distribution answers the question, if asset returns were governed by the HMNM, what would
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be the values of these characteristics? For most characteristics, asset return series and time
periods the answer is consistent with the observed characteristics. However, for the S&P
500 returns and several time periods the posterior distribution of the HMNMmodel predicts
markedly less serial correlation and smaller leverage e¤ects than actually observed, and it
cannot account well for the long-memory characteristics of S&P 500 absolute returns in the
early 1970s.
Section 4 illustrates how the model and BMCMC approach to inference could be used

to construct predictive distributions over one- to ten-day horizons. It focuses on periods of
greatest volatility in the asset return series examined, showing how conditional distributions
react to strong movements in returns, and studying how they readjust as the volatile period
passes. The last section of the article integrates all of its �ndings to draw conclusions about
how the HMNMmodel of asset returns might be improved, and about the practice of applied
econometrics using BMCMC methods.

1 The setting

Modeling asset returns is a central task in risk management in the �nancial sectors of devel-
oped economies. Models provide conditional probability distributions of returns and these
distributions, in turn, are important components in decision-making. The universe of mod-
els and data sets considered is invariably subjective, and for this if no other reason the
probability distributions of returns are subjective. While this is true in all applied econo-
metrics in support of decision-making, the issue in asset returns and risk management is
especially critical because (1) probability distributions of extreme events are major drivers
of decisions at the heart of the economy, and (2) evidence (i.e., data) about extreme events
is, by de�nition, limited. A focus of this study is the careful derivation of subjective dis-
tributions of asset returns from explicit modeling assumptions and evidence provided by
data. In particular, it derives the subjective probabilities of extreme returns as they unfold
day-by-day in �nancial crises (Section 4.)
It has long been well understood that the simplest models fail notoriously as descriptions

of extreme events. To take the simplest example, the mean of Standard and Poors 500 daily
returns (expressed as 100 times log ratio of successive trading day closing prices, the daily
percent log return) for the twentieth century is 0.0157 and the standard deviation is 1.036.
The lowest daily return, on October 19, 1987, was -22.90, and the associated z-score is
-22.12. If returns are assumed to be i.i.d. normal, the probability of a daily return this
low, or lower, is 1:031 � 10�108, and the expected time to recurrence of such an event is
3:59� 10105 years. (Modern cosmology puts the age of the universe at less than 1:5� 1010
years.)
While all decision-making is subjective, e¤ective decision-making demands that the mod-

els used be well calibrated: that is, if (as is generally the case) the models are predicated
on the assumption that the unconditional distributions of past and future events are the
same, then predictions of future events should not indicate radically di¤erent behavior than
has been observed in the past. Section 1.1 recapitulates some key characteristics of asset
returns that have been identi�ed in the literature, and shows how they are manifest in the
data used in this study. Section 1.2 brie�y outlines the approach to subjective distributions
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of asset returns.

1.1 Asset returns

The �nancial decision-making problems motivating this study arise in several contexts and
for many di¤erent kinds of assets. The focus of the applied work here is on three time
series of asset returns, together representative of the returns to which much of the empirical
work in the literature has been addressed. In each case the underlying data are closing
prices of assets pt on trading days t = 1; 2; : : :, and the percent log return for day t is
yt = 100 � log (pt=pt�1).

1. Standard and Poors 500 daily returns, all trading days for 1971 through 2005. The
return series yt is obtained from Wharton Research Data Services.

2. The foreign exchange rate daily returns for the UK pound and the US dollar, all
trading days from 1972 through 1998. The price series pt is obtained from Wharton
Research Data Services. A positive return indicates a rise in the value of the dollar
relative to the pound.

3. Daily returns on zero coupon bonds, one- and ten-year maturity, all trading days
from December 2, 1987 through February 2, 2007. The data source is the Bank for
International Settlements (BIS). Since 1996, participating central banks have been
reporting their estimates of the zero coupon structure to the BIS. Therefore these
data represent an �o¢ cial�source of information for zero coupon rates. In this way
it is possible to abstract from coupon e¤ects and mimic portfolio strategies involving
bond instruments. The procedure used to obtain zero coupon rates, as detailed in BIS
(2005, section 1), is the Svensson (1994) extension to the Nelson and Siegel (1987)
approach which postulates a parametric form for the discount function being used to
back out the zero coupon data. Letting r(n)t the market rate at t of the zero coupon
bond expiring at t+n and selling at par, returns on n-maturity y(n)t are computed from
prices with the usual formula

y
(n)
t = 100 � log

�
p
(n)
t =p

(n)
t�1

�
, p(n)t =

�
1 + r

(n)
t

��n
.

Subsequently we refer to these series as one-year and ten-year bond returns.

1.1.1 Some functions of the data

For each of these returns the time series is long, and can be summarized by some functions
of the series. Subsequently we use these functions in the assessment of model adequacy and
calibration by means of prior predictive distributions (Section 2.3) and posterior predictive
distributions (Section 3.4). There are 16 functions of interest, organized into four groups.
For each asset return series, observed values of the function are organized by �ve year
intervals, as indicated in Tables 1 and 2. Abbreviated descriptions of the functions are in
the column headings, where yn denotes non-overlapping n-day returns.
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� Four of the functions are moments, tabulated in Table 1, columns (1)-(4): the co-
e¢ cient of skewness in one-day returns, the coe¢ cient of excess kurtosis in one-day
returns, the coe¢ cient of skewness in ten-day returns, and the coe¢ cient of excess
kurtosis in ten-day returns.

� Four of the functions are indicators of the dynamics of returns and are indicated
in Table 1 columns (5)-(8): the �rst-order autocorrelation coe¢ cient for one-, ten-,
and �fty-day non-overlapping returns, and the sum of absolute values of the �rst 200
autocorrelation coe¢ cients.

� Table 2 indicates four aspects of the short-term dynamics of absolute returns in
columns (1)-(4): �rst- and ninth-order autocorrelation coe¢ cients of one-day returns,
the ratio of the variance of ten-day returns to one-day returns, and the sample corre-
lation coe¢ cient of yt and jyt+1j, sometimes termed �leverage.�

� The last four functions in Table 2 measure some aspects of the long-term dynamics
of absolute returns: the GPH (Geweke and Porter-Hudak (1984)) estimate bd of the
long-memory parameter in column (5), and for the sample autocorrelation function b�i
of absolute returns jytj the functions indicated in columns (6), (7) and (8).

1.1.2 Some challenging characteristics of asset returns

It has long been widely understood that asset return time series are leptokurtic and display
substantial persistence in moments of absolute returns. These characteristics are clear in
these tables. The function values convey other interesting characteristics if �nancial asset
return series, most not as widely recognized as leptokurtosis and persistence in variance.

1. There is substantial variation in the sample skewness and excess kurtosis coe¢ cients
from one �ve-year period to another, relative to what might be expected from an i.i.d.
process (Table 1, columns (1)-(4)). The most pronounced instance is the S&P 500
returns during 1986-90, and there are examples for the other return series as well.

2. The coe¢ cient of skewness for ten-day returns exceeds that for one-day returns in 10
of the 18 cases tabulated (Table 1, columns (1) and (3)). This is in sharp contrast to
the behavior of the population coe¢ cient of skewness of an i.i.d. process with �nite
sixth moment.

3. Using Gaussian i.i.d. asymptotic sampling theory the �rst order autocorrelation co-
e¢ cient for returns (Table 1, column (5)) is more than two standard deviations from
zero in 8 of the 18 cases. First order autocorrelation coe¢ cients for non-overlapping
10- and 50-day returns (columns (6) and (7)) are often higher in absolute value, but
none of them is more than two standard deviations from zero using Gaussian i.i.d.
asymptotic sampling theory.

4. Consistent with persistence in volatility, one-day absolute returns exhibit positive �rst
order autocorrelation (Table 2, column (1)). In 6 of the 18 cases, however, the �rst
order autocorrelation for returns (Table 1, column (5)) is even larger in absolute value.
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5. The slow decay of the autocorrelation function of absolute stock index returns has
been widely noted (Ding et al. (1993); Ryden et al. (1998)). That is evident for these
return series and time periods as well. The ninth-order autocorrelation coe¢ cient for
absolute returns (Table 2, column (2)) is always positive, and it exceeds the �rst-order
autocorrelation coe¢ cient (column (1)) in half of the cases.

6. In two-thirds of the cases the sample variance in the ten-day return is more than 10
times the sample variance in the one-day return (Table 2, column (3)), its expected
value in a benchmark i.i.d. model with �nite variance.

7. For returns, the sum of absolute values of the �rst 200 autocorrelation coe¢ cients is
about the same in all 18 cases (Table 1, column (8)). For absolute returns (Table 2,
column (6)) it varies substantially both across return series and across time periods
within series.

8. Sample autocorrelation coe¢ cients for absolute returns show a strong propensity to
be positive rather than negative (Table 2, column (8)). In 3 of the 18 cases the �rst
200 coe¢ cients are all positive. At the other extreme, the �rst 200 autocorrelation
function coe¢ cients of absolute dollar-pound returns in 1987-91 sum nearly to zero.

9. Absolute returns display an apparent long-memory property as indicated by the GPH
estimate bd of the long memory parameter d (Table 2, column (5)). Conventional non-
Bayesian hypotheses tests reject d = 0 in favor of d > 0 for most series and time
periods, and the point estimate indicates nonstationarity in four cases. The statisticbd di¤ers substantially from one time period to the next in the case of the S&P 500
returns, as Granger and Ding (1996) have noted.

10. The widely documented leverage e¤ect � negative sample correlation of yt with jyt+1j
� is evident for equity returns as expected (Table 2, column (4)). The leverage
interpretation of this sample moment does not extend to foreign exchange and bond
returns, and these cases display a mix of positive and negative sample correlations of
jytj with yt+1, all small in absolute value.

The characteristics of asset return series in Tables 1 and 2 are challenging for model
building. As is generally recognized in the literature, a well-calibrated model must be ca-
pable of reproducing persistence in volatility, extreme non-Gaussian sampling distributions,
and details critical for �nancial decision-make such as the leverage e¤ect. It must be su¢ -
ciently �exible that some of these characteristics are displayed in all cases (e.g., persistence
in volatility) while others may or may not be displayed (e.g., the leverage e¤ect). At least
as challenging is the variation in many of these sample characteristics from one �ve-year
period to another, for the same time series of asset returns. The model introduced in this
article, in Section 3.1, attempts to encompass all of these characteristics.

1.2 Bayesian inference and modeling

This study uses subjective Bayesian methods for inference, model evaluation and decision-
making, using simulation to express the requisite distributions. Most of the article is taken
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up with the speci�cs of the model and its application to the data and decision problem
discussed in Section 1.1. This section establishes the framework of the procedures used as
well as some essential terminology.
The formal motivation for the study is a setting in which decision are made based on an

observable history of daily asset returns yT = (y1; : : : ; yT )
0. The decision is made based on

a loss function L (a;!) in which the unobservable vector of interest is ! =(yT+1; : : : ; yT+f ),
and the action is ba = argminE [L (a;!)]. The decision could be portfolio allocation, deter-
mination of value at risk, or a host of similar tasks related to short-term �nancial manage-
ment; subsequent applications in this article concentrate on value at risk.
In any problem with this structure the technical task is �nding the appropriate dis-

tribution of ! and representing it in a manner suitable to the determination of ba. The
distribution of ! conditions on the information available at the end of period T , taken here
to be the observed asset returns yoT = (y

o
1; : : : ; y

o
T ) and a model (designated A, for �assump-

tions�) that is capable of producing the distribution ! conditional on yoT . The distinction
between the asset returns before they are observed (yT , a random vector) and the asset
returns after they are observed (yoT , a vector of constants usually termed data) is central to
the concepts used both in the theory and the applications in this study.
The model A provides p (! j yoT ; A) by positing a family of conditional distributions

p (yt j yt�1;�A; A) (t = 1; 2; : : :) (1)

in which yt�1 = (y1; : : : ; yt�1)
0 and �A is a vector of unobservables, including latent variables

as well as parameters. The distributions (1) used in this study are introduced in Section
2.1; both latent variables and potentially large number of parameters are important in these
models.
Because ! =(yT+1; : : : ; yT+f ), the conditional distribution p (! j yoT ;�A; A) is implicit

in (1) and it is generally accessible by means of simulations

y
(m)
T+s s p

�
yT+s j yo1; : : : ; yoT ; y

(m)
T+1; : : : ; y

(m)
T+s�1;�A; A

�
(s = 1; : : : ; f) (2)

for m = 1; : : : ;M . In order to move from p (! j yoT ;�A; A) to p (! j y
o
T ; A) the model must

also provide the posterior density p (�Aj yoT ; A) and make it accessible. Since p (yT j �A; A)
is available from (1), the missing component essential to the posterior distribution is the
prior distribution p (�A j A); such a prior distribution is implicit in any representation
p (! j yoT ; A) and, indeed, in the action ba. Section 2.1 introduces the prior distributions
used in this study. These provide prior densities of the form p (�A j �A; A), �A being a
vector of �xed hyperparameters speci�ed before proceeding. (To reduce notational clutter
we will often absorb �A into A, which denotes the entire speci�cation of the model.)
If it is possible to simulate from the posterior density

�
(m)
A s p (�Aj yoT ; A) / p (�A j A) p (yoT j �A; A) (3)

for m = 1; : : : ;M , then it is possible to simulate !(m) s p (! j yoT ; A). Iteration m of
the simulator consists of (3) followed by (2) with �(m)A in place of �A. While (2) is gener-
ally straightforward, the posterior simulator (3) is not. Section 2.4 outlines the posterior
simulator used, with details relegated to an on-line appendix.
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In summary, the model A has three components: a prior distribution �A j A for unob-
servable entities, including latent variables as well as parameters; a distribution yT j (�A; A)
of observable asset returns conditional on the unobservables �A; and a conditional distrib-
ution ! j (yT ;�A; A) of the vector of interest. The posterior density in (3) is implicit in the
�rst two of these three, and given a posterior simulator the distribution ! j (yoT ; A) relevant
for decision-making is accessible.
These procedures are essential to decision-making, but they are also entirely formal.

They do not directly address to following kinds of questions, which are essential to good
applied econometrics.

1. What is a reasonable speci�cation of the prior distribution �A j A? In particular,
how should the vector of hyperparameters �A in the prior density p (�A j �A; A) be
chosen?

2. Most models are su¢ ciently complicated that their implications for observable out-
comes of interest yT are not immediately apparent. Is it possible to understand these
implications in reasonably short order, and in particular before constructing the poste-
rior simulator (3), which is usually the most resource-intensive part making ! j (yot ; A)
accessible?

3. Is the model capable of accounting for important summary properties of the data yoT?

The �rst question arises generally in applying Bayesian methods. The second two ques-
tions fall under the general heading �speci�cation analysis,� and are important in good
applied econometric work regardless of approach. In many of these approaches speci�ca-
tion analysis must be undertaken following inference, �speci�cation tests�usually involving
estimates in one or more models. If inference is time and resource consuming, as is often
the case, this presents a practical problem: the work must be completed before the applied
econometrician starts to get good answers to these three questions.
A complete model changes these circumstances in important ways that work to the

advantage of the applied econometrician, however. The model A provides a probability
density for the observable yT ,

p (yT j A) =
Z
�A

p (�A j A) p (yT j �A; A) d�A,

the prior predictive distribution (Box (1980); Lancaster (2004), Section 2.4.2; Geweke
(2005), Section 8.3.1). This distribution can be accessed by means of the simulator

�
(m)
A s p (�A j �A; A) , y(m)T s p

�
y
(m)
T j �A; A

�
. (4)

form = 1; : : : ;M . Since the model provides a prior predictive distribution for yT , it provides
such a distribution for any function of yT , including the functions of interest zj = hj

�
y
(m)
T

�
described in Section 1.1.1. These distributions are immediately accessible by means of the
subsidiary computations z(m)j = hj

�
y
(m)
T

�
(m = 1; : : : ;M).
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The prior predictive distribution provides a strategy for addressing all three of the ques-
tions posed above. For any given setting of the prior hyperparameter vector �A, the prior
predictive simulator (4) provides the distribution of the selected observable outcomes of
interest zj, thereby addressing question 2. As illustrated in Section 1.1.1 the functions hj
are quite general and can be constructed to address issues like stability across time periods
and the relationship between single- and multi-day returns.
The distributions zj j (�A; A) enable the applied econometrician to evaluate alternative

settings of the prior hyperparameter vector �A in terms of the prior distribution they induce
on important characteristics of asset returns. This exercise addresses question 1, which can
be a signi�cant barrier to entry for applied Bayesian work: hyperparameters of prior distri-
butions are often driven by technical considerations, whereas what constitutes a reasonable
model �and this includes the prior distribution �is much more readily conceived in terms
of the prior distributions of the characteristics zj.
Such exercises with prior predictive distributions can substantially increase one�s un-

derstanding of the model, before incurring the costs of constructing a posterior simulator
or even, for that matter, collecting data. The immediate outcome may be negative �that
is, the applied econometrician may conclude that no setting of the prior hyperparameter
vector �A expresses a suitable prior distribution for characteristics zj. More important,
the exercise may indicate why the model is incapable of expressing prior beliefs for the zj.
This, in turn, can spur consideration of new or alternative models, without incurring a large
commitment to the failed model �a positive longer-run outcome.
The prior predictive distribution for single characteristic zj is easy to represent graph-

ically for one or for two characteristics at a time. Question 3 may then be addressed by
indicating, on the same graphs, the observed value of the characteristics zoj , and this can be
done for several time series of �nancial asset returns. Section 2.3 provides examples. Using
standard smoothing methods it is possible to approximate densities of the form p

�
zoj j A

�
or p

�
zoi ; z

o
j j A

�
, but this level of formality is usually not required when the prior predictive

distribution is used as described here �to gain insight into the implications of the model.

2 The model

The model proposed in this study is motivated by several considerations. First, in �nancial
market decision-making the full distribution of asset returns, as opposed to a few moments,
is critical. Second, asset return data is plentiful and of very high quality, relative to other
economic data. Third, there is no theoretically compelling tightly parameterized model for
the distribution of returns that has proved competitive in forecasting. These facts strongly
suggest consideration of models for asset returns that are inherently �exible, and suggest
that there is no reason to be concerned about large numbers of parameters per se.
Mixture models provide �exibility in describing distributions and are particularly useful

in conjunction with Bayesian inference by means of posterior simulation. In the simple
normal mixture model (e.g. MacLachlan and Peel (2000, Chapter 3), Geweke (2005, Section
6.4)) the observable variable of interest yt occupies one of m discrete latent states denoted
st 2 f1; : : : ;mg:

yt j (xt; st = i) s N(�0xt + �i; h
�1 � h�1j ):
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The covariate vector xt is deterministic, and in this study there is a single covariate xt = 1.
The process fstg in the simple normal mixture model is i.i.d. with P (st = i) = pi
(i = 1; : : : ;m), and

Pm
i=1 pi = 1. The precision parameters h, on the one hand, and

h1; : : : ; hm, on the other, are identi�ed only up to a factor of proportionality. This lack of
identi�cation turns out to be useful in specifying the prior, to which we return in Section
2.1.2. The parameters �1 and �1; : : : ; �m are identi�ed by requiring E ("t) = 0, equivalent
to p0� = 0 where p0 = (p1; : : : ; pm) and �

0 = (�1; : : : ; �m)
0.

An extension of this model widely used with time series is the Markov normal mixture
model (Lindgren (1978)), which maintains the same structure except that the latent states
st are not independent. Instead

P [st = j j st�1 = i; st�u (u > 1)] = pij (i = 1; : : : ;m; j = 1; : : : ;m) . (5)

Thus st evolves as a �rst order, m-state Markov chain, characterized by them�m transition
matrix P = [pij]. This matrix, in turn accounts for the serial dependence properties of
Markov normal mixture models. Several characteristics of P are important subsequently in
developing some properties of the model proposed in this study.

1. In view of the fact that
Pm

j=1 pij = 1 (i = 1; : : : ;m), at least one of the eigenvalues
of P is 1; and since P (st+u = j j st = i) = [Pu]ij, no eigenvalue can exceed one in
modulus.

2. If all m� 1 remaining eigenvalues of P have modulus strictly less than one, P is said
to be irreducible. There is then a unique vector � with the properties �0P = � and
�0en = 1. (Here, and throughout, en denotes an n � 1 vector of units.) It can be
shown that �i 2 (0; 1) (i = 1; : : : ;m).

3. A transition matrix that has two or more real eigenvalues of unit modulus is reducible:
that is, it is impossible to move between certain states no matter how many periods
elapse. If there are complex eigenvalues of modulus unity they must occur in complex
pairs, and such a transition matrix renders the process st strictly periodic. Simple
examples of reducible and periodic transition matrices are

P =

24 1:0 0:0 0:0
0:0 0:7 0:3
0:0 0:4 0:6

35 and P =

24 0 1 0
0 0 1
1 0 0

35 ;
respectively. Neither property is reasonable for the latent state st in these models,
and the prior distributions introduced in Section 2.1.2 assign probability zero to such
transition matrices P.

Given (5), if P (st = i) = pti and pt = (pt1; : : : ; ptm)
0, then p0t+u = p0tP

u. If P is
irreducible and p1 = �, then pt = � for all t > 0; � is the invariant distribution of st.
In the special case P = em�0, the states st are serially independent. If "t = yt � �0xt is
stationary then P (st = i) = �i and E ("t) = 0 is equivalent to �0� = 0.
This section combines the Markov normal mixture and normal mixture models in a new

model, the hierarchical Markov normal mixture (HMNM) model. As described in Section

11



2.1, this model can be interpreted as either a generalization of a smaller Markov mixture
model or a restriction of a much larger Markov mixture model. This extension accom-
modates several characteristics of interest in �nancial asset return modeling in a tidy and
practical way relative to the conventional Markov normal mixture model. Section 2.2 devel-
ops these and some other population properties of the HMNM model. The characteristics
of this (or any other) model are best understood through their implications for observable
characteristics of �nancial asset returns. Section 2.3 develops the implications for the char-
acteristics discussed in Section 1.1 using prior predictive distributions. Section 2.4 brie�y
describes the BMCMC posterior simulator.

2.1 The complete model

Consider a generalization of the Markov normal mixture model in which the distribution
of the variable of interest yt, conditional on the state st and the covariate vector xt, is a
normal mixture. As a simple example, suppose that there are two states. In the �rst state
the distribution is a simple mixture of N (�0:5; 1) (p = 2=3) and N (1; 0:52) (p = 1=3).
In the second state the distribution is a simple mixture of N (0:8; 0:72) (p = 1=2) and
N (�0.8; 0:72) (p = 1=2). The transition matrix is

P =

�
0:6 0:4
0:3 0:7

�
: (6)

This is a simple instance of the HMNM model. In this particular example the mean of
"t = yt � �0xt is zero in each state and "t is therefore serially uncorrelated, but it is not
serially independent. Conditional on st1 = 1 the distribution of "t is skewed, and conditional
on st1 = 2 it is symmetric. If the rows of P are proportional (unlike this example) then
"t is serially independent, but the distribution of "t maintains the same �exibility as in the
normal mixture model �in particular, leptokurtosis does not imply serial dependence as is
the case in some models of volatility persistence like Gaussain GARCH models.
The HMNM model may be regarded as a restricted case of a Markov normal mix-

ture model. In the preceding example this Markov normal mixture model has four states,
component distributions N (�0:5; 1), N (1; 0:52), N (0:8; 0:72), N (�0.8; 0:72), and transition
matrix

P� =

2664
0:40 0:20 0:20 0:20
0:40 0:20 0:20 0:20
0:20 0:10 0:35 0:35
0:20 0:10 0:35 0:35

3775 : (7)

To generalize this example de�ne the 1 � 2 latent state vector st, with persistent com-
ponent st1 2 f1; : : : ;m1g and transitory component st2 2 f1; : : : ;m2g. The persistent
component behaves just like the latent state in the Markov normal mixture model: st1 de-
pends only on st�1;1, with P (st1 = j j st�1;1 = i) = pij. In the example the matrix [pij] is
(6). Conditional on st1 the transitory component behaves just like the latent state in the
normal mixture model: P (st2 = k j st1 = j) = rjk. In the example m1 = m2 = 2, r11 = 2=3,
r12 = 1=3, and r21 = r22 = 1=2.
In the generalization the HMNM model may be regarded as an m1m2-state MNM

model, with a special structure for the m1m2 � m1m2 transition matrix P�, re�ected in
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(7): if [(i� 1) =m2] = [(k � 1) =m2] then p�ij = p�kj (j = 1; : : : ;m1m2) and p�ji=p
�
jk = p�`i=p

�
`k

(j; ` = 1; : : : ;m1m2). These restrictions turn out to be critical for practical applied work.
Whereas the matrix P� has m1m2 (m1m2 � 1) parameters, the matrices P and R have
m1 (m1 +m2 � 1) parameters. As discussed in Section 2.4 using the unrestricted Markov
normal mixture model increases computation time by a factor of roughly m2. Section 3.2
provides evidence that values of m1 and m2 on the order of 4 or 5 are optimal for daily
�nancial asset returns, and also provides formal comparison of the HMNM and MNM mod-
els.
The HMNM model may also be regarded as an arti�cial neural network (Kuan and

White (1992)) with observed inputs xt (t = 1; : : : ; T ) and i.i.d. N (0; 1) unobserved input
vector z =(z1; : : : ; zT )

0. The �rst hidden layer selects states s11; : : : ; sT1, the second hidden
layer next selects states s21; : : : ; sT2, and the output vector is then yt = �

0xt + �i +  ij +

(hi � hij)�1=2 zt (t = 1; : : : ; T ) where i = st1 and j = st2 (t = 1; : : : ; T ).

2.1.1 The conditional distribution of observables

Turning to a full speci�cation of the HMNM model, for each of t = 1; : : : ; T periods there
are three kinds of variables. The observable random variable yt denotes an asset return of
interest. The k�1 vector xt denotes deterministic variables for period t, such as an intercept
(used in subsequent applications in this study) or indicators for days of the week (not used).
The latent 1�2 vector st = (st1; st2) denotes the persistent and transitory states in period t.
The three sets of variables can be expressed compactly in the T �1 vector y = (y1; : : : ; yT )0,
the T � k matrix X = [x1; : : : ;xT ]

0, and the T � 2 matrix s = [s01; : : : ; s0T ]
0.

Let s1 = (s11; : : : ; sT1)
0 denote all T persistent states. Then

p
�
s1 j X

�
= �s11

TY
t=2

pst�1;1;st1 = �s11

m1Y
i=1

m1Y
j=1

p
Tij
ij ; (8)

where Tij is the number of transitions from persistent state i to j in s1. The n� n Markov
transition matrix P is irreducible and aperiodic, and � = (�1; : : : ; �m1)

0 is the unique
stationary distribution of fst1g. For subsequent reference de�ne the m1 � 1 vectors pi =�
pi1; : : : pim1

�0
, so that P0 = [p1; : : : ;pm1 ].

Let s2 = (s12; : : : ; sT2)
0 denote all T transitory states. Then

p
�
s2 j s1;X

�
=

TY
t=1

rst =

m1Y
i=1

m2Y
j=1

r
Uij
ij , (9)

where Uij is the number of occurrences of st = (i; j) (t = 1; : : : ; T ). For subsequent reference
let the m2� 1 vectors ri denote the transitory state probabilities ri = (ri1; : : : ; rim2)

0 within
each persistent state (i = 1; : : : ;m1) and de�ne the m1 �m2 matrix R = [r1; : : : ; rm1 ]

0.
The observables yt depend on the latent states st and the deterministic variables xt.

Conditional on st = (i; j),

yt = �
0xt + �i +  ij + "t; "t s N

�
0; (h � hi � hij)�1

�
: (10)

13



For subsequent reference de�ne the m1 � 1 vector � =
�
�1; : : : ; �m1

�0
, the m2 � 1 vectors

 i =
�
 i1; : : : ;  im2

�0
(i = 1; : : : ;m1) and the m1m2� 1 vector  =

�
 01; : : : ; 

0
m1

�0
. Further

de�ne the m1 � 1 vector h =(h1; : : : ; hm1)
0 and the m1 �m2 matrix H = [hij].

For t = 1; : : : ; T let d1t be an m1 � 1 vector of dichotomous variables in which d1ti = 1 if
st1 = i and d1ti = 0 otherwise. Similarly de�ne the m2 � 1 vector d2t with d2tj = 1 if st2 = j
and d2tj = 0 if not. Let dt = d

1
t 
 d2t (t = 1; : : : ; T ). In this notation (10) becomes

yt = �
0xt + �

0d1t + 
0dt + "t (t = 1; : : : ; T ) : (11)

2.1.2 The prior distribution

The parameters �, � and  in (11) can be identi�ed by means of two conventions about
state means. The �rst convention is that the unconditional mean of the persistent states is
0, which is equivalent to �0� = 0. Let the m1 � (m1 � 1) matrix C0 be the orthonormal
complement of �: that is, �0C0 = 00 and C0

0C0 = Im1�1. De�ne the (m1 � 1) � 1 vectore� = C0
0� and note that � = C0e� because �0� = 0.

The second convention is that the unconditional mean of the transitory states within
each permanent state is 0, which is equivalent to  0iri = 0 (i = 1; : : : ;m1). Let Cj be an

m2�(m2 � 1) orthonormal complement of rj, de�ne the (m2 � 1)�1 vectors e 0j = C0
j j, and

note that  j = Cj
e j (j = 1; : : : ;m1). Construct the m1m2 �m1 (m2 � 1) block diagonal

matrix C = Blockdiag [C1; : : : ;Cm1 ] and the m1 (m2 � 1) � 1 vector e = �e 0

1; : : : ;
e 0m1

�0
.

Then  = Ce , and substituting in (11),
yt = �

0xt + e�0C0
0d

1
t +

e 0C0dt + "t:

From this point forward in developing the prior distribution, e� and e replace � and  .
A proper prior distribution for the parameters �, e�, e , P, R, h, h and H, combined

with the speci�cations (8), (9) and (10), provides a probability distribution for any ob-
servable (y1; : : : ; yT )

0. The following family of conditionally conjugate prior distributions is
convenient, for reasons discussed in Section 2.4. Each prior distribution is described with
reference to hyperparameters, each denoted with an underbar. The hyperparameters are
numbers that must be chosen prior to inference; Section 2.3 describes the values used in the
applied work in this study and how these numbers were chosen.
Given the restrictions on � and  , E (yt j xt; A) = �0xt. The prior distribution of � is

Gaussian,
� s N

�
�;H�1

�

�
; (12)

since xt = 1 in subsequent applications, this involves the choice of the two numbers � and
h�.
The prior distribution of pi the i�th row of P, is

pi s Betam1

h
p�
i1
; : : : ; p�

im1

i
, (13)
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where p�
ij
= �ijp0+(1� �ij) p1. The multivariate Betan (a1; : : : ; an) distribution, also known

as the Dirichlet distribution, has p.d.f.

pn (x1; : : : ; xn) /
nY
i=1

x
(ai�1)
i .

The prior distributions (13) are independent across the rows i of P. They require the
speci�cation of two hyperparameters, p

0
and p

1
. Loosely speaking the prior predictive

distribution of the model will display substantial serial persistence for fytg when p0 � p
1
;

Section 2.3 returns to a more precise elucidation of this relationship.
The prior distribution of ri, the i�th row of R, is

ri s Betam2 (r; : : : ; r) . (14)

These prior distributions are independent across the rows of R.
The prior distributions of the precision parameters in h, h and H are independent

gamma,

s2h s �2 (�) ; (15)

�1hj s �2 (�1) ( j = 1; : : : ;m1) ; (16)

�2hij s �2 (�2) ( i = 1; : : : ;m1; j = 1; : : : ;m2) . (17)

The prior means of all the precision parameters in h and H are one, and their variances are
2=�1. The restriction on the mean of each of these parameters resolves the identi�cation
question apparent in (10), but does so only in the prior distribution: that is, even if the
distribution of yt conditional on xt and st were known to be a speci�c instance of the HMNM
model, there would still be uncertainty about h, hi, and hij, and that uncertainty would be
speci�ed by (15)-(17).
The prior distributions of ~� and e are Gaussian,

~� j h s N
h
0;
�
h�h

��1
Im1�1

i
, (18)

~ j j (hj; h) s N
h
0;
�
h h � hj

��1
Im2�1

i
( j = 1; : : : ;m1) , (19)

all m1 + 1 components being independent. In the case of ~�, precision is scaled relative
to h. This relative precision is important in establishing the set of densities for yt that is
reasonable under the prior. For example, when h� is large then the probability of a bimodal
or multimodal distribution is small, but as h� ! 0 this probability approaches 1. The

scaling for the precision of the e j re�ects similar considerations. (Geweke (2005), Section
6.4.2 provides additional detail on these points.)
The priors are invariant with respect to the particular choices of the orthonormal com-

plements C0;C1; : : : ;Cm1 . To establish this fact, for any m1 � 1 vector f consider f 0� and
set f = [C0 �] f

� = C0f
�
1 + �f

�
2 . From (18),

f 0� = f�01 C
0
0�+ f �2�

0� = f�01 C
0
0� sN

h
0;
�
h�h

��1
f�01 C

0
0C0f

�
1

i
= N

h
0;
�
h�h

��1
f�01 f

�
1

i
= N

h
0;
�
h�h

��1
f 01f1

i
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because f�1 = C
0
0f1. Exactly the same argument applies to the  j.

The prior distribution consists of the m1 (m2 + 4) + 2 components (12)-(19). This dis-
tribution, together with the conditional distributions (8), (9) and (10), provides a complete
model of asset returns fytg, as described in Section 1.2. In this distribution the latent states
st are entirely exchangeable: the prior density evaluated at a given matrix s remains the
same under any of the m1!m2! permutations of the states. The prior distribution thereby
incorporates the fact that the states do not have substantive interpretations, but rather are
a technical device to provide substantial �exibility in modeling fytg. (Section 2.4 returns to
the implications for the posterior distribtuion and BMCMC.) Of the 11 hyperparameters �,
h�, s

2, �, �1, �2, p0, p1, r, h�, h , the �rst four must take account of the location and scale
of fytg. (They, or their equivalent, would need to be speci�ed in the textbook i.i.d. normal
model for fy tg, but of course that model is entirely inadequate for �nancial asset returns.)
The other 7 prior hyperparameters, together with the numbers of states m1 and m2, govern
the degree of persistence and shape of the distribution in fytg. Section 2.3 provides numer-
ical values of the hyperparameters for this study, using the functions of interest detailed in
Section 1.1 and prior predictive distributions used as described in Section 1.2.

2.2 Properties of the model: some theory

In many settings no-arbitrage conditions imply that �nancial asset returns yt should be
nearly serially uncorrelated. Especially in the presence of transactions costs the condition
of no serial correlation will only be an approximation, but approximations can be very
useful in simplifying models and improving their forecasting performance. Absence of serial
correlation is a straightforward restriction in the HMNM model.

Theorem 1 Conditional on xt (t = 1; : : : ; T ), the observables yt (t = 1; : : : ; T ) are serially
uncorrelated if � = 0. Suppose further that P is irreducible and aperiodic and its eigenvalues
are distinct. Then the observables yt are serially uncorrelated if and only if � = 0.

Proof. Using the methods of Ryden et al. (1998) for the Markov normal mixture model,

cov (yt; yt�s j x1; : : : ;xT ) = �0Bs0�� = �0�Bs� (s = 1; 2; : : :) , (20)

where � =diag(�);B = P� em1�
0, which establishes su¢ ciency.

If the eigenvalues ofP are distinct thenP is diagonable and it has spectral decomposition
P = Q�1�Q, where the matrix � =diag (�1; : : : ; �m1) contains the ordered eigenvalues �j
of P, j�1j � j�2j � j�3j � : : : j�m1j. The matrix Q has orthogonal columns and we may take

Q = [q1;q2; : : : ;qm]
0 = [�;q2; : : : ;qm]

0 ,

Q�1 =
�
q1;q2; : : : ;qm

�
=
�
em;q

2; : : : ;qm
�
.

If P is also irreducible and aperiodic then �1 = 1 > j�2j and we may write

B = Q�1�Q� q1q01 = Q�1e�Q (21)
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where e� = diag (0; �2; : : : ; �m1). From (20) absence of serial correlation is equivalent to

�0�Q�1e�sQ� =0 (s = 1; 2; : : :) .

The �rst element of Q� is q01� = �
0� =0, and so

�0�Q�1�sQ� =0 (s = 1; 2; : : :) . (22)

De�ne the m1 �m1 matrix

D =

26664
�1 �2 � � � �m1

�21 �22 � � � �2m1
...

...
...

�m1
1 �m1

2 � � � �m1
m1

37775 ,

whose determinant is

 
m1Y
i=1

�i

!m1Y
i<j

(�i � �j) 6= 0 (Rao (1965), p 28). Let A = D�1 and

let �i;j denote the Kronecker delta function; then

m1X
s=1

ais�
s
j = �i;j =)

m1X
i=1

m1X
s=1

ais�
s = Im1 (i = 1; : : : ;m1) ,

and from (22)
m1X
i=1

m1X
s=1

ais�
0�Q�1�sQ� = �0�� =

mX
i=1

�2i�i = 0.

Thus all that is required to impose absence of serial correlation is to omit the vector
� from the model. This is the limiting case h� ! 1 in the speci�cation of the prior
distribution (18), which may therefore be used to express the condition that serial correlation
is small rather than that it is absent.
With a su¢ ciently large number of states, m1 andm2, the HMNMmodel is quite �exible

and can accommodate many kinds of persistence in higher moments, even in the absence of
serial correlation. Yet the structure of the model imposes systematic restrictions on these
moments. These properties can be expressed in terms of a linear representation of the p� 1
vector of mixed powers z(p)t = (y1t ; : : : ; y

p
t )
0.

The representation involves them�mMarkov transition matrixP, and the state-speci�c
moments

�hj = E
�
yht j st = j

�
(j = 1; : : : ;m; h = 1; : : : ; 2p) : (23)

In the case of the HMNM model m = m1, and the moments (23) are known functions of
the model parameters. The representation pertains more generally to any Markov mixture
model in which the �rst 2p state-speci�c moments are �nite. It simpli�es the notation to
take � = 0; in the subsequent applications in which xt = 1, this amounts to removing the
unconditional mean.
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For given p > 0 de�ne the p � 1 vector of mixed powers z(p)0t = (y1t ; : : : ; y
p
t ). Take the

p� 1 vectors of moments

�
(p)
j = E

�
z
(p)
t j st = j

�
=
�
�1j ; : : : ; �

p
j

�0
(j = 1; : : : ;m)

and arrange them in the p�m matrix

M(p) =
h
�
(p)
1 ; : : : ;�(p)m

i
:

Denote the second central moments of z(p)t ,

R
(p)
j = E

��
z
(p)
t � �(p)j

��
z
(p)
t � �(p)j

�0
j st = j

�
(j = 1; : : : ;m) : (24)

Theorem 2 Suppose that in a Markov mixture model with m states and irreducible and
aperiodic transition matrix P, the stationary distribution is �. Suppose further that the m
moment matrices R(p)

j (j = 1; : : : ;m) are �nite. Then the unconditional mean of z(p)t is

E
�
z
(p)
t

�
= ��(p) =M(p)�:

The instantaneous variance matrix is

�
(p)
0 = E

�
z
(p)
t � ��(p)

��
z
(p)
t � ��(p)

�0
=

mX
j=1

�j

�
R
(p)
j + �

(p)
j �

(p)0
j

�
� ��(p)��(p)0: (25)

The dynamic covariance matrices are

�(p)u = E
�
z
(p)
t � ��(p)

��
z
(p)
t�u � ��(p)

�0
=M(p)Bu0�M(p)0 (u = 1; 2; 3; : : :) (26)

where B = P� em�0, Bu= Pu � em�0, and � = diag (�1; : : : ; �m).

Proof. The instantaneous variance matrix �(p)0 is immediately attained by considering

�
(p)
0 = E

h
z
(p)
t � ��(p)

i h
z
(p)
t � ��(p)

i0
= E

�
z
(p)
t z

(p)0
t

�
� ��(p)��(p)0

=

mX
j=1

�j

h
z
(p)
t z

(p)0
t j st = j

i
� ��(p)��(p)0

=
mX
j=1

�j

�
R
(p)
j + �

(p)
j �

(p)0
m

�
� ��(p)��(p)0:
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The dynamic covariance matrices �(p)u (p > 0) are obtained by conditioning on st and st�u,
exploiting serial independence of observables after conditioning on the states, and then by
marginalizing out the states:

�(p)u = cov
�
z
(p)
t ; z

(p)
t�u

�
= E

�
z
(p)
t z

(p)0
t�u

�
� ��(p)�(p)0

=

mX
j=1

mX
i=1

E
�
z
(p)
t z

(p)0
t�u j st = j; st�u = i

�
[Pu]ij �i �M(p)��0M(p)0

=
mX
j=1

mX
i=1

E
�
z
(p)
t j st = j

�
E
�
z
(p)0
t�u j st = i

�
[Pu]ij �i �M(p)��0M(p)0

=
mX
j=1

mX
i=1

�
(p)
j �

(p)0
i [Pu]ij �i � �(p)e0m�M

(p)0 =M(p)Bu0�M(p)0;

where Bu = (P� em�0)u = Pu � em�0.
The geometric decay in u evident in (26) is that of an autoregressive process of �nite

order. However, this pattern does not extend to (25), which suggests that z(p)t might be rep-
resented as the sum of such a process and a serially uncorrelated process that is uncorrelated
with it.

Theorem 3 Suppose that the Markov transition matrix P has spectral decomposition P =
Q�1�Q de�ned in the proof of Theorem 1. Let �1; : : : ; �r be the distinct eigenvalues in the
open unit interval associated with at least one column of Q0 not contained in the null space
of M(p). Then z(p)t can be decomposed as the sum of two vector processes,

z
(p)
t = v

(p)
t + �

(p)
t :

The process �(p)t is uncorrelated with v(p)t+u (u = 0;�1;�2; : : :) and is itself serially uncorre-
lated, var

�
�
(p)
t

�
=
Pm

j=1 �jR
(p)
j . The process v

(p)
t has vector autoregressive representation

v
(p)
t =

rX
u=1

�uv
(p)
t�u + !

(p)
t

in which the coe¢ cients �u (u = 1; : : : ; r) are scalars. The roots of the generating polynomial
1�

Pr
u=1 �uz

u are �1; : : : ; �r.

Proof. Adopt the notation in the proof of Theorem 1. From (21), Bu =
Pm

j=2 �
u
jq

jq0j.
Substituting in (26),

�(p)u =
mX
j=2

�ujM
(p)qjq

j0M(p)0 =

r+1X
j=2

�ujA
0
j (u = 1; 2; 3; : : :)

where
A0
j =

X
h2Hj

M(p)qhq
h0M(p)0, Hj =

�
h : q0hP =�jq

0
h; M

(p)qh 6= 0
	
.:
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Observe that r is the number of distinct eigenvalues of P with modulus in the open unit
interval associated with as least one column of Q0 not in the column null space of M(p).
In other words, r can be less than m � 1 because some eigenvalues are equal to zero (as
in the compound Markov model interpreted as having m = m1m2 states), because some
eigenvalues are repeated, or because some eigenvalues are associated with columns of Q0 all
in the column null space of M(p).
De�ne now a stochastic process v(p)t with autocovariances ~�(p)u =

Pr+1
j=2 �

u
jA

0
j (u > 0)

and ~�(p)0 =
Pr+1

j=2A
0
j. Then for u > 0, ~�

(p)
u = �

(p)
u , while

~�
(p)
0 =

r+1X
j=2

A0
j =

mX
j=1

�
(p)
j �

0(p)
j �j � ��(p)��(p)0:

Notice that the matrix �(p)0 � ~�(p)0 =
Pm

j=1R
(p)
j �j is positive (semi) de�nite, since each R

(p)
j

is a variance matrix (24).
Given that there are r distinct eigenvalues of P, �2; : : : ; �r+1, with modulus in the open

unit interval, contributing to the determination of �(p)u = ~�
(p)
u , there exists a unique set of

constants �1; : : : ; �r such that

�rj �
rX
i=1

�i�
r�i
j = 0 (j = 2; : : : ; r + 1) :

The coe¢ cients �1; : : : ; �r determine a degree r polynomial whose roots are �
�1
2 ; : : : ; ��1r .

Thus for all u > r,

~�(p)u �
rX
i=1

�i~�
(p)
u�i =

r+1X
j=2

�ujA
0
j �

rX
i=1

�i

r+1X
j=2

�u�ij A0
j

=
r+1X
j=2

 
�uj �

rX
i=1

�i�
u�i
j

!
A0
j = 0:

The autocovariance function of
n
v
(p)
t

o
therefore satis�es the Yule-Walker equations for

a VAR(r) process with coe¢ cient matrices �iInp (i = 1; : : : ; r).
It follows from Theorem 3 that z(p)t has a VARMA(r; r) representation 

Ip �
rX

u=1

�iIpL
u

!
z
(p)
t =

 
Ip �

rX
u=1

B
(p)
i Lu

!
�
(p)
t :

2.3 Implications for observables

The prior hyperparameters of the complete model (Section 2.1), together with the values of
m1 and m2, provide a prior distribution over observable functions of interest zj through the
prior predictive densities p (zj j A). Ideas about reasonable models are usually formulated in
terms of these observable functions, rather than in terms of parameters or hyperparameters.
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Simulation from the prior predictive distributions of the zj using alternative values of the
hyperparameters allows the econometrician to select prior hyperparameters so as to re�ect
prior beliefs about these observable functions of interest. In our experience, this exercise
also deepens one�s understanding of the model. As a by-product, it may reveal limitations
in the ability of the model to account for observed behavior of the functions of interest.
Simulation of observable functions of interest from the prior predictive distribution can

be a key strategy in a successful program of applied econometric research. Prior predictive
simulators are typically quick to code and execute, compared with the coding and execution
of either posterior simulators or algorithms for non-Bayesian estimation methods. Exer-
cises with these simulators can quickly reveal some important properties of a new model,
including de�ciencies, and suggest modi�cations of the model, all before undertaking major
investments in formal inference. They may even indicate that a particular type of modelling
should be abandoned before incurring these costs. On the other hand, while prior predic-
tive simulation can be quick, informative and suggest major changes at an early stage of
research, it does not have the power of formal posterior inference in revealing advantages
and disadvantages of alternative models and providing tools for decision-making.
A formal analysis of the model through its implications for the function z =(z1; : : : ; zJ)

0

would require handling a J-dimensional multivariate distribution, and would ultimately
focus on p (zo j A); Geweke (2007b) explores this approach. The procedures here eschew
this method in favor of procedures that are less formal and less demanding of time and
resources. Formal analysis is left to the posterior distribution (Sections 3 and 4). All of the
analyses presented here uses M = 10; 000 iterations from the prior distribution. Analyses
were conducted for several alternative values of m1 and m2, but only the case m1 = m2 = 4
is studied in this section. Section 3.2 provides evidence from posterior distributions on
choices of m1 and m2, and that evidence shows that m1 = m2 = 4 is a relevant illustrative
case.

2.3.1 Prior predictive distributions of the functions of interest

Our prior predictive analysis utilized alternative values of the prior distribution hyperpa-
rameters, but in the interests of conserving space all the tables and �gures in this section,
and all of the analysis in the balance of the study, employ only the selected values indicated
in Table 3. The prior predictive analysis here uses two representations of p (z jA) that we
have found useful in understanding the complete model, choosing the values of the prior
hyperparameters, and checking for indications that the complete model might not account
for characteristics of the data such as the ten enumerated in Section 1.1.2.
The �rst representation is tabular. Tables 4 and 5 indicate the univariate cumulative

prior distribution functions for the 16 observable functions of interest detailed in Section
1.1.1, each evaluated at the observed values of these functions presented in the corresponding
Tables 1 and 2. For example the sample skewness coe¢ cient -4.859 and sample kurtosis
coe¢ cient 84.693 of the S&P 500 returns in 1986-1990 (fourth line, Table 1, columns (1)-
(2)) correspond to the respective prior c.d.f. evaluations 0.071 and 0.777 (fourth line, Table
4, columns (1)-(2)). Of the 288 prior c.d.f evaluations in these tables, the only one outside
the interval (0:01; 0:99) is the �rst order autocorrelation coe¢ cient of S&P 500 returns in
1971-1975 (�rst line of Table 4, column (5)).
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The second representation of the prior distribution is graphical. Figures 1 and 2 represent
prior predictive distributions of selected pairs of observable functions of interest, together
with the corresponding values for each of the 18 combinations of returns and time periods
presented in Tables 1 and 2. In each case the axes are chosen to include all 18 observed values,
with margins on all four sides that are 30% of the range of observed values. The observed
values are indicated by open circles for S&P 500 returns, open squares for pound-dollar
returns, and stars for bond returns. The �rst 1000 values from the prior predictive bivariate
distribution within this range are plotted as �lled red dots within these �gures. For example,
Figure 1(c) represents the joint prior distribution of the sample �rst-order autocorrelation
coe¢ cient b�1 of returns and the GPH estimate bd of the long-memory parameter for absolute
returns. It indicates the observed values of these two parameters for S&P 500 returns in
1971-1975 is more problematic than suggested in the �rst line of Table 4 column (5) and
Table 5 column (5). Such insights are the reason for examining bivariate as well as univariate
prior distributions. The lines in Figure 2 are the points at which the ordinates are equal in
absolute value.
Figure 3 presents another aspect of the prior predictive distribution, and illustrates the

richness of information that can be harvested from prior predictive simulations. Section
1.1.2 noted that there is substantial variation in observed functions of interest across time
periods for the same asset returns as well as across returns. Conditional on the parameter
values �A drawn in the prior simulation, observable returns can be simulated for as many
periods as desired. By simulating 2500 successive trading days, we can learn the bivariate
distribution of observable functions of interest in two successive �ve-year periods. Figure
3 presents the results of this exercise for four selected functions of interest. The observed
values are plotted using the same symbols, with the 14 points re�ecting the 14 adjacent
pairs of �ve-year time intervals in Tables 1 and 2.

2.3.2 Implications for the challenging characteristics of asset returns

With these two representations of the prior predictive distribution in hand, return to the
ten observed characteristics of asset returns discussed in Section 1.1.2. The unconditional
leptokurtosis and substantial persistence in absolute moments have been most widely noted
in the literature. Table 1, columns (1)-(4) (for one- and ten-day returns) and Figure 1(a)
(for one-day returns) indicate that the prior predictive distribution of skewness and excess
kurtosis is generous, relative to observed variations in these functions of sample moments
across the asset returns and time intervals considered in this study. Table 5 indicates that
the prior predictive distribution of observable measures of persistence in absolute returns
accommodates the observed measures. This is con�rmed, in a bivariate context, by Figures
1(b), 1(d) and 2(d).
Section 1.1.2 identi�ed ten additional speci�c observed aspects of asset returns. Our

prior predictive analysis provides a preliminary indication of the consistency of the complete
HMNM model with these observations.

1. The model is consistent with the observed measures of skewness and excess kurtosis,
and can easily account for variation in these functions across di¤erent asset returns;
see Table 1, columns (1)-(4), and Figure 1(a). The prior predictive analysis indicates
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that a model with unchanging parameters is consistent with the variation in these
functions across most time periods for a given return series; see Figures 3(a) and (b).
The relative outliers in these �gures are the result of the high excess kurtosis coe¢ cient
and low skewness coe¢ cient for S&P 500 returns 1986-1990, and the high skewness of
the dollar-pound 10-day returns in 1992-1996.

2. Figure 2(a) indicates the joint prior distribution of the sample skewness coe¢ cient of
one- and ten-day returns, over the same 1250-day (�ve-year) period used for all of the
observable functions of interest. The area above and below the superimposed crossed
lines in that �gure corresponds to sample skewness coe¢ cients larger in absolute value
for ten-day returns than for one-day returns. The prior probability of this event is
0.34. Thus the prior predictive distribution is consistent with this ordering, commonly
observed in the asset returns studied here and noted elsewhere (Harvey and Siddique
(1999)) as well.

3. The large �rst-order autocorrelation coe¢ cients observed for some returns and time
periods are well into the right tail of the prior predictive distribution, beyond the 99th
percentile in one case. (See Table 4, column (5) and Figure 1(c); the largest value is
for the S&P 500 returns in the 1970s.) The prior predictive distribution of the �rst-
order autocorrelation coe¢ cient in HMNM models with no serial correlation (� = 0),
not documented here, is almost the same. The reason is that for con�gurations of
parameters in the HMNM model with substantial prior probability the sampling �uc-
tuation in the �rst-order autocorrelation coe¢ cient is substantially larger than that
in the canonical i.i.d. Gaussian model. The other characteristics of the sample au-
tocorrelation function of returns in Table 4, columns (6)-(8), pose no such problems.
Figure 2(b) shows the joint prior predictive distribution for the �rst-order autocorre-
leation coe¢ cients of daily and non-overlapping ten-day returns. It is more probable
than not that the latter will exceed the former (area above and below the cross in this
panel), and this is due to the greater sampling variability in the latter for which are
constructed from only one-tenth the number of observations as the former.

4. Figure 2(c) provides the joint prior distribution of the �rst-order autocorrelation co-
e¢ cient for returns and for absolute returns. The prior distribution provides much
more much support for substantial positive than for substantial negative �rst-order
autocorrelation in absolute returns. Absolute returns are more likely to be persistent
than are returns, by this measure, but the probability that the absolute value of the
�rst-order autocorrelation coe¢ cient for returns exceeds that for absolute returns is
nearly 0.30. Yet for several returns and periods, the observed combinations lie in a
region of the joint prior distribution that is very sparse. For example, the observed
autocorrelation coe¢ cient of 0.26 for S&P 500 returns in 1971-75, which is extreme
relative to the prior distribution (row 1 of Table 4, column (5)) also suggests that
absolute returns should have been more persistent (by this measure) than was in fact
the case.

5. The prior distribution of �rst- and ninth-order autocorrelation in one-day absolute
returns supports a wide range of behavior, including the values observed in the 18
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return samples. This is indicated in �rst two columns of Table 5, and in the bivari-
ate prior distribution of these functions in Figure 2(d). The prior probability that
the ninth-order exceeds the �rst-order autocorrelation coe¢ cient is 0.34. This is all
consistent with observed functions in the return samples.

6. The observed variance ratios of ten-day to one-day returns documented in column (3)
of Table 2 are consistent with the prior distribution as indicated by the corresponding
c.d.f. values in Table 5, column (3). A centered 98% prior credible set for this ratio is
(4.1, 17.1), which well contains the observed function values.

7. Table 4, column (8), shows that the sums of the absolute values of the �rst 200
autocorrelation coe¢ cients observed for returns are well within the support of the
prior predictive density. Moreover, these sums are scattered over a wide range of the
prior predictive even though the corresponding data appear closely concentrated in
Table 1, column (8). Column (6) of Table 5 shows that the same is true for absolute
returns, although in this case the corresponding data appear widely dispersed in the
column (6) of Table 2. The corresponding bivariate prior distribution (not shown here)
reveals no anomalies. In the case of absolute returns, the observed large �uctuations
between time periods for the same return series (Table 2, column (6)) do not pose a
problem for the prior predictive distribution as shown in Figure 3(d).

8. The prior predictive distribution of the ratio of the sum of the �rst 200 autocorrelation
coe¢ cients of absolute returns, to the sum of the absolute values of these autocorre-
lation coe¢ cients, is a mixed continuous-discrete distribution. It places mass on the
value 1.0, corresponding to the event that all 200 autocorrelation coe¢ cients are non-
negative, and the probability of this event is 0.048. This is the number recorded with
an asterisk in column (8) of Table 5, corresponding to those observations in which the
ratio was 1.0 (Table 2, column (8)). Figure 1(d) conveys some further insight into this
distribution show that the sum of the �rst 200 autocorrelation coe¢ cients of absolute
returns can well exceed 20, and that in this case it is more probable than not that all
coe¢ cients will be positive. Column (8) of Table 5 shows that the observed values of
this ratio are well within the support of the prior predictive distribution.

9. The HMNM model has no long-memory characteristics, by virtue of Theorems 2 and
3. Yet standard long memory models �t to absolute returns for the series and time
periods under consideration suggest long memory, strongly so in some cases (Table 2,
column (5)). As indicated in column (5) of Table 5 the prior predictive distribution ofbd places all of these estimates above the median, yet only in two cases (the earliest S&P
500 return series) are the observed values in the upper decile of the prior distribution.
Figures 1(b), 1(c), and 3(c) also document the inclusiveness of the prior predictive
distribution for bd. Thus the widely noted long-memory properties of absolute returns
(Ding et al. (1993); Bollerslev and Mikkelsen (1996)) do not present any substantial
obstacle to the HMNM model, in which all population moments display geometric
decay. In view of the �ndings of Diebold and Inoue (2001) on long memory and
Markov switching this is not surprising. Figure 3(c) shows that the apparent volatility
of bd in Table 2 is also consistent with the complete HMNM model. In combination

24



with other functions of interest, however, the picture is more sobering. The S&P 500
returns in the 1970�s display the largest �rst-order autocorrelation coe¢ cients as well
as the largest values of bd. As revealed in Figure 1(c), the prior distribution renders
this joint event implausible.

10. The sample correlation between jytj and yt+1, often termed the �leverage e¤ect�, is less
than -0.1 for three of the seven �ve-year periods of S&P 500 returns studied (Table
2, column (4)). The point -0.1, in turn, corresponds to roughly the fourth percentile
of the prior distribution of this function. In the prior distribution leverage appears to
be essentially independent of the other functions of interest studied here; Figure 1(b)
presents one example. Thus the observed low values of leverage for some samples do
not interact to produce the same sort of stronger implausibility noted for bd and the
�rst-order autocorrelation coe¢ cient.

2.4 The posterior simulator

The posterior simulator for the HMNM model is, globally, a Gibbs sampling algorithm with
seven blocks. The conditional posterior distributions and their derivation are provided in
the on-line technical appendix.
The �rst block of the Gibbs sampling algorithm is the T �2 matrix of state assignments.

The states are drawn by �rst removing s2 by analytic marginalization, drawing s1 conditional
on all parameters (but not s2), and �nally drawing s2 conditional on s1 and all of the
parameters. The draw of s1 uses the algorithm of Chib (1996) for �rst-order hidden Markov
processes. The T transitory states s2 are then conditionally independent.
The second block of the algorithm is the precision parameter h, whose conditional dis-

tribution is gamma. The third block, the vector h, consists of m1 conditionally independent
draws from gamma distributions. The fourth block, the matrix H, consists of m1m2 condi-
tionally independent draws from gamma distributions.
The �fth block of the algorithm is the transition matrix P, broken down into separate

sub-blocks for each row. The rows are not conditionally independent, because the vector of
stationary probabilities � is a function of all parameters in P, as is the orthonormal comple-
ment C0 of �. These two relationships complicate what would otherwise be a multivariate
beta distribution for each row. These complications are handled using a Metropolis-within-
Gibbs algorithm using the multivariate beta distribution component as the source density.
The sixth block of the algorithm is the matrix R of transitory state probabilities, bro-

ken down into separate sub-blocks for each row rj. The conditional distribution of each
row rj would be multivariate beta distribution but for the dependence of the orthonormal
complement Cj on rj. This dependence is again handled using a Metropolis-within-Gibbs
algorithm using the multivariate beta distribution component as the source density.
The �nal block of the algorithm consists of �, e� and e . These conditional distribution

of these parameters is Gaussian.
As discussed in Section 2.1 the orthonormal complements Cj (j = 0; : : : ;m1) are not

unique, but the non-uniqueness has no bearing on the posterior distribution. In the posterior
simulation algorithm, however, it is important that C0 be a smooth function of � and
that Cj be a smooth function of rj (j = 1; : : : ;m1). Violation of this condition can lead
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to unacceptably low rates of acceptance in the Metropolis-within-Gibbs algorithms. The
technical appendix provides an algorithm that leads to su¢ cient smoothness and avoids this
problem.
The posterior simulator produces an ergodic sequence of parameter draws. To see that

this is so, let C be any subset of the parameter space with positive posterior probability.
Then the probability that the algorithm will produce a draw in C in the next step is
positive, regardless of its current position. Corollary 4.5.1 of Geweke (2005) then establishes
ergodicity. The HMNM model shares with other mixture models the property that, because
the posterior distribution is invariant to permutation (sometimes termed relabeling) of the
latent states, there are many re�ections of the posterior distributions in the parameters
space �m1!m2!, in the case of the HMNM model. Geweke (2007a) shows that this condition
leads to no special problems so long as there is to be no substantive interpretation of the
states, as is the case here. The posterior simulator may visit only a few re�ections of the
posterior distribution �perhaps only one �in any reasonable number of iterations, but the
information provided by the simulator about functions of interest is just as valid as if all
the re�ections were included in the simulation.
The posterior conditional distributions used in the algorithm, and the computer code

that implements the Gibbs sampling algorithm, were veri�ed to be correct using the proce-
dures described in Geweke (2004) and Geweke (2005), Section 8.1.2.
Execution time for the algorithm is roughly proportional to T (m2

1 +m2
2), as indicated in

Table 6. The most time-consuming parts of the algorithm are sampling from the conditional
distribution for s, and sampling from the conditional distribution for �, e� and e .
As is the case with almost all Markov chain Monte Carlo algorithms, there is serial

correlation in the parameter draws generated by the algorithm and in functions of these
parameters. Table 7 provides some information about relative numerical e¢ ciency (RNE,
Geweke (1989) or (2005), Section 4.2.2) for a key function of parameters, c.d.f. of the next
day�s return evaluated against the one-step-ahead predictive distribution. The distribution
of RNE is with respect to 7323 executions of the posterior simulator using rolling samples
of 1250 days, for the S&P 500 return, ending between December 15, 1976 and December 16,
2005 inclusive. The RNE is computed using 1000 iterations of the Gibbs sampler, and there
are 4 skips between each iteration used. Thus the interpretation of RNE is that 5/RNE
iterations of the sampler are required to yield the same information as one iteration of a
hypothetical sampler making i.i.d. draws from the posterior distribution.
All code is written in compiled Fortran running under linux, and executed using a 2.6Ghz

Hewlitt-Packard opteron processor with 4Gmemory. Taken together the tables indicate that
use of the model on a daily basis is quite practical. For example, if every �fth iteration is
used, then to obtain the same information as from 1000 draws from a hypothetical i.i.d.
posterior simulator would require about 1:7 � 105 iterations. The evidence in Section 4
indicates that m1 = m2 = 4 is adequate for many �nancial asset return data considered in
this study. For 1:7�105 iterations execution time for a �ve-year sample is under 10 minutes;
a 10-year sample with m1 = m2 = 6 would require less than 40 minutes.
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3 Model comparison and validation

There are many models of asset returns that compete with HMNM models. For exam-
ple there are many varieties of ARCH models, including ARCH, GARCH, EGARCH, and
others, and for each of these there are alternative parameterizations such as GARCH(p; q),
where p and q are speci�ed by the investigator. Similarly there are several varieties of SV
models.
In principle a formal Bayesian approach using this rich variety of competing models is

straightforward. Denoting the set of alternative models A = fA1; : : : ; AJg,

p (! j yoT ; A) =
JX
j=1

p (! j yoT ; Aj) p (Aj j yoT ; A) . (27)

Given the posterior model probabilities p (Aj j yoT ; A), all of the methods described in Sec-
tion 2.1 can be applied. Section 3.1 outlines this process, describes some of the practical
di¢ culties that arise in its implementation, and indicates how this study handles those
di¢ culties using predictive likelihoods. Section 3.2 uses predictive likelihoods to assign
probabilities to various choices of m1 = m2 for the asset return series studied. The result
is that m1 = m2 = 4 and m1 = m2 = 5 are assigned the highest probability, the outcome
depending on the particular asset and time period. That section also compares all of the
HMNM models with competing ARCH and SV speci�cations. Depending on the asset re-
turn studied, the comparison varies from close (for bond returns), to modestly but clearly
favoring the HMNM models (for the S&P 500 returns), to overwhelmingly favoring the
HMNM models (for the dollar-pound returns). These comparisons also provide evidence
suggesting that the HMNM models are more stable than the competing models examined,
although these results, too, are speci�c to the particular asset returns under consideration.
Formal model comparison provides no evidence on the ability of any of the competing

models to capture reliably the behavior of asset returns. Failure of all models in A =
fA1; : : : ; AJg in these dimensions is important in �nancial decision making. For example,
if negative returns of more than 10 sample standard deviations are assigned probability
10�10 for the S&P 500 returns, then the decision maker would regard events like October
19, 1987, as e¤ectively nonrecurring. In such a situation there would be a compelling
need to understand as well as possible the dimensions of model failure both in order to
appreciate the limitations of the models and to provide the basis for the development of
models that do not have these failings. This study undertakes two kinds of model validation
exercises designed to address this need. Section 3.3 reviews some of the characteristics of
the predictive distributions of any well-speci�ed model of economic time series, examines
the predictive distributions of asset returns in the HMNM model for departures from these
norms, and �nds systematic evidence of failure. Section 3.4 describes an alternative model
validation exercise using posterior predictive distributions of the 16 functions of interest of
the data identi�ed in Section 1.1.1. The HMNM model performs well for most of these
functions, but there are a few in which it falls short. The concluding section of the article
draws implications of these �ndings for future research.
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3.1 Predictive likelihoods

The critical terms combining models in (27) are the posterior model probabilities

p (Aj j yoT ; Aj) / p (Aj j A) � p (yoT j Aj) = p (Aj j A) �
Z
�

p
�
�Aj j Aj

�
p
�
yo j �Aj ; Aj

�
d�Aj ,

the term p (yoT j Aj) often being called the marginal likelihood of model Aj. Approximating
the integral that comprises p (yoT j Aj) using simulation (or any other) methods is consid-
erably more di¢ cult than approximating the posterior distribution of a vector of interest
! in a single model. (Geweke (2005), Section 8.2, discusses several approaches and reviews
the literature.) Apart from computational problems, the choice of the prior distribution
p
�
�Aj j Aj

�
presents problems for the marginal likelihood that do not arise for any model-

speci�c posterior density p (! j yoT ; Aj). One is that for a sequence of increasingly di¤use
prior distribution whose limit is an improper prior, the limiting marginal likelihood is zero
regardless of the success of the posterior distribution in describing the properties of yoT ; this
is the well-known Bartlett (1957) paradox (Geweke (2005), Section 2.6.2). A secondary but
still important di¢ culty is that proper prior densities p

�
�Aj j Aj

�
are always chosen with

reference to the data yoT , as was the case here in the prior predictive analysis of Section
2.3.1. The model-speci�c posterior density p (! j yoT ; Aj) tends not to be very sensitive to
these choices, except for very small sample sizes T , whereas marginal likelihoods can be
extremely sensitive.
The marginal likelihood can be decomposed

p (yoT j Aj) =
TY
t=1

p
�
yot j yot�1; : : : ; yo1; Aj

�
, (28)

where each term in the product is the one-step-ahead predictive likelihood for the data
point yot . Based on the output �

(m)
Aj

(m = 1; : : : ;M) of a posterior simulator using a subset�
yoq ; : : : ; y

o
t�1
	
of the data,

p
�
yot j yot�1; : : : ; yoq

�
uM�1

MX
m=1

p
�
yot j yot�1; : : : ; yoq ;�

(m)
Aj
; Aj

�
; (29)

the next section discusses choice of q. In the HMNM model the term inside the sum in (29)
can be evaluated e¢ ciently using the algorithm of Chib (1996) to analytically integrate over
the latent states sq; : : : ; st�1.
The marginal likelihood (28) could be approximated in this way. The extreme sensitivity

to the prior distribution is concentrated in the earlier terms of the product and declines
rapidly in later terms. These predictive likelihoods provide an alternative method of model
comparison that is directly related to the posterior model probabilities, but is less sensitive
to the prior distribution. Due to the e¢ ciency of the posterior simulator these terms can
be approximated reliably using (29) in reasonable time.
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3.2 Formal model comparison using predictive likelihoods

We present formal model comparisons using the four asset return samples described in
Section 1.1. In each case we use the sample in two di¤erent ways. Rolling samples utilize
only the most recent 1250 trading days (about �ve years) of asset returns, and the basis of
comparison is

TX
t=1251

log p
�
yot j yot�1; : : : ; yot�1250; A

�
, (30)

where t = 1 denotes the start of the asset return series (e.g., the �rst trading day of 1972 for
the S&P 500 returns). The computations utilize the approximation (29) with q = t� 1250
and �(m)A (m = 1; : : : ;M) the output of the posterior simulator using the 1250 observations
yot�1250; : : : ; y

o
t�1. Building samples utilize the entire sample beginning with the start of the

asset return series, and the basis of comparison is

TX
t=1251

log p
�
yot j yot�1; : : : ; yo1; A

�
, (31)

utilizing the approximation (29) with q = 1 and �(m)A (m = 1; : : : ;M) the output of the
posterior simulator using the t� 1 observations yo1; : : : ; yot�1.
We utilize both rolling and building samples because comparison of the results from

the alternative sampling schemes is informative in several dimensions. First, if the data
generating process implies a stable model A, then the log predictive likelihood (31) should
exceed the log predictive likelihood (30) for the simple reason that the former uses more
information than the latter; whereas instability for the model A would be manifest as a
smaller di¤erence and could even give rise to values of (30) that exceed (31). Thus the
comparisons provide some evidence on model stability. Second, since computation time
is roughly proportional to sample size for large samples, the rolling samples provide for
faster execution than do the building samples, and a small di¤erence in the alternative log
predictive likelihoods would suggest that there might be little given up in using a sample
truncated to recent years. Finally, there is a long tradition in the asset return literature of
using rolling samples.
This comparison exercise uses �ve alternatives to the HMNM model: a Gaussian i.i.d.

model; a Gaussian GARCH(1,1) model, a Gaussian exponential GARCH(1,1) (EGARCH(1,1);
Nelson (1991)) model, a GARCH(1,1) model with i.i.d. Student t shocks and the SV model
of Jacquier et al. (1994),

yt = �x + exp (xt=2) "t, (xt � �x) = �(xt�1 � �x) + ��t (32)

with "t and �t uncorrelated standard normal. See also equation (4) in Durham (2005),
from which the model we use di¤ers only in allowing yt to have a mean di¤erent from
zero (�x). For the SV and HMNM models we use exactly the procedure just described for
the computation of log predictive likelihoods with rolling and building samples. For the
Gaussian i.i.d. and GARCH models we use maximum likelihood estimates b�A, taking

p
�
yot j yot�1; : : : ; yot�1250; A

�
= p

�
yot j yot�1; : : : ; yot�1250; b�A; A� , (33)
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where b�A is the maximum likelihood estimate from the observations yot�1250; : : : ; y
o
t�1, and

similarly for
p
�
yot j yot�1; : : : ; yo1; A

�
= p

�
yot j yot�1; : : : ; yo1; b�A; A� (34)

where b�A is the maximum likelihood estimate from the observations yo1; : : : ; y
o
t�1.

Table 8 provides the results of these exercises for the asset return series, comparing the
competing models just described and an array of HMNMmodels. The �rst column indicates
the model, HMNM denoting the hierarchical Markov normal mixture models and MNM the
conventional Markov normal mixture models. The contrast between the Gaussian i.i.d. and
Gaussian GARCH(1,1) models provides a useful benchmark because the de�ciencies of the
former are quite well known while the latter is the most widely used alternative for asset
returns.
Turning �rst to the S&P 500 returns and the rolling samples, the highest log predictive

likelihood among the mixture models is the HMNM model with m1 = m2 = 4. The t-
GARCH model provides a slight improvement over the best HMNM model. Imposition
of no serial correlation leads to a slight deterioration in the log predictive likelihoods for
HMNM models and a slight improvement for most MNM models, but these di¤erences are
small. All of these HMNM models have log predictive likelihoods than exceed those of the
SV model, EGARCH and GARCH models.
Using building rather than rolling samples substantially improves the log predictive

likelihoods of the HMNM models, moreso when serial correlatoin is permitted (about 200
log-likelihood points) than when it is excluded (about 100 points). This is consistent with
stability of the mixture models for the S&P 500 return data generating process. Except for
the t-GARCH model, all of the competing models show improved predictive performance
with building samples, but by lower margins: no improvement exceeds 100 points. Con-
sequently HMNM models have log predictive likelihoods exceeding those of all competing
models, with the best HMNM models surpassing all of the competing models by over 200
points. HMNM models incorporating serial correlation and with building samples lead to
the largest log predictive likelihoods among all the models and the two sampling methods
studied. MNM model log predictive likelihoods fall short of those for HMNM, t-GARCH
and SV models.
The results for the dollar-pound exchange returns di¤er substantially from those for the

S&P 500 returns. For the rolling samples the imposition of no serial correlation in the
population increases the HMNM model log predictive likelihoods, whereas those for the
MNM models are scarcely a¤ected. As with the S&P 500 returns, the HMNM models
outperform the MNM models. The HMNM model with the highest log predictive likelihood
(m1 = m2 = 5, no serial correlation) exceeds that of the closest competitor (t-GARCH,
again) by over 300 points. The evidence very strongly favors the MNM models over com-
petitors.
Using building rather than rolling samples makes the comparison even more striking.

Except for t-GARCH the log predictive likelihoods of the competing models all deteriorate,
moving from rolling to building samples. By contrast the best HMNM models improve
dramatically, by over 200 points in some cases. The result is that, with building samples,
the best HMNM models overwhelmingly outperform the competitors: the best HMNM
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model outperforms the closest competing non-mixture model (t-GARCH) by over 500 log-
likelihood points �a di¤erence greater than that between GARCH and an i.i.d. normal
model.
Comparison of the log predictive likelihoods for the bond returns, in Table 8, shows yet

a di¤erent set of contrasts. The t-GARCH model is uniformly the strongest competitor,
followed by the SV model. For returns of both maturities the log predictive likelihoods for
the HMNM models are very close to t-GARCH, with the best HMNM models performing
slightly better in the case of one-year maturity and slightly worse in the case of ten-year
maturity. With only a few exceptions building samples produce somewhat higher predictive
likelihoods than rolling samples for all models. The muted comparison may be due in part
to the short sample size, but this alone seems unlikely to account for the similarity in results
using rolling and building samples.
These comparisons use only one, simple, SV model (32), whereas there is a wide variety

in the literature. Recent work by Durham (2006, 2007) enables us to project these com-
parisons to quite a few of these SV models for the S&P 500 return series. Durham (2007)
generalizes (32) by taking �t = �"t + (1� �2)

1=2
ut, ut s N (0; 1), and then specifying that

the distribution of "t is a mixture of three normal distributions. He estimates this model
by maximum likelihood using the S&P 500 returns for the period June 25, 1980 through
September 20, 2002, and for comparison with some other studies, the period January 2,
1980 through December 31, 1999. Line 1 of Table 9 shows the maximized value of the
log-likelihood function for this model using both data sets. We constructed log predictive
likelihoods for the same periods, using both rolling and building samples, and for the HMNM
models m1 = m2 = 4 and m1 = m2 = 5. These comparisons are biased against the HMNM
models, because the predictive likelihood is out-of-sample, whereas the maximized likeli-
hood is in-sample. The HMNM building samples used for inference are slightly larger than
the SV samples used for estimation, with data going back to 1972 rather than 1980, but
this di¤erence should be minor in comparison. The HMNM models with building samples
outperform Durham�s generalization of the SV model by over 100 log-likelihood points.
Durham (2006, 2007) undertakes the same maximum likelihood computations using �ve

variants of SV models, including both one- and two-factor models, the jump-dispersion
models studied in Eraker et al. (2003), and a variant in which the distribution of "t in (32)
is Student-t. These computations are also undertaken using for variants of a¢ ne models.
These studies �nd that the mixture model of Durham (2007) produces the largest value
of the maximized log likelihood function in both samples. In the June 25, 1980 through
September 20, 2002 sample the di¤erence between the maximized log likelihood for the
mixture model and those for the SV models ranges from 28.7 to 60.6, whereas for the single
a¢ ne model reported the di¤erence is 131.1. In the 1980 - 1999 sample the di¤erence ranges
from 21.8 to 69.5 for the SV models and 48.6 to 120.5 for the a¢ ne models. We believe
it would be worthwhile (though beyond the scope of this study) to compute the predictive
likelihoods for these models, for reasons indicated in Section 5. There seems little doubt
that these comparisons would favor HMNM models using building samples, but only such
formal comparison would reveal the magnitude of the dominance and relationship of the SV
and a¢ ne models to the ARCH models.
Overall, these formal comparisons suggest two working conclusions for future substan-
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tiation through similar work with other asset returns. First, the predictive performance of
HMNM models is generally at least as good as that of ARCH and SV models (as in the
case of bond returns) but can be better (as in the case of the S&P 500 returns), sometimes
substantially so (as in the case of dollar-pound returns). For S&P 500 returns, at least,
existing evidence suggests that HMNM models will outperform variants of SV models not
considered here, as well as a¢ ne models. Second, the predictive performance of HMNM
models is improved by using time series of asset returns spanning several decades (as in
the case of S&P 500 and dollar-pound returns), whereas the performance of ARCH and SV
models is not similarly enhanced.

3.3 Out of sample model validation

For the true conditional c.d.f. F [yt j (yt�s; s > 0)] the random variable u (t) = F [yt j (yt�s; s > 0)]
is i.i.d. uniform (0; 1) (Rosenblatt (1952)). For presentation of evidence about depar-
tures of u (t) from this norm it is more convenient to work with z (t) = ��1 [u (t)], which
under the same conditions is i.i.d. N (0; 1) (Berkowitz (2001)). For multiple-day re-
turns wj;t =

Pj�1
s=0 yt+s, if Fj is the conditional c.d.f. Fj [wj;t j (yt�s; s > 0)], then uj (t) =

Fj [wj;t j (yt�s; s > 0)] is uniform (0; 1), and zj (t) = ��1 [uj (t)] is N (0; 1) but follows a
moving average process of order j � 1. While no model provides exactly the conditional
c.d.f. (because all models are false, and because the pseudo-true parameter values of these
models are unknown) the departures of a model�s implications for u (t) and zj (t) provide a
convenient perspective on model misspeci�cation that is also directly relevant in prediction
applications of the kind studied in Section 4.
We investigated these implications for HMNM models as a by-product of the computa-

tions undertaken to compute the log predictive likelihoods discussed in the previous section.
For the one-step-ahead predictive distributions this entails simply evaluating the c.d.f. as
well as the pdf of yot j

�
yot�1; : : : ; y

o
q ;�

(m)
A ; A

�
at each parameter vector �(m)A drawn from the

posterior distribution from the sample yoq ; : : : ; y
o
t�1, where q = t�1250 for rolling samples and

q = 1 for building samples. (This is facilitated by the algorithm of Chib (1996) which yields
exact state probabilities at time t� 1 conditional on the sample and �(m)A .) We also investi-
gated the distributional implications for two- through ten-day returns by simulating the next
ten days of returns once for each parameter vector �(m) drawn from the posterior and then
using the empirical c.d.f. of the simulations to approximate Fj

�
woj;t j yot�1; : : : ; yoq ;�

(m)
A ; A

�
.

Tables 10 and 11 provide the results of these out of sample model validation exercises
for the four asset return series used in this study. For each return four columns show results
for rolling and building samples, and for one- and ten-day returns. The �rst four lines
of each table provide the �rst four moments of the corresponding random variables z (t)
and z10 (t), followed by the �rst-order autocorrelation coe¢ cient of z (t). As a convenient
benchmark, rather than a test of the false hypothesis of perfect calibration, an asterisk
denotes an outcome signi�cantly di¤erent from the i.i.d. N (0; 1) norm at the 0.1% level.
The next 10 lines indicate the fraction of observations falling in each predictive decile, and
the last line provides the di¤erence between the largest and smallest of these fractions.
The results for the S&P 500 and dollar-pound returns in Table 10 are similar in several

respects. First, the distributions over deciles in the lower part of each table appear excellent,
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with only a few entries outside the range (0:09; 0:11). Second, not surprisingly, the calibra-
tion of predictive distributions for one-day returns is better than for ten-day returns in all
cases. Third, the random variables z (t) are decidedly positively autocorrelated. Finally,
the out-of-sample predictive distributions based on rolling samples appear to be better cal-
ibrated than those based on building samples. The last result is somewhat surprising given
the superior predictive likelihoods for building samples documented in Table 8, as well as
the other evidence indicating stability of the HMNM models. The main di¤erence in the
results for these two asset returns is that the predictive distributions for the S&P 500 ten-
day returns are somewhat over-dispersed, with too few observations in the tails, whereas
the opposite is the case with the dollar-pound exchange returns, both one- and ten-day.
The results for the bond returns in Table 11 are also similar, in important respects,

that in turn di¤er from the �ndings with the S&P 500 and dollar-pound returns. The
distributions over deciles are not as close to their theoretical norms as was the case in
Tables 10 and 11. This is due to some extent to the smaller size of the samples for the
bond returns. Ten-day returns are again more poorly calibrated than one-day returns, as
one might expect. There is positive serial dependence in the transformed inverse predictive
c.d.f. z (t), but it is weaker than for the stock and foreign exchanged series studied. The
contrast between the rolling and building samples for the bond series is much less striking
than was the case for the S&P 500 and dollar-pound return series. There is evidence of
over-dispersion of predictive intervals for both bond returns, especially evident in the right
tail for ten-day returns.
Like the model comparison exercise, perhaps the most striking feature of the out-of-

sample model validations is the speci�city of results for each series. Overall these may be
attributed to insu¢ cient �exibility in the HMNM model. More constructively, the persis-
tent �nding of positive autocorrelation in z (t) is consistent with the limitations on dynamic
properties established in the theoretical work in Section 2.2. Relative to the conventional
Markov normal mixture model the additional �exibility of the HMNM resides in its second
layer, which provides much greater �exibility than the normal distribution, and the cali-
bration of one-step-ahead predictive densities appears excellent. The out-of-sample model
prediction exercise thus suggests that a fruitful extension of the HMNM model might be in
providing dynamic �exibility in the second layer of the model.

3.4 In sample model validation

Section 2.3 used the prior predictive distribution to describe the implications of the complete
HMNM model by means of observable functions zj like those described in 1.1. The same
approach can be used to understand the implications of the posterior distribution of the
model parameters. The mechanics of simulating observable functions of returns from the
posterior predictive distribution are exactly the same as in the case of the prior predictive
distribution, except that the parameters are drawn from the posterior distribution rather
than the prior distribution.
This section uses this approach for the four asset return series. For each series, the

posterior simulator produces a sample of parameter vectors �(m)A using the MCMC algorithm
described in Section 2.4. Conditional on each draw, �ve years (1250 observations) are
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simulated and the implied functions of interest z(m)j are computed. Comparison of the
posterior predictive distribution with sample values can reveal limitations in the model, in
the same way as the prior predictive distribution.
The posterior predictive analysis in this section uses the model m1 = m2 = 4, allowing

serial correlation, for the S&P 500 returns; the model m1 = m2 = 5, excluding serial
correlation, for the dollar-pound returns; and the model m1 = m2 = 5, allowing serial
correlation, for the bond returns. In each case the posterior distribution conditions on the
entire sample (described in Section 1.1), and observed characteristics zoj pertain to the same
subperiods introduced in Tables 1 and 2.
These posterior predictive distributions can be studied from the same two perspectives

used for the prior predictive distribution in Section 2.3. Tables 12 and 13 provide the
posterior c.d.f.s evaluated at the observed values zoj , parallel to the prior predictive analysis
in Tables 4 and 5. Figures 4 through 7 display the posterior distributions of the same
combinations of functions of interest used in Figure 1. Each of these four �gures corresponds
to one of the panels in Figure 1, and, like that �gure, indicate observed function values with
open symbols and draws from the posterior predictive distribution as closed dots. Similarly
Figures 8 through 11 show posterior predictive distributions corresponding to the prior
predictive distributions in each of the four panels of Figure 2, and Figures 12 through 15
display posterior predictive distributions corresponding to the four panels of Figure 3.
Comparing Figures 4 through 7 with Figure 1 it is evident that, in general, the poste-

rior predictive distributions are more concentrated than the prior predictive distributions,
although never strikingly so. This is because the posterior predictive distributions pertain
to characteristics observable in a �ve-year period that would be random even in the hypo-
thetical limiting case in which the model and parameters values were known with certainty.
Comparing Tables 12 and 13 with Tables 4 and 5 this phenomenon is evident in the fact that
for a given �nancial return series the c.d.f. evaluations in the former tables are typically
more dispersed. For example, the evaluations under the prior predictive c.d.f. of all but the
lowest of the seven excess skewness coe¢ cients for the S&P 500 returns range from 0.320 to
0.702 (Table 4, column (1)) whereas under the posterior predictive c.d.f. they range from
0.199 to 0.799 (Table 12, column (1)).
The posterior predictive distributions identify di¢ culties with the same functions of

interest and return series as did the prior predictive analysis, but the problems are somewhat
more sharply de�ned. The three most notable cases all arise with the S&P 500 return series.
First, the model does not account well for the sample autocorrelation of this time series in
the 1970s (Table 12, column (5), and Figure 6(a)). Owing to the comparative tightness of
the posterior distribution, these statistics are even farther in the right tail of the posterior
distribution than they were in the prior distribution. Second, the leverage statistics (i.e., the
sample correlation of yesterday�s return and today�s absolute return) for the S&P 500 series
are much farther in the left tail of the posterior distribution than of the prior distribution
in the periods 1986-90, 1996-2000 and 2001-05 (see Table 13, column (4), and Figure 5(a)).
Finally, the GPH estimate of the long memory parameter in the early 1970s is much farther
in the right tail of the posterior distribution (Table 13, column (5), and Figures 5(a) and
6(a)) than was the case with the prior distribution.
This documentation of the posterior predictive distribution bears on the consistency of
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the HMNM model with the ten aspects of asset returns �rst discussed in Section 1.1.2.

1. The model accounts well for substantial variations in skewness and kurtosis across
returns series and time periods; see Table 12, columns (1)-(4), and Figure 4. The
posterior distributions of these sample statistics di¤er notably from one series to the
next, as well as from the prior distribution (Table 4, columns (1)-(4), and Figure
1(a)). The skewness coe¢ cient for 10-day S&P 500 returns in 1986-1990 is an extreme
event. The apparent volatility in skewness and kurtosis evident in Table 1, columns
(1) and (2), does not present a problem under the posterior predictive distribution, as
documented in Figures 12 and 13. Comparison of these �gures with their respective
counterparts under the prior predictive distribution, panels (a) and (b) of Figure 3,
highlights an interesting di¤erence in the posterior and prior dynamics. Relative to
the prior, the posterior eliminates much of the support for transitions between high
values of skewness and excess kurtosis for successive �ve-year periods, placing weight
instead on transitions between rather small values and extreme values.

2. Figure 8 shows that all of the posterior distributions place substantial probability
on the event that, over a �ve-year period, the sample skewness coe¢ cient for ten-day
returns exceeds that for one-day returns (the regions above and below the crossed lines
in these �gures) as well as the opposite (the regions left and right of the crossed lines).
Comparison of the Figure 2(a) with Figure 8 shows that at least in the context of the
HMNM model the samples are not very informative about skewness that is likely to
be observed in these asset returns.

3. The size of the �rst-order autocorrelation coe¢ cients for S&P 500 returns in the 1970s
is even more anomalous in the posterior predictive distribution than it is in the prior
predictive distribution: compare column (5) of Tables 4 and 12, Figure 1(c) with
Figure 6(a), and Figure 2(b) with Figure 9(a). The latter comparison shows that
the posterior predictive distribution removes essentially all support for the �rst order
auto correlation coe¢ cient in the early 1970s, and almost all in the latter 1970s. On
the other hand, it also shows that there is no mystery in the fact that the �rst-
order autocorrelation coe¢ cient for ten-day returns exceeds that for daily returns, in
absolute value, about as often as not in these data. It is due to the greater sampling
�uctuation in the former relative to the latter.

4. Figure 10 provides the joint posterior predictive distributions of the �rst-order auto-
correlation coe¢ cient for returns and absolute returns, complementing Figure 2(c) for
the joint prior predictive distribution. The support provided by the prior predictive
distribution (Figure 2(c)) to negative �rst-order autocorrelation of absolute returns is
almost completely removed in the posterior predictive distribution of the S&P 500 and
dollar - pound returns, and is substantially reduced for the bond return series. The
poor handling of �rst-order autocorrelation of S&P 500 returns in the l970s previously
noted is striking in Figure 10(a).

5. The joint posterior predictive distributions account well for the observed �rst- and
ninth-order autocorrelation coe¢ cients for absolute returns; see Table 13, columns (1)
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and (2), and Figure 11. The joint distribution for bond returns re�ects the lower per-
sistence in volatility observed for those series. In all four posterior distributions it is
more probable than not that the �rst-order autocorrelation coe¢ cient of absolute re-
turns will exceed that for returns, but the complementary event always has substantial
probability.

6. Table 13, column (3), shows that the posterior distribution accounts well for the
observed variance ratios of ten-day to one-day returns. In the case of the S&P 500
returns this ratio is near the high end in the 1970s and the low end in the late 1990s. In
general, the observed ratios exceeding ten (Table 2 column (3)) do not pose problems
for the posterior predictive distributions.

7. Comparison of Table 4, column (8), with the corresponding column of Table 12 shows
that the posterior predictive distribution for the sum of absolute values of autocor-
relation coe¢ cients for returns is substantially tighter than the prior predictive dis-
tribution. The same is true for absolute returns: compare column (6) of Tables 5
and 13. Thus the posterior predictive distributions account simultaneously for the
similar values of the former, across return series and time periods, and the relatively
dissimilar values of the latter. The large changes over time periods in this statistic
(Table 2, column (6)) challenges the posterior predictive distribution in the case of
the dollar-pound returns, as exhibited Figure 15(b).

8. The posterior predictive distributions assign positive probability to the event that
all of the �rst 200 sample autocorrelation coe¢ cients for absolute returns will be
nonnegative: this is evident in column (8) of Table 13 for the S&P 500 and dollar-
pound return series, and in Figure 7 for all four series. At the same time, the posterior
predictive distribution for the dollar-pound return series also accommodates the near-
zero sum of these autocorrelation coe¢ cients in the 1987-1991 subsample.

9. Relative to the prior predictive distribution, the posterior predictive distributions of
the long-memory parameter estimate bd are centered and tighter. Whereas all 18
observed values were above the median of the prior predictive distribution (Table
5, column (5)), 8 observed values are below the medians of the posterior predictive
distributions (Table 13, column (5)). For the S&P 500 return series in the early 1970s
the posterior predictive distribution places the observed value in the far right tail,
at the 99.5 percentile. This is the period presenting di¢ culties with respect to the
�rst-order autocorrelation coe¢ cient of returns, and Figure 6(a) shows that the joint
event is indeed anomalous interpreted under the posterior predictive distribution. On
the other hand, Figure 14 shows that the apparent instability of bd in Table 2, column
(5), and noted by Ding and Granger (1996) for S&P 500 returns, is entirely plausible
in this model.

10. The leverage e¤ect �i.e., a negative sample correlation coe¢ cient for returns in one
period and absolute returns in the next �poses an even greater problem with respect
to the posterior predictive distribution than the prior predictive. Table 13, column (4),
indicates that values are well below the �rst percentile in three of seven periods for the
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S&P 500 return series and in one of three periods for one-year maturity bond returns.
As in the prior predictive distribution, leverage appears to be nearly independent of
the other functions studied: Figure 5 provides one example.

Taken together these detailed �ndings bear on our understanding of asset returns and
have implications for fruitful future research strategy. Section 5 takes up these conclusions.

4 Using the model in volatile times

As described in Section 1.2 it is generally straightforward to produce a random sample from
a predictive distribution

p
�
yT+1; : : : ; yT+f j yoq ; : : : ; yoT ; A

�
(35)

so long as a posterior simulator is available; for a more detailed discussion see Geweke and
Whiteman (2006), Section 3.3. For the models A described in this article it takes only a
few minutes to generate thousands of draws from (35), and so this is a practical procedure
for application on a daily basis. This section studies predictive distributions using the four
return series studied, for some interesting days T and a two-week prediction horizon f = 10
in each case.
These exercises all use rolling samples of size 1250, q = T � 1249 in (35). A typical

application selects an interesting interval of days [T1; T2] for study. The exercise begins with
a draw from the prior distribution, followed by 1,000 iterations of the MCMC algorithm
using the return data

�
yoT1�1249; : : : ; y

o
T1

	
. It then executes an identical procedure using

successively the samples
�
yoT1�1249; : : : ; y

o
T1

	
; :::;

�
yoT2�1249; : : : ; y

o
T2

	
. This procedure draws

and discards 1,000 iterations beginning with the last parameter vector drawn from the
previous sample (the last of the initial 1,000 iterations for the �rst sample). Then it draws
200,000 parameter vectors �(m)A using the MCMC algorithm, and for every 20�th draw it
successively samples returns yt+j for the next ten trading days using (2) with the current
draw �(m)A of the parameter vector in place of �A. After the �nal parameter vector draw
for the sample, the procedure assesses the convergence of the MCMC algorithm using the
separated partial means test (Geweke (2005), Section 4.7) using as functions of interest the
p.d.f. and c.d.f.

p
�
yoT+1 j yo1; : : : ; yoT ;�(m); A

�
and P

�
yoT+1 j yo1; : : : ; yoT ;�(m); A

�
,

both of which are easy to evaluate analytically. If the jzj-score of either test exceeds 3, then
the entire 200,000 draws are discarded and the procedures is repeated beginning with the
last draw that was dropped; this is repeated until both jzj-scores are less than 3.
At the completion of the exercise, for each trading day T 2 [T1; T2] there is a sample of

size 10,000 drawn from the predictive density (35) for the percent log returns yT+1; : : : ; yT+10.
The corresponding percent log returns at daily rates are (yT+s=s, s = 1; : : : ; 10). Sorting
these returns then provides quantiles for the predictive distributions for the 1-day-ahead,
2-day-ahead, ... , 10-day-ahead predictive distributions.
Figure 16 provides some of these results from one such exercise using the S&P 500

returns and the four successive trading days September 25, 28, 29 and 30 of 1992. This is
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an unremarkable period, chosen because it is subsequently useful in Section 4.1, and which
therefore illustrates the kinds of results one might routinely obtain on a day-to-day basis.
The organization of this �gure is identical to those that follow in this section. The solid
line indicates the actual percent log returns at daily rates: for example, the value of the line
corresponding to �3�on the horizontal axis in the upper left panel is the percent log return
at a daily rate for the S&P 500 index from the close of trading on September 25 to the
close of trading three trading days later on September 30. The other symbols in the graph
indicate quantiles of the predictive c.d.f.s over each of the 10 horizons. For each horizon
indicated on the horizontal axis the solid dot provides the median, the � symbols provide
the 0.25 and 0.75 quantiles, the plus symbols the 0.10 and 0.90 quantiles, the circles the
0.05 and 0.95 quantiles, and the asterisks the 0.01 and 0.99 quantiles.
Figure 16 immediately provides the return at risk for various horizons in each trading

day. For example, 5% percent log return at risk for a one-day horizon (the left-most lower
circle in each panel) is about 1.25 on all four days, while the 5% percent log return at risk
for a ten-day horizon is about 0.40 on September 25, declining to about 0.37 on September
30. (Since the panels show returns at daily rates, the latter �gures should be multiplied by
10 for total return at risk over the 10-day horizon.) These very slow movements are typical
of most days in the asset return samples, consistent with the information in realized returns
leading to almost no up-dating of the subjective distribution of holding period returns. In
turn, this is consistent with little updating of the posterior distribution as one day leaves
the sample and another enters it, moving through the successive panels in Figure 16, as well
as with no substantial changes in state probabilities conditional on parameters and observed
returns.

4.1 Stock returns

On Monday, October 19, 1987, the S&P 500 index daily percent log return was -20.47, the
largest absolute return since the index began in 1885. On the preceding trading day, Friday,
October 16, the daily percent log return was -5.16, the largest one-day decline since 1962.
The largest absolute daily percent log return in the 1250 trading days (the size of the rolling
sample) preceding October 19 was -4.81 (September 11, 1986).
Figure 17 portrays the quantiles of the predictive distributions of percent log returns

from the close of trade on Thursday, October 15 (panel (a)) through the close of trade on
Tuesday, October 20 (panel (d)). The quantiles on October 15 are similar to those in Figure
16: the 5% percent log return at risk for a one-day horizon is 1.34, although the appearance
is di¤erent owing to the necessarily dissimilar vertical scales in Figures 16 and 17.
The October 16 decline is well beyond the one percent return at risk at the close of

trade on October 15 (panel (a), left vertical axis). Friday�s percent log return of -5.16 has a
dramatic impact on the predictive distributions (panel (b)). The dispersion increases, with
the interquartile range increasing from 1.16 to 3.03, a factor of 2.61. On the other hand,
the centered 90% range increases from 3.60 to 12.45, a factor of 3.45, indicating increasing
tail thickness. The median also declines, from 0.09 to -0.77. At the close of trading on
October 16 the 0.01 quantile for the one-day percent log return is slightly less than -50
and the 0.99 quantile is slightly more than +50, both well o¤ the scale of Figure 17(b).
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Close comparison of panels (a) and (b) also reveals changes in the term structure of the
predictive distributions between October 15 and October 16: the interquartile range shrinks
with increasing horizon on both dates, but whereas the centered 90% range displays this
behavior on October 15 it is nearly absent on October 16.
The October 19 daily percent log return of -20.47 is of course much larger in absolute

value than the corresponding October 16 return. But in the context of the October 16
return (and those of preceding days) it is less surprising than was the October 16 return
in the context of returns preceding that date. As indicated in panel (b) the actual loss on
October 19 was less than the one-percent return at risk as of the close of trading on October
16. (The October 16 one-day percent log return predictive c.d.f, evaluated at -20.47, is in
fact about 0.0185.)
The events of October 19 further increase the spread of the predictive distribution, im-

mediately evident in panel (c). The interquartile range of the one-day predictive distribution
increases from 3.03 to 6.77, a factor of 2.23, and the centered 90% range from 12.45 to 57.23,
a factor of 4.60. By the former measure the proportionate increase in dispersion following
October 19 is less than corresponding increase on October 16; by the latter measure it is
greater. By implication, tail thickness of the predictive distribution continues to increase
after October 19 just as it did after October 18.
The percent log return of 5.33 on October 20 is extremely high by historical standards,

but there is a modest decrease in the dispersion of the predictive distribution updated at
the close of trading on October 20, evident in panel (d). The following day�s percent log
return, the highest since 1940 at 9.10, is in the 86th percentile of this distribution. Both
tail thickness and the tendency of tail thickness to increase with prediction persist in the
October 20 predictive distributions.
In the following weeks predictive distributions slowly return to the more typical pattern,

as illustrated in Figure 18. This �gure displays quantiles of predictive distributions at
25-trading-day intervals following October 19, using the same vertical scale employed in
Figure 16. Inspection of these �gures shows that both dispersion and tail thickness steadily
decrease. One hundred trading days after October 19, panel (d), the predictive distributions
are similar to those in Figure 16.
The returns on the four successive trading days of October 16, 19, 20 and 21 �the �rst

two negative and the last two positive �were all extraordinary. The �rst two, especially, had
dramatic impacts on the predictive distribution. There are two principal channels through
which this change could occur. At one extreme, the changes in the predictive distributions
could be due entirely to changes in the posterior distribution of the parameters driven by
the new and extreme data. At the other extreme, the returns could have negligible impact
on the posterior distribution of the parameters but produce substantial changes in the state
probabilities conditional on parameters and the history of returns. If the �rst channel
were important, then there should be noticeable changes in the predictive distribution 1250
trading days in the future as the 1987 dates drop out of the rolling sample of size 1250.
The October 19, 1987 return is included in the samples used on September 25 and 28, 1992
(Figure 16 panels (a) and (b)) but not in the samples used on September 29 and 30, 1992
(panels (c) and (d)). Since there is almost no change in the predictive distributions across
the four panels of Figure 16, changes in the posterior distribution of parameters cannot
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account in any signi�cant way for the changes observed in the four panels of Figure 17.
This is consistent with evidence previously examined that suggests the HMNM model is
stable for these asset return time series, both absolutely and in comparison with competing
models.

4.2 Dollar-pound returns

In September, 1992, the UK ended its participation in the European Exchange Rate mech-
anism. Largely as the result of intense adverse speculation about the decision of the UK
monetary authorities, the dollar-pound exchange rate increased from 0.4993 on Tuesday,
September 8 to 0.5839 on Monday, September 21. (We employ the usual convention that
the dollar-pound exchange rate is quoted in dollars per pound, unlike all other exchange
rates that are quoted in units of foreign currency per US dollar. Thus when the pound falls
relative to the dollar, returns are positive rather than negative.)
The combination of speculation and intervention by the monetary authorities resulted

in large but not volatile changes over the September 8 through 21 period. The daily percent
log return was positive each day except September 10 when it was -0.04, never exceeded
3.30, and averaged 1.74 over the nine-day period. Such episodes are not unprecedented in
foreign currency markets: there was a similar episode for the pound in March 1985 when
the average percent log depreciation was 1.46 over a nine-day period, and similar multi-day
appreciations and depreciations may be found for other foreign currencies. Similar events
can be found within the 1250-day rolling sample used in our exercise for September 8, 1992,
but the changes are all smaller: the largest 10-day moving average of percent log returns is
0.60 (January, 1988) and the smallest is -0.78 (October, 1987).
Figure 19 indicates quantiles of the predictive distributions using the same format as

Figure 16, at intervals of three trading days beginning September 8, 1992. The average one-
day percent log return of 1.74 lies between the 95th and 99th percentile of the predictive
distribution for most of the period. Returns for periods of three or more holding days that
end on or before September 21, however, all exceed the 99th percentile. This is especially
evident in panel (a) for September 8, where 4- to 10-day returns are all above the 99.9th
percentile.
The predictive distributions respond steadily to the events of the period. The interquar-

tile range for the next day�s percent log return increases from 0.835 on September 8, to 1.071
on September 11, to 1.119 on September 16, to 1.231 on September 21. The length of the
centered 90% interval increases from 2.400 on September 8 to 3.695 on September 21. Thus
there is at most a very modest increase in the tail thickness of the predictive density over
the period. The medians of the predictive distributions are always very close to zero, but
close inspection of Figure 19 reveals modest positive skewness in the predictive distributions
that increases through the nine-day period.

4.3 Bond returns

On January 3, 2001, the Federal Open Market Committee convened an unscheduled meeting
in which it initiated a long series of reductions in the Federal Funds rate following the
collapse of the tech stock market bubble in 2000. Immediately preceding this meeting there

40



were expectations of an imminent change in the direction of monetary policy, but there was
substantial uncertainty about the magnitude of the change. Changes in these expectations
were re�ected in movements in bond prices, with returns being greater for shorter-maturity
issues.
Returns to one-year maturities were large and positive in the �ve trading days from

Friday, December 29, 2000 through Friday, January 5, 2001, the average daily percent
log return being 0.0272. Changes in one-year maturity bond prices were greater during this
period than any other �ve-day period in the sample except for the period beginning with the
re-opening of markets on Thursday, September 13, 2001. The closest precedents for changes
of this magnitude in the 1250-day sample used in forming the predictive distributions are
the �ve-day period beginning October 29, 1998 (-0.0138) and the �ve-day period beginning
January 5, 1998 (0.0126).
Figure 20 indicates the quantiles of the predictive distributions using the same format

as Figure 16, at intervals of three trading days beginning December 26, 2000. The only
one-day return above the 99th percentile of the predictive distribution for any of these days
(including the ones not shown in Figure 20) is that on January 2, shown in panel (b). The
most extreme multiple-day returns, relative to their predictive distributions, are those for
the period ending with January 4. This includes the 7-day return in panel (a) and the 4-day
return panel (b). Together with the 5-day return for December 28 (not shown) the latter is
the most extreme event, just above the 99th percentile.
Unlike predictive distributions for foreign exchange returns, bond return predictive dis-

tributions are centered about a positive return, and this is perhaps most clearly evident
in Figure 20 by comparing the 5th and 95th percentiles of the distributions (the circles).
There is little indication of skewness in the distributions. The predictive distributions re-
spond steadily to the events of the period, with the interquartile range for the next day�s
percent lot return increasing from 0.0599 on December 28 to 0.0821 on January 10 (a factor
of 1.37), after which it slowly decays in much the same fashion as did the dispersion for the
S&P 500 returns portrayed in Figure 18. The centered 90% interval increases from 0.1808
on December 28 to 0.3161 on January 10 (a factor of 1.75) indicating an increase in tail
thickness similar to that observed in Sections 4.1 and 4.2.
The response in 10-year maturity returns, Figure 21, was quite di¤erent. Percent log

returns in the four-day period January 2 through January 5 were 1.637, -1.917, 0.813 and
0.773. These are all large in magnitude by historical standards, but not extreme, and there
are several days in the 1250-day sample used in forming the predictive distributions with
larger absolute returns. The January 5 return is the second largest in the sample and the
January 6 return is the sixth smallest. Returns over the �ve-day period from December 29
through January 5 are unremarkable either historically or relative to this sample.
The predictive distributions for 10-year maturity returns displayed in Figure 21 are

consistent with this history. The positive return on January 2 is above the 99th percentile
(panel (b)), congruent with the history of returns. Returns over longer periods are nearly
all within the centered 90% range of the predictive distribution, also consistent with history.
These features are, again, consistent with the evidence that the model is well calibrated,
discussed in Section 3.3.
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5 Conclusions and future research

This study leads to a number of substantive conclusions about the modeling of asset returns
with HMNM models, and some likely avenues for improving these models. It also illustrates
some important implications of the BMCMC approach to inference for applied econometrics.

5.1 Substantive conclusions

Model comparison. For the four asset return series studied the HMNM model is strongly
competitive with the most widely used tightly parameterized alternatives. These compar-
isons are based on the log predictive likelihoods of the models,

PT2
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log p (yot j �t�1), where
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)
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provides the geometric mean of the proportionate increase in the conditional probability
density of the next day�s asset return evaluated using model and sampling convention A,
relative to the conditional probability density of the next day�s asset return evaluated using
model and sampling conventionB. For example, the value 0.01 would indicate that typically
model and sampling convention A produce a conditional probability density that is 1%
higher, when evaluated at the realized return yot , than does model and sampling convention
B.
Take as the benchmark model B the normal GARCH(1,1) model with building samples,

perhaps the single most widely used model of asset returns. Then this exercise produces
the comparison of models exhibited in Table 14. In every case, t-GARCH models perform
better than SV models, which in turn outperform GARCH and EGARCH models. The
performance of the best HMNM model is tabulated in each case, but from Table 8 it is clear
that in every case there is a fairly wide range of HMNM models with characteristics similar
to the one selected for the table. For the S&P 500 and dollar - pound exchange returns the
best HMNM model with building samples improves very substantially on t-GARCH, more
than doubling the improvement of t-GARCH over GARCH in both cases. In the case of
bond returns the HMNM model performance is similar to t-GARCH, being slightly better
for one-year maturity bonds; for ten-year maturity bonds di¤erences are within simulation
approximation error. Results reported in Durham (2006, 2007) for S&P 500 returns indicate
that were this comparison extended to include the most popular a¢ ne and SV models, their
predictive likelihoods would also fall short of those of HMNM models.
Stability. Both absolutely and relative to its competitors, the HMNM model is stable

despite the very di¤erent characteristics in di¤erent time period for the same return series
documented in Tables 1 and 2. The strongest evidence for stability is in Table 14, which
shows that the HMNMmodels with building samples have higher predictive likelihoods than
those with rolling samples for all four return series. For a stable model this should always
be the case, simply because larger samples have more information. For a model that is
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misspeci�ed, the pseudo-true parameter vector (Gourieroux et al. (1984) or Geweke (2005)
Section 3.4) may vary from one time period to the next, leading to improved predictive
performance with rolling samples. By contrast the record for the competing models studied
is mixed, performance being better with building samples for some return series and with
rolling samples for others. The prior and posterior predictive evidence, presented in Figure
3 and Figures 12 through 15 support this conclusion: the changes in characteristics of asset
return series from one period to the next are consistent with the dynamics of the HMNM
model. Moreover, even the unprecedented S&P 500 returns of October, 1987, appear not
to a¤ect the posterior distribution much as this period of great volatility leaves a 1250-day
rolling sample. Against this evidence, predictive distributions using rolling samples appear
to be better calibrated than those based on building samples. This is true for all four return
series, and we do not understand the apparent discrepancy.
Practicality. The computational requirements of the HMNM model are greater than

those of ARCH models with inference by maximum likelihood. They are similar to those
of SV models and well within the reach of home desktop computers, to say nothing of the
computing resources available to central banks and investment banks.
Distribution calibration. The HMNM model is quite �exible in its ability to describe

faithfully the unconditional distributions of asset returns. This would be expected, given
that the models used amount to a mixture of 16 normal distributions (when m1 = m2 =
4) or 25 normal distributions (when m1 = m2 = 5). This conclusion is supported by
the evidence in the prior and posterior predictive distributions for skewness and kurtosis
coe¢ cients for both one- and ten-day returns. Conditional distributions over short horizons
are also well calibrated. This conclusion is supported by the evidence from the out-of-
sample predictive exercises reported in Section 3.3, which �nd no systematic departure
from a uniform distribution on the unit interval for one-step-ahead predictive distributions
evaluated at realized returns, and modest departures from this distribution for returns over
horizons of several days.
Dynamic calibration. With respect to dynamics, the HMNM model is less well cali-

brated. The theoretical results in Section 2.2 document restrictions the model places on
dynamics. Subsequent evidence from the return series suggests these limitations may, in-
deed, compromise the conditional predictive distributions that are central to the application
of models of asset returns. The out-of-sample validation study in Section 3.3 found pos-
itive autocorrelation in the one-step-ahead predictive c.d.f.s evaluated at realized returns.
Consistent, but much more suggestive, evidence emerged in the study of predictive distrib-
utions in Section 4, in particular the persistence over many weeks of extremely large tails in
predictive distributions of the S&P 500 returns following the market crash of October, 1987
(Section 4.1), and the apparent failure to accommodate strong positive or negative returns
persisting over several days in conjunction with a major currency realignment (Section 4.2).
Model shortcomings. The prior predictive analyses in Section 2.3 and posterior predictive

analyses in Section 3.4 identi�ed three likely speci�c de�ciencies in model dynamics, All are
important aspects of asset return dynamics, and in each case the problems arise mainly in
the S&P 500 return series.

� The leverage e¤ect, a negative sample correlation between one day�s return yt and the
next day�s absolute return jyt+1j, is below -0.1 in three of the seven periods of S&P
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500 returns studied. These sample correlations are roughly in the left 3% tail of the
prior predictive distribution and well into the left 1% tail of the posterior predictive
distributions.

� Long-memory models applied to absolute returns often suggested evidence of persis-
tence incompatible with the geometric decay in the HMNM model documented in
Section 2.2. For �ve-year periods this emerges as a di¢ culty for the HMNM model
when the GPH estimate bd, exceeds about 0.75, as it does for S&P 500 returns in the
1971-1975 period; Table 1 in Granger and Ding (1996) indicates that bd is substantially
lower in earlier periods, back to 1928.

� The third de�ciency is that while the HMNM model limits autocorrelation in returns,
with the 99th percentile being about 0.20 for the �rst-order autocorrelation coe¢ cient
computed from �ve years of daily returns. Autocorrelation of this magnitude occurred
in S&P 500 returns in the 1970s and presents even greater di¢ culties in the posterior
predictive distribution than in the prior predictive.

Model improvement. These �ndings all suggest that further improvement in the HMNM
model may lie in increasing the �exibility of the model�s dynamics. Consistent with the
hierarchical structure of the model and its interpretation as an arti�cial neural network
with two hidden layers, an obvious generalization is to permit the latent states st2 of the
second layer to follow a �rst-order Markov model with transition probabilities speci�c to
the value of the corresponding latent state st1 of the �rst layer. This leads to a substantial
but reasonable increase in the number of parameters in the model, for example from 90 to
170 for m1 = m2 = 5.

5.2 BMCMC applied econometrics

Modeling. Posterior simulation methods in general, and BMCMC in particular, have been
critical in facilitating Bayesian analysis of models which previously were accessible only
using non-Bayesian methods. While this has surely advanced the state of the art in Bayesian
applied econometrics, we believe that a more signi�cant consequence of these methods can
be found in rethinking the entire econometric approach to a given applied problem bearing
in mind their capabilities. This article provides one such example. The tractability of
latent variable models and hierarchical parameter structures is well established in Bayesian
statistics. This article demonstrates that this approach can be used in real time to provide
a solution to an important practical problem that is superior to competing models and
methods.
We believe that returns to further investments in this approach are likely to be high,

both because the methods work and because they have been lightly explored relative to
existing alternatives, such as the tightly parameterized models that are widespread in applied
econometric studies of asset returns. A critical condition for successful outcomes is a good
understanding of the capabilities of BMCMC methods and familiarity with the wide array
of promising latent variable models, such as Markov mixtures and arti�cial neural networks.
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Prior predictive analysis. This approach emphasizes serious thinking about the proper-
ties of models and prior distributions. It also provides an important and much underappreci-
ated tool for this process, in the form of the prior predictive distribution. This distribution is
useful for several reasons. First, it is easy to construct �typically an order of magnitude (or
several) simpler than posterior simulators. Second, it can be used in conjunction with any
approach to inference, including non-Bayesian extremum estimators, and it is typically an
order of magnitude (or several) simpler than these procedures as well. Third, the prior pre-
dictive distribution enables the modeler to understand the properties of the model directly
in terms of observables, which seems to us to be the only way a model is ever understood.
Finally, the prior predictive distribution can be used to identify de�ciencies in a model, in
the form of observed data characteristics or observable stylized facts that turn out to be
points or regions at which the prior predictive density is very small, or even zero.
The latter use of the prior predictive density can streamline research. It enables the

applied econometrician to organize and construct a thorough speci�cation analysis of a
model before turning to inference, a reversal of the ordering that is more convenient, if indeed
not required, using other inference methods. The hard work of formal inference begins only
when the prior predictive analysis indicates it is su¢ ciently promising to be worth the e¤ort.
It should be self-evident that prior predictive distributions are not substitutes for posterior
distributions, as comparisons of the posterior and prior predictive distributions in this study
make clear. The HMNM model based on prior rather than posterior distributions would
fare poorly in the competition whose outcome is displayed in Table 14.
Model validation. Without knowing whether the �nding will generalize, we �nd it

noteworthy that the prior and posterior predictive distributions provided similar information
about model limitations in this study. One of us (Geweke (2007b)) has pointed out elsewhere
that the posterior predictive distribution does not have a true Bayesian interpretation �in
short, because it conditions on that which it is �predicting��whereas the prior predictive
distribution is not subject to this problem. Geweke (2007b) conjectured that de�ciencies
revealed post-inference, as in the posterior predictive distribution, would also emerge in the
prior predictive distribution, and demonstrated this feature in an illustrative simple example.
That this conjecture is con�rmed in this study suggests that the Bayesian approach to model
evaluation in Geweke (2007b) based on prior predictive distributions may, in fact, be useful
in competitive research models.
Model comparison. The predictive likelihood is a compelling measure of model perfor-

mance. We have given it a fully Bayesian expression here, for example in (36). But we have
used it to compare models for which only maximum likelihood estimates are available as
was the case for all of the ARCH models in this study. The important criterion is which
method of inference will be used in forming predictive distributions �if it is maximum like-
lihood, then this is the appropriate method of comparison, and if it is Bayesian then the full
posterior predictive distribution should be used, as was the case for the SV models in this
study. Systematic reporting of predictive likelihoods for benchmark asset return series and
time intervals would do much to advance communication among applied econometricians
and the state of the art generally.
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Table 1: Functions of the observed return series
Return moments Return dynamics

(1) (2) (3) (4) (5) (6) (7) (8)
Skew y1 Kurt y1 Skew y10 Kurt y10 b�1 y1 b�1 y10 b�1 y5 P200

i=1 jb�ij y1
S&P 500 returns
71-75 0.244 1.739 -0.053 0.974 0.266 0.068 0.191 5.573
76-80 -0.002 1.289 -0.397 0.730 0.143 -0.049 -0.347 4.363
81-85 0.403 1.747 0.602 1.950 0.086 -0.064 -0.222 4.800
86-90 -4.859 84.693 -3.028 21.600 0.036 -0.034 -0.203 4.438
91-95 0.048 2.697 0.529 2.496 0.017 -0.033 -0.064 4.834
96-00 -0.340 3.547 -0.283 0.589 0.000 -0.137 -0.286 4.695
01-05 0.166 2.388 -0.488 3.165 -0.034 0.091 -0.035 4.839
Dollar-pound returns
72-76 1.042 10.064 0.671 2.096 0.053 0.164 0.057 4.126
77-81 0.523 6.279 0.364 0.724 0.031 0.016 0.120 4.498
82-86 -0.490 3.403 -1.053 3.026 0.074 -0.082 0.246 4.933
87-91 0.246 1.776 0.326 -0.007 0.092 0.128 0.117 4.522
92-96 0.504 3.090 2.165 10.505 0.043 0.137 -0.001 5.104
One-year bonds
90-94 -0.054 10.142 -0.154 0.156 0.096 0.222 0.158 5.443
95-99 0.490 6.091 -0.022 0.907 0.091 0.112 0.137 4.443
00-04 0.663 8.526 0.665 3.335 0.052 0.002 0.237 4.994
Ten-year bonds
90-94 0.052 0.080 0.170 4.455 0.052 0.080 0.170 4.455
95-99 0.080 0.010 0.214 4.075 0.080 0.010 0.214 4.075
00-04 0.036 -0.058 -0.251 4.844 0.036 -0.058 -0.251 4.844
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Table 2: Functions of the observed return series
Absolute return short-run dynamics Absolute return long-run dynamics jy1j
(1) (2) (3) (4) (5) (6) (7) (8)b�1 jy1j b�9 jy1j var(y10)

var(y1)
Leverage GPH bd P200

i=1 jb�ij P100
i=1jb�ijP200
i=1jb�ij

P200
i=1 b�iP200
i=1jb�ij

S&P 500 returns
71-75 0.215 0.222 13.296 -0.037 0.838 24.950 0.596 1.000
76-80 0.095 0.123 12.444 -0.011 0.670 7.697 0.628 0.884
81-85 0.025 0.071 11.435 0.015 0.417 7.339 0.699 0.821
86-90 0.242 0.141 8.911 -0.137 0.331 6.924 0.770 0.769
91-95 0.031 0.057 8.812 -0.053 0.542 6.846 0.614 0.893
96-00 0.111 0.081 7.640 -0.130 0.452 7.092 0.639 0.869
01-05 0.184 0.203 8.821 -0.114 0.475 23.185 0.655 1.000
Dollar-pound returns
72-76 0.313 0.091 12.389 0.107 0.353 7.188 0.668 0.636
77-81 0.236 0.181 10.514 0.065 0.534 16.676 0.765 0.990
82-86 0.121 0.094 11.698 0.007 0.611 11.325 0.719 0.938
87-91 0.100 0.075 11.169 0.072 0.244 4.949 0.592 0.011
92-96 0.219 0.184 11.826 0.080 0.400 18.586 0.637 1.000
One-year bonds
90-94 0.109 0.009 13.785 -0.095 0.188 4.290 0.533 0.309
95-99 0.096 0.038 10.536 0.054 0.295 5.305 0.623 0.417
00-04 0.109 0.151 10.031 0.013 0.203 8.778 0.638 0.926
Ten-year bonds
90-94 0.018 0.044 8.660 -0.026 0.445 5.198 0.571 0.243
95-99 0.013 0.026 9.540 -0.046 0.317 4.430 0.509 0.238
00-04 0.017 0.103 10.033 -0.056 0.320 5.492 0.600 0.505

Table 3: Values of prior distribution hyperparameters
Model parameters Corresponding prior hyperparameters

� � = 0, H� = 100
P p

0
= 10 , p

1
= 0:1

R r = 1
h s2 = 0:001, � = 2
hi �1 = 0:5
hij �2 = 0:5e� h� = 1e j h = 1
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Table 4: Prior predictive c.d.f. at observed values, HMNM model, m1=m2=4
Return moments Return dynamics

(1) (2) (3) (4) (5) (6) (7) (8)
Skew y1 Kurt y1 Skew y10 Kurt y10 b�1 y1 b�1 y10 b�1 y50 P200

i=1 jb�ij y
S&P 500 returns
71-75 0.640 0.067 0.451 0.271 0.995 0.751 0.866 0.937
76-80 0.494 0.046 0.254 0.232 0.979 0.348 0.066 0.596
81-85 0.702 0.067 0.795 0.384 0.949 0.295 0.178 0.833
86-90 0.071 0.777 0.072 0.807 0.822 0.396 0.202 0.651
91-95 0.529 0.110 0.778 0.427 0.695 0.401 0.433 0.843
96-00 0.320 0.148 0.299 0.204 0.500 0.136 0.108 0.798
01-05 0.600 0.097 0.228 0.473 0.194 0.803 0.508 0.845
Dollar-pound returns
72-76 0.806 0.351 0.809 0.397 0.908 0.725 0.926 0.967
77-81 0.728 0.252 0.729 0.231 0.844 0.871 0.688 0.922
82-86 0.276 0.142 0.153 0.464 0.688 0.733 0.880 0.587
87-91 0.641 0.068 0.711 0.055 0.645 0.688 0.818 0.934
92-96 0.724 0.127 0.911 0.689 0.825 0.875 0.892 0.945
One-year bonds
90-94 0.460 0.353 0.377 0.094 0.959 0.948 0.830 0.928
95-99 0.722 0.245 0.475 0.261 0.954 0.844 0.806 0.654
00-04 0.756 0.314 0.807 0.483 0.887 0.534 0.902 0.877
Ten-year bonds
90-94 0.344 0.114 0.322 0.057 0.888 0.778 0.843 0.664
95-99 0.308 0.083 0.353 0.012 0.943 0.566 0.886 0.364
00-04 0.290 0.036 0.175 0.254 0.821 0.316 0.143 0.846
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Table 5: Prior predictive c.d.f. at observed values, HMNM model, m1=m2=4
Absolute return short-run dynamics Absolute return long-run dynamics jy1j
(1) (2) (3) (4) (5) (6) (7) (8)b�1 jy1j b�9 jy1j var(y10)

var(y1)
Leverage GPH bd P200

i=1 jb�ij P100
i=1jb�ijP200
i=1jb�ij

P200
i=1 b�iP200
i=1jb�ij

S&P 500 returns
71-75 0.821 0.910 0.954 0.169 0.987 0.975 0.592 0.048*
76-80 0.635 0.789 0.929 0.355 0.951 0.791 0.662 0.902
81-85 0.398 0.678 0.853 0.668 0.781 0.777 0.787 0.881
86-90 0.851 0.820 0.233 0.023 0.704 0.758 0.878 0.863
91-95 0.427 0.634 0.214 0.107 0.884 0.754 0.632 0.905
96-00 0.667 0.702 0.080 0.025 0.816 0.766 0.684 0.896
01-05 0.785 0.894 0.215 0.032 0.833 0.969 0.714 0.048*
Dollar-pound returns
72-76 0.908 0.725 0.926 0.967 0.727 0.771 0.736 0.817
77-81 0.844 0.871 0.688 0.922 0.879 0.936 0.872 0.957
82-86 0.688 0.733 0.880 0.587 0.922 0.878 0.814 0.924
87-91 0.645 0.688 0.818 0.934 0.612 0.607 0.582 0.360
92-96 0.825 0.875 0.892 0.945 0.769 0.948 0.681 0.048*
One-year bonds
90-94 0.663 0.363 0.963 0.042 0.539 0.340 0.362 0.645
95-99 0.636 0.552 0.694 0.895 0.668 0.653 0.650 0.707
00-04 0.661 0.835 0.554 0.652 0.557 0.826 0.683 0.920
Ten-year bonds
90-94 0.360 0.582 0.187 0.232 0.809 0.642 0.527 0.603
95-99 0.326 0.485 0.399 0.129 0.693 0.426 0.211 0.599
00-04 0.348 0.750 0.554 0.099 0.695 0.669 0.600 0.757
�Observed value is at the mass point 1.0, with indicated probability.

Table 6: Total execution time per iteration and allocation by parameter group
T = 1250 1250 5000 5000

m1 = m2 = 4 6 4 6
Total time (secs.) 3:05� 10�3 6:68� 10�3 12:0� 10�3 26:6� 10�3

s1 60.5% 53.6% 65.1% 60.5%
s2 7.6% 4.0% 7.8% 3.8%

h;h;H 0.9% 0.9% 0.8% 0.4%
P 7.7% 8.1% 4.4% 3.8%
R 1.9% 1.1% 0.9% 0.6%

�, �,  21.3% 32.4% 21.1% 31.0%
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Table 7: Distribution of RNE over 7,323 posterior distributions
Quantile

Model 0.10 0.50 0.90
m1 = m2 = 2 .172 .450 .859
m1 = m2 = 3 .118 .328 .632
m1 = m2 = 4 .126 .314 .606
m1 = m2 = 5 .133 .333 .626

Table 8: Log predictive likelihoods
S&P 500 Dollar-pound One-year bonds Ten-year bonds

(1) (2) (3) (4) (5) (6) (7) (8)
Rolling Building Rolling Building Rolling Building Rolling Building

Gaussian i.i.d. -10570.8 -10477.0 -5370.4 -5570.8 5799.7 5868.8 -2891.2 -2872.8
GARCH -9574.4 -9523.0 -5097.7 -5133.8 6032.4 6054.5 -2789.2 -2780.2
EGARCH -9549.4 -9476.9 -5046.1 -5061.9 6025.1 6056.1 -2801.0 -2796.6
t-GARCH -9317.5 -9327.3 -4576.7 -4675.3 6314.3 6319.0 -2721.3 -2716.8
Stochastic vol. -9462.2 -9382.8 -4650.3 -4965.9 6256.3 6283.4 -2749.3 -2770.9
HMNM , serial correlation
m1 = m2 = 3 -9335.5 -9185.9 -4379.4 -4246.5 6315.8 6305.2 -2734.3 -2721.9
m1 = m2 = 4 -9323.7 -9113.1 -4330.0 -4256.5 6322.2 6317.6 -2733.5 -2722.8
m1 = m2 = 5 -9332.8 -9094.3 -4298.9 -4043.5 6323.9 6320.4 -2736.2 -2725.0
m1 = m2 = 6 -9346.4 -9123.6 -4323.4 -4043.2 6322.3 6320.6 -2738.9 -2725.6
HMNM , no serial correlation
m1 = m2 = 3 -9335.4 -9295.3 -4361.4 -4288.5 6318.0 6319.0 -2731.8 -2722.2
m1 = m2 = 4 -9327.4 -9229.8 -4287.7 -4164.6 6319.4 6324.9 -2732.4 -2722.8
m1 = m2 = 5 -9334.4 -4273.8 -4059.3 6319.5 6325.2 -2733.5 -2722.5
m1 = m2 = 6 -9352.2 -4282.0 -4027.2 6317.9 6325.5 -2739.0 �2725.6
MNM , serial correlation
m1 = m2 = 3 -9398.5 -9482.9 -4692.4 -4793.7 6249.0 6250.5 -2752.5 -2743.2
m1 = m2 = 4 -9372.6 -4614.3 -4696.8 6284.6 6290.2 -2748.9 -2732.0
m1 = m2 = 5 -9369.5 -4517.4 -4419.8 6291.0 6301.2 -2747.6 -2725.7
m1 = m2 = 6 -9372.8 -4533.3 -4425.6 6298.8 6306.5 -2745.6 -2727.3
MNM , no serial correlation
m1 = m2 = 3 -9398.7 -4697.9 -4788.8 6254.5 6270.3 -2752.1 -2746.6
m1 = m2 = 4 -9371.1 -4611.0 -4695.9 6295.3 6311.6 -2749.8 -2728.4
m1 = m2 = 5 -9365.3 -4518.6 -4416.6 6298.2 6317.5 -2747.8 -2726.9
m1 = m2 = 6 -9365.0 -4513.2 6301.3 6318.0 -2748.3 -2725.1
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Table 9: Some further comparisons with stochastic volatility models
Model Sample 6/25/80-9/20/02 1/2/80-12/13/99

Durham SV mixture All -7258.07 -6269.21
HMNM, m1 = m2 = 4 Rolling -7335.66 -6232.90
HMNM, m1 = m2 = 4 Building -7188.41 -6195.24
HMNM, m1 = m2 = 5 Rolling -7342.17 -6330.71
HMNM, m1 = m2 = 5 Building -7150.75 -6157.05

Table 10: Out of sample predictive calibration
Series S&P 500 Dollar - Pound
Model HMNM (m1 = m2 = 4) HMNM* (m1 = m2 = 5)
Samples Rolling Building Rolling Building
Returns 1-day 10-day 1-day 10-day 1-day 10-day 1-day 10-day

(1) (2) (3) (4) (5) (6) (7) (8)
Mean -0.0030 -0.1327 0.0126 0.0337 -0.0039 0.0028 -0.0121 -0.0231

Variance 0.9775 0.9650 1.0125 0.9754 1.0092 1.0864* 1.0667* 1.1919*
Skewness -0.0471 0.2159* 0.1620 0.2308* -0.0478 -0.2321* -0.2026 -0.2480*

Ex. Kurtosis -0.0752 -0.1631* -0.1364* -0.2262* 0.0254 0.0868 0.0216 0.1154*b�1 0.0642* 0.0523* 0.0630* 0.0581*
Decile 1 0.0994 0.0963 0.0987 0.0941 0.1006 0.1142 0.1102 0.1300
Decile 2 0.0995 0.0993 0.0918 0.0928 0.1030 0.0973 0.1057 0.1026
Decile 3 0.0987 0.0949 0.0903 0.0871 0.1044 0.0933 0.1068 0.0977
Decile 4 0.0978 0.0976 0.1051 0.0915 0.1006 0.0990 0.0984 0.0986
Decile 5 0.1017 0.1002 0.0974 0.0972 0.0930 0.1062 0.0836 0.0957
Decile 6 0.0998 0.1062 0.1040 0.1025 0.0924 0.0977 0.0837 0.0870
Decile 7 0.1036 0.1102 0.1099 0.1174 0.1031 0.0895 0.1028 0.0785
Decile 8 0.1006 0.1120 0.1025 0.1147 0.1017 0.0901 0.0997 0.0883
Decile 9 0.1017 0.0990 0.0976 0.1125 0.1015 0.0950 0.1053 0.0955
Decile 10 0.0971 0.0844 0.1027 0.0901 0.0997 0.1176 0.1039 0.1262

Decile range 0.0065 0.0276 0.0196 0.0303 0.0114 0.0275 0.0266 0.0515
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Table 11: Out of sample predictive calibration
Series One-year bonds Ten-year bonds
Model HMNM*(m1 = m2 = 5 ) HMNM(m1 = m2 = 3)
Samples Rolling Building Rolling Building
Returns 1-day 10-day 1-day 10-day 1-day 10-day 1-day 10-day

(1) (2) (3) (4) (5) (6) (7) (8)
Mean -0.0177 -0.0458 -0.0205 -0.0496 -0.0026 -0.0181 -0.0052 -0.0308

Variance -.9551 0.8581* 0.9554 0.7721* 0.9560 0.9139* -.9716 0.9199
Skewness 0.0218 0.0351 -0.0945 0.3657* 0.0087 -0.1294 -0.1850 -0.1831

Ex. Kurtosis 0.0159 0.0270 0.0245 0.1017 -0.0721 -0.2612* -0.0804 -0.2471*b�1 0.0395 0.0036 0.0498 0.0494
Decile 1 0.0904 0.0990 0.0956 0.0813 0.0958 0.1015 0.0987 0.1069
Decile 2 0.1095 0.1049 0.1075 0.1101 0.0958 0.1027 0.1035 0.0987
Decile 3 0.1081 0.0964 0.1067 0.0973 0.1067 0.0907 0.1032 0.0930
Decile 4 0.1024 0.0956 0.1089 0.1067 0.0970 0.0870 0.0956 0.0890
Decile 5 0.1004 0.1141 0.0987 0.1186 0.1015 0.0970 0.0976 0.0953
Decile 6 0.1001 0.1081 0.0953 0.1183 0.1055 0.1104 0.0973 0.1072
Decile 7 0.0990 0.1069 0.0936 0.1143 0.0927 0.1106 0.0933 0.1155
Decile 8 0.1018 0.1163 0.1013 0.1129 0.1112 0.1041 0.1061 0.1024
Decile 9 0.0950 0.0913 0.0961 0.0850 0.0998 0.1254 0.1069 0.1172
Decile 10 0.0933 0.0674 0.0964 0.0555 0.0939 0.0705 0.0978 0.0748

Decile range 0.0191 0.0467 0.0153 0.0631 0.0173 0.0549 0.0136 0.0424
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Table 12: Posteror predictive c.d.f. at observed vlaues
Return moments Return dynamics

(1) (2) (3) (4) (5) (6) (7) (8)
Skew y1 Kurt y1 Skew y10 Kurt y10 b�1 y1 b�1 y10 b�1 y50 P200

i=1 jb�ij y
S&P 500 returns (HMNM (m1 = m2 = 4))
71-75 0.713 0.211 0.473 0.331 1.000 0.747 0.855 0.974
76-80 0.467 0.122 0.219 0.252 0.999 0.344 0.057 0.300
81-85 0.799 0.212 0.882 0.555 0.985 0.291 0.174 0.711
86-90 0.025 0.947 0.015 0.972 0.834 0.394 0.199 0.711
91-95 0.531 0.382 0.863 0.645 0.676 0.402 0.439 0.735
96-00 0.199 0.484 0.279 0.204 0.496 0.109 0.103 0.625
01-05 0.655 0.332 0.180 0.718 0.177 0.808 0.497 0.737
Dollar-pound returns (HMNM* (m1 = m2 = 5))
72-76 0.881 0.703 0.864 0.623 0.896 0.929 0.692 0.216
77-81 0.827 0.657 0.776 0.301 0.786 0.579 0.798 0.595
82-86 0.152 0.534 0.091 0.701 0.944 0.240 0.929 0.882
87-91 0.696 0.245 0.757 0.032 0.965 0.882 0.795 0.618
92-96 0.823 0.499 0.937 0.824 0.856 0.895 0.581 0.929
One-year bonds (HMNM (m1 = m2 = 5))
90-94 0.385 0.796 0.236 0.121 0.943 0.911 0.682 0.981
95-99 0.789 0.569 0.360 0.519 0.929 0.643 0.648 0.416
00-04 0.850 0.733 0.903 0.925 0.697 0.263 0.796 0.890
Ten-year bonds (HMNM (m1 = m2 = 5))
90-94 0.350 0.726 0.268 0.131 0.948 0.790 0.832 0.579
95-99 0.196 0.526 0.330 0.017 0.989 0.537 0.879 0.146
00-04 0.143 0.090 0.034 0.713 0.866 0.268 0.132 0.910
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Table 13: Posterior predictive c.d.f. at observed values
Absolute return long-run dynamics jy1j

(1) (2) (3) (4) (5) (6) (7) (8)b�1 jy1j b�9 jy1j var(y10)
var(y1)

Leverage GPH bd P200
i=1 jb�ij P100

i=1jb�ijP200
i=1jb�ij

P200
i=1 b�iP200
i=1jb�ij

S&P 500 returns (HMNM (m1 = m2 = 4))
71-75 0.886 0.955 0.987 0.181 0.995 0.990 0.177 0.048*
76-80 0.307 0.589 0.961 0.404 0.923 0.401 0.280 0.642
81-85 0.047 0.268 0.873 0.676 0.389 0.360 0.581 0.559
86-90 0.942 0.694 0.201 0.002 0.202 0.314 0.849 0.499
91-95 0.060 0.191 0.177 0.098 0.710 0.305 0.232 0.654
96-00 0.387 0.323 0.022 0.002 0.478 0.322 0.328 0.620
01-05 0.779 0.919 0.179 0.005 0.539 0.983 0.396 0.048*
Dollar-pound returns (HMNM* (m1 = m2 = 5))
72-76 0.944 0.546 0.939 0.967 0.483 0.639 0.613 0.732
77-81 0.879 0.906 0.698 0.920 0.828 0.977 0.882 0.980
82-86 0.517 0.564 0.896 0.574 0.920 0.896 0.766 0.943
87-91 0.405 0.446 0.829 0.933 0.263 0.218 0.321 0.096
92-96 0.853 0.910 0.906 0.945 0.584 0.983 0.506 0.257*
One-year bonds (HMNM (m1 = m2 = 5))
90-94 0.815 0.166 0.895 0.006 0.239 0.106 0.202 0.402
95-99 0.728 0.400 0.230 0.930 0.459 0.492 0.684 0.508
00-04 0.810 0.985 0.133 0.643 0.263 0.914 0.745 0.929
Ten-year bonds (HMNM (m1 = m2 = 5))
90-94 0.232 0.555 0.104 0.225 0.847 0.566 0.516 0.409
95-99 0.190 0.366 0.341 0.086 0.568 0.207 0.122 0.404
00-04 0.216 0.919 0.525 0.050 0.577 0.648 0.663 0.666
�Observed value is at the mass point 1.0, with indicated probability.

Table 14: Geometric mean of predictive likelihoods relative to GARCH with building sam-
ples

GARCH EGARCH t-GARCH SV HMNM (best)
S&P500 returns Rolling -0.70% -0.36% 2.85% 0.83% 2.76%

Building 0.00% 0.63% 2.71% 1.93% 6.03%
Dollar-pound returns Rolling 0.66% 1.60% 11.06% 9.16% 11.68%

Building 0.00% 1.31% 8.67% 3.09% 22.21%
One-year bonds Rolling -0.63% -0.83% 7.67% 5.91% 7.96%

Building 0.00% 0.05% 7.81% 6.72% 8.01%
Ten-year bonds Rolling -0.25% -0.59% 1.69% 0.88% 1.39%

Building 0.00% -0.47% 1.81% 0.26% 1.67%

57



Figure 1: Prior predictive distribution of asset return characteristics, HMNM model, m1 =
m2 = 4, serial correlation permitted.
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Figure 2: Prior predictive distribution of asset return characteristics, HMNM model, m1 =
m2 = 4, serial correlation permitted.
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Figure 3: Prior predictive distribution of asset return characteristics in two successive �ve-
year time periods, HMNM model, m1 = m2 = 4, serial correlation permitted.
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Figure 4: Full-sample posterior predictive distributions of skewness (horizontal axis) and
excess kurtosis (vertical axis) in a �ve-year sample
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Figure 5: Full-sample posterior predictive distributions of levereage (horizontal axis) and
one-day absolute return long memory bd (vertical axis) in a �ve-year sample
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Figure 6: Full-sample posterior predictive distributions of one-day return autocorrelation b�1
(horizontal axis) and one-day absolute return long memory bd (vertical axis) in a �ve-year
sample
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Figure 7: Full-sample posterior predictive distributions of the sum of the �rst 200 autocor-
relations (horizontal axis) and the ratio of the sum to the �rst 200 absolute autocorrelations
(vertical axis), for one-day absolute returns
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Figure 8: Full-sample posterior predictive distributions of skewness of one-day returns (hor-
izontal axis) and skewness of ten-day returns (vertical axis) in a �ve-year sample
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Figure 9: Full-sample posterior predictive distributions of autocorrelation b�1 of one-day
returns (horizontal axis) and autocorrelation b�1 of nonoverlapping ten-day returns (vertical
axis) in a �ve-year sample
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Figure 10: Full-sample posterior predictive distributions of autocorrelation b�1 of one-day
returns (horizontal axis) and autocorrelation b�1 of one-day absolute returns (vertical axis)
in a �ve-year sample
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Figure 11: Full-sample posterior predictive distributions of autocorrelation b�1 of one-day ab-
solute returns (horizontal axis) and autocorrelation b�9 of one-day absolute returns (vertical
axis) in a �ve-year sample

68



Figure 12: Full-sample posterior predictive distributions of the excess kurtosis coe¢ cients
in two successive �ve-year samples of one-day returns
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Figure 13: Full-sample posterior predictive distributions of skewness coe¢ cients in two
successive �ve-year samples of ten-day returns
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Figure 14: Full-sample posterior predictive distributions of long memory bd in two successive
�ve-year samples
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Figure 15: Full-sample posterior predictive distributions of the sum of the �rst 200 auto-
correlation coe¢ cients of absolute one-day returns in two successive �ve-year samples
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Figure 16: Quantiles of the predictive distribution of the term structure of S&P 500 returns,
September 1992
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Figure 17: Quantiles of the predictive distribution of the term structure of S&P 500 returns,
October 1987
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Figure 18: Quantiles of the predictive distribution of the term structure of S&P 500 returns,
1987-1988
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Figure 19: Quantiles of the predictive distribution of the term structure of dollar-pound
returns, September 1992

76



Figure 20: Quantiles of the predictive distribution of the term structure of one-year maturity
bonds, December 2000 - January 2001
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Figure 21: Quantiles of the predictive distribution of the term structure of ten-year maturity
bonds, December 2000 - January 2001
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