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Abstract

Background: The assignment of a point-level geocode to subjects’ residences is an impor-

tant data assimilation component of many geographic public health studies. Often, these

assignments are made by a method known as automated geocoding, which attempts to match

each subject’s address to an address-ranged street segment georeferenced within a streetline

database and then interpolate the position of the address along that segment. Unfortunately,

this process results in positional errors. Our study sought to model the probability distri-

bution of positional errors associated with automated geocoding (both 100%-matched and

60%-matched) and E911 geocoding.

Results: Positional errors were determined for 1423 rural addresses in Carroll County, Iowa

as the vector difference between each 100%-matched automated geocode and its true location

as determined by orthophoto and parcel information. Errors were also determined for 1449

60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km) outliers occurred among

the 60%-matched geocoding errors; outliers occurred for the other two types of geocodes also

but were much smaller. E911 geocoding was more accurate (median error length = 44 m)

than 100%-matched automated geocoding (median error length = 168 m). The empirical

distributions of errors for all three geocodes exhibited a distinctive Greek-cross shape and

had many other interesting features that were not capable of being fitted adequately by

a single bivariate normal or t distribution. However, mixtures of t distributions with two

or three components were able to fit errors corresponding to the 100%-matched and E911

geocodes very well.

Conclusion: Mixtures of bivariate t distributions with few components appear to be flexi-

ble enough to fit many positional error datasets associated with geocoding, yet parsimonious

enough to be feasible for nascent applications of measurement-error methodology to spatial

epidemiology.



Key words: Geocode, Location uncertainty, Mixture distributions, Positional accuracy, Spa-

tial epidemiology.
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Background

It is becoming increasingly common in public health studies to use the spatial locations of

study participants in statistical analyses, for example to test for geographic clustering of

disease or to estimate relationships between environmental exposures and disease. Indeed,

statistical methods for spatial epidemiology are developing rapidly, and the growing list of

book-length treatments of the subject include [1-4]. In order to utilize subjects’ locations in a

spatial analysis, it is necessary, of course, to define and ascertain these locations. Historically,

the spatial location of a person has been defined as the person’s place of residence; however,

recognition of human mobility and the fact that many causative exposures occur outside

the home have generated recent attempts to expand this definition to daily activity spaces

and such constructs as time geography and pathogenic paths; for a brief review see [5].

Nevertheless, place of residence currently remains the typical representation of each subject’s

location in public health studies.

The spatial coordinates of a place of residence are usually not measured directly; rather,

the residential address is given a location reference, known as a geocode. The geocode may

be defined as the latitude and longitude coordinates or a point in some other coordinate

system, or as a statistical tabulation area such as a U.S. Census tract, block group, or block;

here, unless noted otherwise, we use the point rather than areal definition. Several distinct

methods for geocoding exist, including visiting the residence with global positioning system

(GPS) transmitters, identifying the residence on orthophoto maps based on aerial imagery,

and matching the address to a digital street map. The latter can be done in batch mode for

large numbers of addresses and when done this way is often called “automated geocoding.”

Recently, a new method of automated geocoding has been developed that matches an address

to parcel descriptions of legal property boundaries developed by assessors, but this method

has not yet been widely adopted. The U.S. Census Bureau is developing such a parcel-level

geocode for all U.S. addresses, but the public does not and will not have access to these

geocodes. Accordingly, automated geocoding here will refer to the widely used practice of
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using a geographic information system (GIS) to match an address to a street name and

address range in a digitized street reference map and then estimate, via interpolation, where

the address is located between the two points that define the limits of the address range.

Automated geocoding is cheaper, more convenient, and hence much more common than

non-automated methods, but considerably less accurate. Several investigations of the accu-

racy of automated geocoding have recently been published. Some of these have measured

accuracy by the proportion of addresses for which the geocode belongs to a correct statistical

tabulation area; for example, Yang et al. [6] and Kravets and Hadden [7] found that only

70% to 90% of their geocoded addresses were assigned to the correct census block. Other

investigations have measured accuracy by the Euclidean distance between the point location

ascertained by automated geocoding and the corresponding “true” location as determined

by a much more intensive and accurate method (e.g. GPS transmitters or aerial imagery)

[8-13]. These latter studies have shown that positional errors of several hundred meters are

incurred regularly by automated geocoding, and that even larger errors are not uncommon

in rural areas. In one of the most thorough studies of automated geocoding errors published

to date, Cayo and Talbot [14] found that 10% of a sample of rural addresses in a four-county

upstate New York study area geocoded with errors of more than 1.5 km, and 5% geocoded

with errors exceeding 2.8 km.

An alternative method of geocoding that may have promise for public health research is

E911 geocoding. E911 geocodes are usually obtained under the auspices of local governments

for the specific purpose of dispatching emergency vehicles to the correct location in response

to a 9-1-1 telephone call requesting assistance. The particular methods used to obtain

the geocodes vary, but they generally are more resource-intensive than mere automated

geocoding due to the life-and-death issues at stake. For example, some counties have used

parcel address-matching, while others have hired commercial firms that claim to take a GPS

measurement at or near each residence. Every year, more counties in the U.S. develop E911

geocodes, so it is possible that in the not-too-distant future, many health researchers will
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be able to use these geocodes in lieu of performing automated geocoding. Investigations

of the accuracy of E911 geocodes have not yet appeared in the scientific literature, though

commercial firms offering E911 geocoding services tout them, unsurprisingly, as much more

accurate than geocodes obtained via automated geocoding.

Whatever process is used to obtain geocodes of residences, the positional errors incurred

by that process introduce location uncertainties that may adversely affect spatial analytic

methods. Specific effects of positional errors on spatial statistical analyses include inflation

of standard errors of parameter estimates and a reduction in power to detect such spatial

features as clusters and trends [15-17]. Even relatively small positional errors can have a dis-

cernible impact on local statistics for detecting clustering or “hot spots” [18]. It is important,

therefore, for researchers to quantify these effects on their analyses, which in turn requires

them to have, or gain, some understanding of the probability distribution of the positional

errors. In fact, the adoption of an adequate model for the distribution of positional errors

is essential for successful implementation of existing measurement-error model methods for

spatial data analysis; see, e.g., [19-22]. Knowledge of the error distribution also facilitates

the use of multiple imputation methods for adjusting spatial statistical analyses for posi-

tional errors. These methods proceed by imputing (simulating) locations with error from

the distribution of an observed location given its corresponding true location, whereupon

inferences for the spatially-varying health outcome of interest can be made using the model

for that outcome given the true locations, but with each true location replaced by multiple

imputed realizations. Finally, gaining an understanding of typical geocoding error distribu-

tions allows for the simulation of realistic positional errors for power studies of various tests

for clusters, spatial trends, and other important spatial patterns and features.

The main purpose of this article is to formulate and fit useful models for the probability

distribution of positional errors incurred by geocoding residential addresses. In particular, we

will formulate models that are sufficiently flexible to allow for the representation of features

observed in empirical distributions of positional errors derived from a dataset of rural Iowa
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addresses, yet sufficiently simple that the aforementioned measurement-error and multiple

imputation methodologies could be successfully implemented using these models. Positional

errors corresponding to both automated geocoding and E911 geocoding will be considered.

Upon formulating a suitable model or class of models for the errors, we will demonstrate

how to fit those models to the data. Although the specific features seen in the distributions

of positional errors from this predominantly rural Iowa county will not occur in all datasets,

nor even in all error datasets derived from rural addresses, we believe that the methods we

use to formulate and fit the models are generalizable to a great many datasets of positional

errors incurred by geocoding.

In seeking useful models for a distribution of positional errors, one might first consider

a bivariate normal distribution or a uniform distribution on a “standard” two-dimensional

region (e.g. a circle or square). Indeed, normal and uniform distributions have been used

previously to study the effects of location errors on spatial analyses in general, and on

spatial prediction (kriging) and cluster detection in particular [23, 16, 19, 20]. However,

to the authors’ knowledge no empirical evidence has ever been presented to demonstrate

that these distributions adequately represent the probability distributions of positional errors

corresponding to geocoded residential addresses. In fact, these relatively simple distributions

will not be appropriate if, for instance, extremely large positional errors (outliers) occur more

often than would be expected for a bivariate normal or uniform distribution, or if errors tend

to cluster along more than one axial direction. We will show that outliers and “multi-axial

clustering” both occur for the positional errors in our geocoded data, and thus simple normal

or uniform distributions will not suffice. As alternatives, we will propose the use of finite

mixture distributions [24-26]. In a finite mixture distribution, each error can be regarded

as having arisen from a population G which is a mixture of a finite number, say g, of

subpopulations G1, . . . , Gg in some proportions p1, . . . , pg, respectively, where
∑g

i=1 pi = 1

and pi ≥ 0 (i = 1, . . . , g). The probability density function (pdf) of an arbitrary positional
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error, x, can then be represented in the finite mixture form,

f(x; φ) =
g∑

i=1

pifi(x; θ) (1)

where fi(x; θ) is the pdf corresponding to Gi; θ denotes the vector of all unknown parameters

associated with the parametric forms adopted for these g component pdfs; and φ = (p′, θ′)′

where p′ = (p1, . . . , pg). Furthermore, we focus on mixtures of bivariate normal and t

distributions, which are the most commonly used mixture models for bivariate observations

and are well-suited for observations contaminated by outliers and exhibiting multi-axial

clustering. The t mixtures are more robust than normal mixtures to contamination by

outliers, hence they generally yield more parsimonious models than normal mixtures for

data with outliers.

Methods

Data

The address data upon which this investigation is based consist of all 2516 rural residential

addresses in Carroll County, Iowa, USA, current as of 31 December 2005, which we obtained

in conjunction with a comprehensive study of rural health in Iowa by the Iowa Department

of Public Health and other researchers at the University of Iowa. A major objective of

the study was to investigate the possible existence of associations between various health

outcomes and exposure to environmental contaminants produced by concentrated animal

feeding operations. Hence the focus on rural addresses, which were defined as all residential

addresses that lie outside incorporated township boundaries.

For this investigation, an attempt was made to obtain a geocode of each rural address

using an automated method, an E911 method, and an orthophoto method, as described in

the next subsection. The orthophoto method is very accurate, hence the geocodes produced

by this method were taken as the truth. For each of the other two methods, the positional

error corresponding to a given address was determined as the vector difference of the ad-

dress’s geocode obtained by the method and that address’s orthophoto-derived geocode. For
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various reasons — most frequently the inability to determine which of several buildings in

the photograph was the residence — a completely reliable orthophoto-derived geocode could

not be ascertained for 162 of the addresses, so our analysis of positional errors is based on

the remaining 2354 addresses.

Geocoding

Every address was assigned an automated geocode, an E911 geocode, and an orthophoto-

derived geocode. We describe these geocoding processes in some detail below, as the details

will be seen to have a bearing on the nature of the positional errors incurred by each process.

Automated geocoding. Addresses were matched to the U.S. Census Bureau’s TIGER street

centerline file for Carroll County using the GIS package ArcGIS 9.1 [27]. The geocoding

process begins with automated parsing and standardization of the address list. Parsing

is the process of breaking the address records up into distinct address component fields

such as house number and street name, while standardization modifies these components,

if necessary, so that they adhere to a common United States Postal Service standard [28].

Next, an address-ranged street segment in the TIGER file is probabilistically matched to each

address on the basis of a “match score,” which measures how closely each candidate address-

ranged street segment in the TIGER file matches the address. Each field in the candidate

segment is compared with the corresponding field of the address record being matched. The

match score is a weighted composite score over all fields, scaled to lie between 0 to 100. For

this analysis the minimum match score was set at either 100% (perfect matching) or 60%.

Finally, the geocode is calculated by linearly interpolating the address number to a point on

the matched street segment between the two points that define the limits of that segment’s

address range. No offset from the street centerline was used in this calculation.

E911 geocoding. For emergency services dispatch purposes, geocodes of all addresses

in Carroll County are continually updated and maintained by the county government so

that a 911 telephone caller within the county requesting assistance may be quickly and

unambiguously located. The most suitable geocode for this purpose in rural areas was

7



deemed by county officials to be the coordinates of the location where emergency service

personnel would leave the public road and enter the private road leading to the property

from which the call was made. We obtained these geocodes directly from the GIS coordinator

of Carroll County, who was not able to say exactly how the contractor employed by Carroll

County obtained them.

Orthophoto-based geocoding. Using visual identification, the third author enhanced the

E911 geocode for each address to a location centered on the residence related to the address.

This task was accomplished with the aid of 24 inch/pixel grayscale orthophotos of the study

area we obtained from the Carroll County GIS Administrator and color infrared orthophotos

(with the same resolution) obtained from the Iowa Natural Resources Geographic Informa-

tion Systems Library (http://www.igsb.uiowa.edu/nrgislibx/). A GIS data layer indicating

the parcel to which a particular property belonged (and which is used by the county asses-

sor’s office for tax assessment) was overlaid upon the orthophoto and E911 address layers to

confirm that each geocode was assigned to the correct address.

Estimation of parameters

For each of the three sets of positional errors just described, we obtained likelihood-based

estimates of the parameters of normal mixtures and t mixtures for several values of g. For

the normal mixtures, we estimated parameters using the method described by Basford and

McLachlan [29], which is equivalent to applying the EM (expectation-maximization) algo-

rithm [30] to this problem. The ith component pdf of a normal mixture is of the form

fi(x; µi,Σi) = (2π)−1|Σi|
−1/2 exp{−

1

2
(x − µi)

′Σ−1

i (x − µi)}

where µi and Σi are the mean vector and covariance matrix, respectively, of the ith compo-

nent distribution. Thus, letting φ comprise p, µ1, . . . , µg, and Σ1, . . . ,Σg, we find that the

likelihood function corresponding to a random sample x1, . . . ,xn from G is proportional to

L(φ) =
n∏

j=1

g∑

i=1

pi|Σi|
−1/2 exp{−

1

2
(xj − µi)

′Σ−1

i (xj − µi)}.
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The likelihood equation,

∂ log L(φ)/∂φ = 0, (2)

is equivalent to the equations

p̂i =
n∑

j=1

ŵij/n, (3)

µ̂i =
n∑

j=1

ŵijxij/
n∑

j=1

ŵij, (4)

Σ̂i =
n∑

j=1

ŵij(xj − µ̂i)(xj − µ̂i)
′/

n∑

j=1

ŵij, (5)

for i = 1, . . . , g, where

ŵij =
p̂i|Σ̂i|

−1/2 exp{−1

2
(xj − µ̂i)

′Σ̂
−1

i (xj − µ̂i)}
∑g

t=1 p̂t|Σ̂t|−1/2 exp{−1

2
(xj − µ̂t)

′Σ̂
−1

t (xj − µ̂t)}
. (6)

The ŵij are weights such that ŵij is an estimate of the probability that observation j belongs

to component group i. Equations (3)-(6) can be solved iteratively upon first making an initial

assignment of observations to groups and supplying an initial estimate of φ to (6), and then

iterating until convergence. The resulting estimate of φ is a solution to (2) and is thus a local

maximum of L(φ). However, it is generally not a global maximum; in fact, (2) has multiple

roots, and L(φ) is unbounded so the maximum likelihood estimator of φ does not exist [31].

Nevertheless, for mixtures of univariate normals it is known that the sequence of roots of

(2) corresponding to the largest of the local maxima is consistent, asymptotically normal,

and efficient [32], and the same result is widely believed to hold for mixtures of bivariate

normals as well. We refer to the root corresponding to the largest of the local maxima as

the likelihood-based estimate. To increase the prospects of finding the largest of the local

maxima, it is recommended that the iterative solution process begin from several different

initial values. The jth observation may be given a final assignment to a group on the basis

of the maximum of the converged ŵij across i.

The normal mixture likelihood-based estimation method just described was carried out

for the Carroll County positional error data using the FORTRAN program EMMIX written

by D. Peel and G.J. McLachlan, which can be downloaded freely from
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http://www.maths.uq.edu.au∼gjm/emmix/EMMIX.f.

To obtain the initial classification of the data needed for starting the estimation algorithm,

the data were partitioned randomly into g groups 50 times, and the partition that produced

the highest likelihood was adopted as the initial classification. The proportion of observations

belonging to the ith group in this initial classification was taken as the initial estimate of pi,

and the sample mean vector and sample covariance matrix of the observations belonging to

the ith group were taken an initial estimates of µi and Σi, respectively.

For the t mixture models, we obtained likelihood-based estimates of parameters using the

ECM (expectation-conditional maximization) method described by McLachlan and Krishnan

[33]. The ith component pdf of a t mixture is of the form

fi(x; µi,Σi, νi) =
Γ(1 + νi

2
)|Σi|

−1/2

πνiΓ(νi/2){1 + (x − µi)
′Σ−1

i (x − µi)/νi}1+νi/2
(7)

where Γ(·) is the gamma function, and µi and Σi are the mean vector and covariance matrix,

respectively, and νi is the degrees of freedom parameter, of the ith component distribution.

The degrees of freedom may be viewed as a robustness (to outliers) tuning parameter: a

component t pdf with small ν has heavy tails, but as ν tends to infinity the tails become

lighter and the corresponding t component pdf tends to a normal pdf. The likelihood function

corresponding to a random sample x1, . . . ,xn from a g-component t mixture G is then given

by

L(φ) =
n∏

j=1

g∑

i=1

pifi(xj : µi,Σi, νi),

with fi(·) defined in (7) and with φ comprising p1, . . . , pg, µ1, . . . , µg, Σ1, . . . ,Σg, and

ν1, . . . , νg. Details of the implementation of the ECM estimation algorithm to t mixture

models are too lengthy to report here; however, they can be found in [34]. The algorithm

was implemented for the Carroll County positional error data using the same program that

was used to fit normal mixtures, viz. EMMIX, and the same random grouping scheme used

for normal mixtures was used to initially classify the data and obtain initial parameter

estimates.
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Choosing the number of components

In the previous subsection it was tacitly assumed that the number of components in the

mixture distribution was known. While this assumption is appropriate for some applications

of mixture models, for example when the subpopulations are males and females or a known

number of age classes, it is generally not appropriate for modeling positional errors incurred

by geocoding. Thus, the number of components in a mixture distribution for positional

errors must be determined using the data at hand. Several methods for accomplishing this

have been proposed, ranging from informal graphical techniques to more formal hypothesis

testing procedures. Here, we choose the number of components using the BIC (Bayesian

Information Criterion), a commonly-used model selection method less formal than hypothesis

testing but more formal than mere graphical analysis [35]. For a model with k parameters

to be estimated, BIC is given by

BIC = −2 log L(φ̂) + k log n

where L(φ̂) is the likelihood function for the n observations, evaluated at the likelihood-

based estimator φ̂. BIC combines a measure of badness-of-fit, −2 log L(φ̂), with a measure

of model complexity, k log n. When comparing two models, the model with the smaller BIC

is to be preferred, apart from any other considerations. In the present context, however,

we value model parsimony even more highly than usual because of the compelling need for

simplicity in measurement-error modeling approaches for handling location uncertainty in

spatial analyses. Therefore, although we will use BIC as a guide for model selection, we may

prefer a model with a slightly larger BIC than another if it has many fewer parameters.

Mixture modeling example

We provide the following example to illustrate the mixture model estimation and model

selection methodology. Two hundred observations were simulated from a bivariate normal

distribution with means µX = µY = 0 (for both variables), variances σ2
X = σ2

Y = 64, and

correlation coefficient ρ = 0; and another 200 observations were simulated from a bivariate
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normal distribution with means µX = µY = 10, variances σ2
X = σ2

Y = 400, and correlation

coefficient ρ = 0.75. Each group of observations and their superposition is displayed in

Figure 1 (upper panels and lower left panel). Normal mixture models with g = 1, 2, 3, 4, or 5

components were fit to these data using EMMIX. Values of BIC for these fitted models were

6469, 6387, 6408, 6420, and 6442, respectively. Thus, the two-component model fits best, as

was expected. For the two-component model, likelihood-based parameter estimates were as

follows:

First component: p̂1 = 0.53, µ̂X = 0.3, µ̂Y = −0.5, σ̂2
X = 55.7, σ̂2

Y = 60.3, ρ̂ = 0.01

Second component: p̂2 = 0.47, µ̂X = 10.9 , µ̂Y = 11.5, σ̂2
X = 446.8, σ̂2

Y = 367.9, ρ̂ = 0.75.

These estimates match the true parameter values very well. Finally, the fitted mixture model

was used to generate a new set of 400 observations, which are also displayed in Fig. 1 (lower

right panel). Upon comparing this display with that for the original set of observations, we

see that the fitted model generates data that closely resemble the original simulated data.

In this sense, then, the fitted model has excellent predictive power.

Results and Discussion

100%-matched automated geocoding errors

Of the 2354 rural addresses in Carroll County with orthophoto-derived geocodes, 1423

(60.5%) geocoded using the automated method with a 100%-match criterion. The posi-

tional errors (which are two-dimensional vectors) associated with these geocodes ranged in

length from a minimum of 3 m to a maximum of 2896 m, with a median of 168 m, and are

displayed as points in Figure 2. Interestingly, the errors tend to cluster along the N-S and

E-W axial directions in such a way that the overall shape of their distribution, apart from

a few outliers, resembles a Greek cross (Fig. 2, upper left panel). More errors lie near the

center of the cross than near its extremities. Moreover, there is a distinct shift in the mean

with respect to the origin along each axial direction: along the E-W axis many more errors

occur to the east of zero, while along the N-S axis many more errors occur to the south of
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zero. Close scrutiny also indicates the existence of two parallel “strands” of errors along

each axial direction, which straddle the axes and are likely due to relatively small offsets

of residences from street centerlines. Still more interesting features become apparent upon

plotting the errors for the 662 addresses on streets running mainly E-W separately from the

errors for the 761 addresses on streets running mainly N-S (Fig. 2, upper right and lower left

panels). This decomposition shows that while the errors near the cross’s center appear to

be relatively isotropic, i.e. occurring more or less equally often in all directions, those errors

away from the center tend to be aligned with the axial orientation of the street on which the

corresponding address lies.

Manual checking of the fifty largest errors revealed that many were attributable to street

segments in the TIGER/Line file that had correct street names but incorrect address ranges.

Others appeared to be attributable to interpolation errors or possibly house address number-

ing “errors” (i.e. deviations from the distance-from-intersection rule or some other rule that

was used when the houses were originally numbered). These database and procedural errors,

in combination with the high degree of rectilinearity of the rural road network in Carroll

County, produce the distinctive Greek-cross shape of the empirical distribution of positional

errors. Outliers from this overall shape appear to be due to either very large offsets (e.g.,

one house was nearly 800 m from its corresponding street centerline), incorrect TIGER/Line

file geometry, or both.

We do not have a ready explanation for the bias with respect to the origin exhibited by

the errors. However, the fact that the mean errors are shifted to the east along E-W streets

and south along N-S streets, in tandem with the fact that these directions of shift coincide

with the directions in which rural house numbers are ascending, suggest that the explanation

has something to do with a systematic interpolation or house numbering procedural error.

As a follow-up, we computed the mean error for each individual street and found that these

means were consistently, in fact invariably, to the east and south. Thus the bias is pervasive,

not limited to merely a few streets.
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Owing to the Greek-cross shape of the empirical distribution of the entire set of positional

errors, no single bivariate normal or t distribution will fit them well, nor for that matter will

any elliptical distribution (i.e. a distribution whose contours of equal probability are ellipses).

However, the decay in frequency of points with increasing distance from a central location

along each axis suggests that a mixture of two or more normal or t distributions, of which

at least one is aligned in approximately a N-S direction and at least one other is aligned in

approximately an E-W direction, might provide an adequate fit. Consequently, normal and

t mixtures with various numbers of components were fit to the errors. Values of BIC for each

mixture model are given in Table 1a. The results indicate that a three-component mixture

fits much better than a two-component mixture, but increasing the number of components

beyond three results in marginal improvement in fit. The results also show the t mixture

model to be superior to the normal mixture model. In light of these results and taking

into account the premium on simplicity in measurement-error models, we would select the

three-component t model for these errors.

Likelihood-based estimates of the mean vector and covariance matrix for the three-

component t model are given in Table 2a, and Figure 3 depicts 1423 simulated observations

from the fitted model. (The number of simulated observations was chosen to match the

number of real observations so that plots would be directly comparable.) Upon comparing

the lower right panel of Fig. 3 with the upper left panel of Fig. 2, we see that the fitted

model reproduces the large-scale features of the positional errors quite well. Furthermore,

the parameter estimates and component plots indicate that: (1) the largest component group

consists of errors which are mostly “small” (less than 100 m), relatively isotropic, and cen-

tered at the origin, but heavy-tailed (ν = 1.6) and thus including some outliers; (2) the

other two component groups, comprising relative proportions roughly equivalent to the rel-

ative numbers of addresses on N-S and E-W streets, respectively, include many errors of

intermediate to relatively large size (> 500 m), which are aligned in the N-S and E-W axial

directions, respectively, but are lighter-tailed (ν = 6.5 and ν = 19.6) than the first com-
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ponent and hence relatively devoid of outliers; and (3) the means of the second and third

components are several hundred meters to the east and south, respectively, of the origin,

which is consistent with the systematic bias in these directions noted previously.

The lower right panel of Fig. 2 displays the “aligned errors,” i.e. the errors relative to

the axial orientation of the street segment on which the corresponding address lies. Equiva-

lently, the aligned errors are a superposition of the points in the upper right panel and those

resulting from a 90-degree counterclockwise rotation of the lower left panel of Fig. 2. Normal

and t mixtures were also fitted to the aligned errors. Values of BIC and likelihood-based

parameter estimates are given in Tables 1b and 2b, respectively. The results suggest that

a two-component t mixture fits adequately well; that the first component of this mixture is

essentially the same as the first component of the three-component t mixture for the original

errors; and that the second component is essentially the combination of the third component

and rotated second component of the three-component t mixture for the original errors. In

fact, BIC for the two-component t mixture for the aligned errors is substantially smaller

than BIC for the three-component t mixture for the original errors (Table 1), which indi-

cates that accounting for the orientation of the street on which an address lies results in a

more parsimonious model with no reduction in model adequacy.

60%-matched automated geocoding errors

Of the 2354 rural addresses in Carroll County with orthophoto-derived geocodes, 1449

(61.6%) geocoded using the automated method with a 60%-match criterion. Note that

only 26 more addresses geocoded using this criterion than geocoded using a 100%-match cri-

terion. Figure 4 displays the corresponding positional errors, which range in length from 3

m to 15748 m, with a median of 168 m. The major difference between these errors and those

of the 100%-matched data considered previously is the presence of eight extremely large

errors, or outliers. The outliers are relatively gregarious, i.e. they tend to occur in clusters.

A closer look at the addresses corresponding to the outliers revealed that the extremely large

positional errors were due to errors in the TIGER street centerline file such as an incorrect
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zip code, an address range for a street segment that fails to contain the house number, or a

missing street segment. As a consequence of the automated geocoding software’s matching

algorithm, these errors tended to result in geocodes corresponding to an address with the

same house number but lying on a street segment with a different but similar “name,” e.g.

“120th St” rather than “210th St,” or “20th St” rather than “260th St.”

Rare, gregarious outliers such as those existing among these data present a severe challenge

to any modeling enterprise, including the mixture modeling approach. Consequently, for

our purposes here we set these outliers aside and fitted normal and t mixture models to the

remaining 1441 60%-matched observations. As with the the 100%-matched data, models were

fitted to the original errors and to the errors relative to the alignment of the corresponding

street segment. Owing to the very high proportion of observations that the 100%-matched

and 60%-matched data have in common, the results of these fits were very similar to those

for the 100%-matched data, indeed so much so that we do not display the results.

E911 geocoding errors

The positional errors corresponding to the 2354 E911 geocodes (Fig. 5) ranged in length from

2 m to 974 m, with a median of 44 m. Thus, these errors tend to be considerably smaller

than their automated geocoding counterparts. The upper left panel of Fig. 5 shows the errors

to be arrayed in a Greek cross-like configuration that appears even more pronounced than

was the case for the automated geocoding errors, so likewise a single normal or t distribution

will not fit well. But once again there is an attenuation in the frequency of points with

increasing distance from a central point along each axis, suggesting that a mixture of two or

more normal or t distributions might fit the data well. Moreover, the aforementioned central

point of the distribution appears to be at or very close to the origin; there is not a mean

shift with respect to the origin along each axis as there was for the automated geocoding

errors. Nor do there appear to be “strands” of points straddling, and running parallel to,

each coordinate axis, as there were for the automated geocoding errors. However, there

are outliers, and there is an interesting effect of orientational alignment: upon plotting the
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1116 addresses on streets aligned mainly E-W separately from the 1238 addresses on streets

aligned mainly N-S (Fig. 5, upper right and lower left panels), we observe that the errors

tend to be aligned orthogonally to the orientation of the street on which the corresponding

address lies. This is in sharp contrast to the coincident alignment of automated geocoding

errors with the axial orientation of the street, which we noted previously (Fig. 2).

The orthogonal alignment of E911 errors occurs as a result of offset errors of substantial

magnitude, which in turn are due to the definition of the E911 geocode in rural areas as the

coordinates of the intersection of the public road and private road leading to the residence,

coupled with the approximate perpendicularity (in most cases) of the angle between the

public and private road. The outliers, for the most part, correspond to those cases for which

the offset is relatively large and the private road meanders in such a way that a hypothetical

line segment connecting the residence to the public road-private road intersection is far from

being perpendicular.

Normal and t mixture distributions with various numbers of components were fitted to

the E911 errors. Values of BIC for these fits are listed in Table 1c. On the basis of these

values, it appears that a three-component t mixture model provides the best fit; normal

models, as well as t models with less than three components, are inadequate. Likelihood-

based parameter estimates for the three-component model are given in Table 1c in order of

decreasing pi, and Figure 6 displays 2354 simulated observations from the fitted model. Note

that the means of all components lie fairly close to the origin, indicating little systematic bias

in the errors. The estimates and component plots reveal that the component comprising the

largest proportion (about 52%) consists mostly of relatively small (standard deviation just

over 60 m), nearly isotropic errors. The other two components (comprising about 29% and

19% of the errors, respectively) correspond to errors tending to be of larger size (standard

deviations of 290 m and 354 m) lying close to the E-W and N-S axial directions, respectively.

All three components are quite heavy-tailed, thus outliers occur in all of them. Overall, the

simulated data (Fig. 6, lower right panel) again seem to reproduce the observed data (Fig.
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5, upper left panel) quite well.

The lower right panel of Fig. 5, which displays the all of the E911 errors relative to the axial

orientation of the corresponding street segment, highlights the aforementioned orthogonality

of the errors to street orientation. Normal and t mixtures, once again, were fitted to the

errors in this plot. Values of BIC and likelihood-based parameter estimates are given in

Tables 1d and 2d, respectively. According to these results, a two-component t mixture is

best-fitting. The component comprising the largest proportion (70%) consists of relatively

small errors that are, on average, about twice as large in the orthogonal direction as in the

coincident direction. The remaining component consists of much larger errors that average

about seven times larger in the orthogonal direction than in the coincident direction. Both

components are rather heavy-tailed, indicating that outliers occur regularly for both.

Conclusions

The major question motivating this investigation was whether one could find useful models

for the probability distribution of positional errors associated with geocoding, i.e. models

that are sufficiently rich to adequately fit various geocoding error datasets yet sufficiently

parsimonious to be practical for use as measurement-error models for statistical analysis.

The answer to this question, based on our findings, is solidly (though not unequivocally)

in the affirmative; and the class of models that seems best suited for the purpose is the

class of mixture models of bivariate t distributions. These models can adequately fit such

features as clustering along several axial directions, systematic bias in any direction(s), and

outliers, all of which occurred in our data; simpler models such as uniform and normal

distributions, which have been used previously for positional errors in spatial data, cannot.

Moreover, t mixture models are feasible for use with emerging applications of measurement-

error methodology to epidemiologic research [19, 22], provided that they consist of very few

components. Based on our results and the other published displays of geocoding errors of

which we are aware [6, 13], we conjecture that a mixture of three (two) t distributions will

usually be sufficient for errors (aligned errors) associated with 100%-matched automated
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geocoding and E911 geocoding, but additional investigations in other places are needed

to substantiate this. Regions with less rectilinear road networks than the Carroll County

network may sometimes require fewer components, as the errors on such networks are less

likely to exhibit clustering in the E-W and N-S axial directions; a case in point is displayed

in [6]. In some cases a single t distribution may even suffice.

The one situation we encountered in which mixture models of t distributions proved to

be less than fully successful occurred with automated geocoding errors for which an address-

matching threshold of less than 100% was used. In this situation, a few small clusters

of extremely large errors occurred. Such errors are difficult to model parsimoniously and,

regardless of how they are modeled, will weaken the conclusions made from subsequent

statistical inferences using measurement-error methodology. Consequently, we recommend

using only 100%-matched addresses for spatial epidemiologic analyses.

Our investigation indicated that t mixture models were equally useful for 100%-matched

automated geocoding errors and E911 geocoding errors, despite some differences in their

distinctive features. In particular, t mixtures were able to accommodate the difference in the

major axis of error alignment relative to the alignment of the corresponding street (parallel for

automated geocoding, perpendicular for E911 geocoding). The error distributions associated

with other geocoding methods may have their own distinctive features (see [6], for example,

for a graphical display of errors incurred by parcel address-matching), and it remains to be

seen whether t mixtures are as successful for them.

Further investigation is currently underway to determine if t mixture models are as useful

for positional errors corresponding to non-rural addresses as they appear to be for rural

address positional errors and, if so, how the components might differ from those for rural

addresses. Results from previous studies of positional errors for datasets combining both

rural and non-rural addresses [41, 6, 11, 12] suggest strongly that component variances will

be smaller for non-rural addresses, but we refrain from predicting how many components

may be needed and whether they will prove to be heavy-tailed, mean-shifted away from the

19



origin, etc.

In focusing our attention on geocoding errors, we have ignored the fact that for many

studies, automated geocoding is incomplete; that is, not all addresses can be assigned point-

level spatial coordinates by the software. In fact, it is common in practice for 20% or even

as many as 40% of subjects’ addresses to fail to geocode using standard software and street

files. For example, Gregorio et al. [36] and Oliver et al. [37] present public health studies in

which 14% and 26%, respectively, of the addresses in their datasets could not be assigned

a point location via automated geocoding, and for our exclusively rural address dataset

this figure was even higher (38%). A statistical analysis based on only the observations

that geocode is subject to selection bias [38, 37]. However, there is virtually always a

reliable coarse (areal-level) measurement, e.g. a zip code, associated with each observation

that fails to geocode. Coarse locational data may be combined with the observed point-

level data to make valid statistical inferences in the presence of geographic bias via either

(a) a coarsened-data maximum likelihood estimation procedure [39], or (b) imputation of

a surrogate point location (such as that of a randomly selected event within the same zip

code) for the addresses that do not geocode [40]. Fully satisfactory inference procedures for

data whose point locations are ascertained by automated geocoding may require that an

inference procedure developed for use with incompletely geocoded data be combined with

modifications to account for positional errors.
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Table 1: Bayesian Information Criteria (BIC) for normal and t mixture models. Models with
several different numbers of components, were fitted to the following four error datasets: (a)
100%-matched automated geocoding positional errors; (b) 100%-matched automated geocod-
ing positional errors aligned with axial direction of corresponding street segment; (c) E911
positional errors; (d) E911 positional errors aligned with axial direction of corresponding
street segment.

Error dataset Distribution Number of Components BIC

(a) Normal 1 48103
Normal 2 45851
Normal 3 45236
Normal 4 45124

t 1 46083
t 2 45358
t 3 45056
t 4 45042

(b) Normal 1 46422
Normal 2 44809
Normal 3 44597
Normal 4 44557

t 1 45659
t 2 44538
t 3 44516
t 4 44459

(c) Normal 1 67174
Normal 2 63174
Normal 3 62710
Normal 4 62446

t 1 62841
t 2 62345
t 3 62219
t 4 62230

(d) Normal 1 64227
Normal 2 61360
Normal 3 61101
Normal 4 61059

t 1 61092
t 2 60980
t 3 60982
t 4 60994
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Table 2: Likelihood-based parameter estimates for the best-fitting models. Models and the

datasets to which they were fitted are: (a) the three-component t mixture model for the

100%-matched automated geocoding positional errors; (b) the two-component t mixture

model for the 100%-matched automated geocoding positional errors aligned with axial di-

rection of corresponding street segment; (c) the three-component t mixture model for the

E911 positional errors; (d) the two-component t mixture model for the E911 positional errors

aligned with axial direction of corresponding street segment. Means are denoted by µX and

µY , standard deviations by σX and σY , correlation coefficient by ρ, and degrees of freedom

by ν. Units of measurement for means and standard deviations are meters.

Error dataset Component Proportion µX µY σX σY ρ ν

(a) 1 0.571 -12.1 -10.7 61.6 54.1 -0.05 1.6

2 0.253 -4.7 -350.0 75.9 550.0 0.18 6.5

3 0.176 352.8 -12.6 540.3 84.9 -0.03 16.7

(b) 1 0.560 -0.8 -14.2 39.4 75.9 0.06 1.8

2 0.440 372.1 -6.7 523.6 90.3 -0.10 5.9

(c) 1 0.519 4.9 -5.4 62.3 60.8 -0.10 1.8

2 0.292 -13.6 -35.0 289.1 54.9 -0.14 2.4

3 0.189 14.9 -10.2 62.1 354.4 0.14 2.4

(d) 1 0.700 5.9 -4.3 47.0 100.7 0.06 1.8

2 0.300 29.3 -6.2 62.1 419.5 0.16 3.0
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Figure 1: Scatterplot of simulated data from two-component bivariate normal mixture model.

Upper left panel: 200 observations from first component; Upper right panel: 200 observations

from second component; Lower right panel: Superposition of upper right panel lower left

panel; Lower right panel: a new simulation of 400 observations from the two-component

normal mixture model fitted to the data from the original simulation.
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Figure 2: Scatterplot of positional errors (in meters) for the 100%-matched automated

geocodes. Upper left panel: Complete data; Upper right panel: errors for addresses on

streets aligned E-W; Lower left panel: errors for addresses on streets aligned N-S; Lower

right panel: Superposition of upper right panel and 90-degree counterclockwise rotation of

lower left panel.
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Figure 3: Simulated data from the fitted three-component t mixture distribution for the

100%-matched automated geocoding errors. The upper left panel, upper right panel, and

lower left panel correspond to components in order of decreasing pi; and the lower right panel

is their superposition.
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Figure 4: Scatterplot of the positional errors (in meters) for the 60%-matched automated

geocodes. Left panel: Complete data; Right panel: Data with eight outliers removed.
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Figure 5: Scatterplot of the positional errors (in meters) for the E911 geocodes. Upper left

panel: Complete data; Upper right panel: errors for addresses on streets aligned E-W; Lower

left panel: errors for addresses on streets aligned N-S; Lower right panel: Superposition of

upper right panel and 90-degree counterclockwise rotation of lower left panel.
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Figure 6: Simulated data from the fitted three-component t mixture distribution for the

E911 errors. The upper left panel, upper right panel, and lower left panel correspond to

components in order of decreasing pi; and the lower right panel is their superposition.
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