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ABSTRACT

Microarray analysis is a technology for monitoring gene expression levels on a large scale and has

been widely used in functional genomics. A challenging issue in the analysis of microarray data is

normalization. A proper normalization procedure ensures that the intensity ratios provide meaningful

measures of relative expression levels. There are two important questions concerning normalization not

adequately addressed in the current literature: (a) how to identify genes that have constant expression

levels in order to establish the normalization curves; (b) how to account for the uncertainty inherent in

the normalization process in the subsequent statistical analysis. We propose a semi-linear model that

incorporates normalization into the analysis. This method does not make the usual assumptions needed

for the loess and dye-swap normalization procedures, nor does it require to identify a set of constantly

expressed genes prior to normalization. It also naturally accounts for the uncertainty in the normalization

process. We apply the proposed method to two microarray data sets to illustrate this approach and its

differences from the loess normalization method.

Contact: jian-huang@uiowa.edu

1 Introduction

The cDNA microarray technology is a powerful tool for monitoring gene expression levels on a large

scale and has been widely used in functional genomics (Brown and Botstein, 1999). An important

issue in analyzing microarray data is normalization. The purpose of normalization is to ensure that the

intensity levels from the two florescent dyes are comparable (Yang et al. 2000).

In a microarray experiment, many factors contribute to the possible bias and variation of the primary

data output — the hybridization intensities with the reporters of the genes in the bio-samples. These

factors include differential efficiency of dye incorporation, differences in concentration of DNA on

arrays, batch bias, difference in the amount of RNA labeled between the two channels, experimental

variability in DNA extraction and reverse transcription, variability in probe coupling and washing
∗To whom correspondence should be addressed
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process, unevenness of the slide surface, differences in the printing pin heads, and so on. Therefore,

proper normalization is a critical component in the analysis of microarray data.

Ideally, normalization should be done using genes whose expression levels remain constant and cover

the whole dynamic range of the intensity. However, in a microarray experiment, it is usually not known

a priori which genes exhibit differential expression levels and which genes do not. Indeed, the purpose

of many experiments is to identify differentially expressed genes.

Under the assumption that there is only a small percentage of the genes in the study that will have

differential expressions, Yang et al. (2000) proposed fitting a local regression (loess) curve (Cleveland

1979) for normalization using all the genes. The rationale is that if the number of differentially expressed

genes is relatively small, then the loess normalization curve should not be affected significantly by

the differentially expressed genes. Thus this approach should work well if the investigator knew that

there are only a small number (and a small percentage) of genes that have differential expressions.

However, there are also cases in which the investigator may not know how many genes have differential

expressions, and it may not be reasonable to assume that the percentage of differentially expressed genes

is small. A further question is that it is not easy to quantify how small is small in order to ensure that the

loess normalization using all the genes will not in itself introduce bias.

If it is expected that many genes will have differential expressions, Yang et al. suggested using dye-

swap for normalization. This approach makes the assumption that the normalization curves in the two

dye-swaped slides are symmetric about the horizontal axis in an M-A plot. Because of the slide-to-slide

variation, this assumption may not always be satisfied.

In Tseng et al. (2001), they first used a rank based procedure to select genes that are likely to be

non-differentially expressed, and use these genes in loess normalization. Although selection of genes

based on ranks is more robust than using the actual values, there is potential bias in the selection process

because ranking based on un-normalized data may not be correct. There is also uncertainty associated

with the rank selection procedure. In addition, a threshold value is required in this rank based procedure.

How sensitive the final results depending upon the threshold value may need to be evaluated on a case

by case basis.

In both Yang et al. (2001) and Tseng et al. (2001), normalization is considered as a step separated

from the subsequent statistical analysis, and as such, is dealt with separately. We propose a method that

treats normalization as an integrated part of the overall analysis, in the same spirit as in the analysis

of covariance (ANCOVA). In ANCOVA, the confounding factors are adjusted for in assessing the

“treatment effect” in a single regression model. In a cDNA microarray experiment, the contribution

of the different dye efficiency and other experimental factors to the observed difference in the intensity

levels can be considered as confounding factors. The difference in intensity levels that is biologically

meaningful can be considered as the “treatment effect” in the ANCOVA terminology. Thus in our

proposed approach, normalization is a component of the model that adjusts for the confounding factors,

and the true biological difference in gene expressions is the component of primary interest. Both

components are estimated simultaneously. In this way, there is no need to know which genes or how
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many genes have constant expressions á priori.

More specifically, we propose using a semi-linear (SL) model for simultaneous intensity-dependent

normalization and analysis of gene expression data. The original form of the SL model was first proposed

by Engle et al.(1986) in a study of relationship between weather and electricity sales, while adjusting

for other factors. In the original form of the SL model, there is only one nonparametric component.

We extend this model so that it is suitable for microarray data. In this SL model for microarray

data, normalization is considered as a nonparametric component, and normalization is done within the

analysis, not as a separate step.

Below, we first describe the SL model for microarray data. In Section 3, we describe an algorithm

for computing the normalization curves and the estimated expression levels based on the SL model. We

also consider a bootstrap approach for making statistical inference for the SL model in order to identify

differentially expressed genes. In Section 4, we illustrate the proposed method by two examples. Some

concluding remarks are given in Section 5.

2 A Semi-linear Model for Microarray Data

We now describe a SL model for microarray data in some generality. This model can be applied to both

the reference design and comparative design by suitably coded covariates.

Let J be the number of genes (or ESTs) in the study. Suppose that there are n slides in the experiment.

Let Rij and Gij be the red (Cy 5) and green (Cy 3) intensities of gene j in slide i, respectively. Let yij

be the log-intensity ratio of the red over green channels of the jth gene in the ith slide, and let xij be the

corresponding average of the log-intensities of the red and green channels. That is,

yij = log2

Rij

Gij

, xij =
1

2
log2(RijGij),

i = 1, . . . , n, j = 1, . . . , J . Let zi be a covariate vector associated with the ith slide. It describes the

characteristics of the ith slide, and can also be used to code various types of designs. The SL model is

yij = φi(xij) + z′iβj + εij, (1)

i = 1, . . . , n, j = 1, . . . , J , where βj is the effect associated with the jth gene; εij is the error term with

mean zero and unknown variance σ2
ij; and the function φi is a nonparametric component of the model

and is to be estimated based on the data.

The function φi is the normalization curve for the ith slide, because it is the difference in the log

intensities of red and green channels, given the total log intensities, in the absence of the gene effects.

Therefore, φi represents the baseline log intensity ratios of the genes with constant expressions. We

note that in model (1), it is only made explicit that the normalization curve φi is slide-dependent. It can

also be made to be dependent upon regions of the slides to account for spatial effect. For example, it

is straightforward to extend the model with an additional subscript in (yij, xij) and φi and make φi also

depend on the printing-pin blocks within a slide.
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As mentioned above, we can code various types of designs by use of indicator variables as covariate

zi (Drapper and Smith 1980). For example, in a reference design that compares diseased and normal

tissues using a common reference (Kerr and Churchill 2001), we can let zi take the value (1, 0) for the

diseased tissue and (0, 1) for the normal tissue. For a multiple k-sample comparison problem, we can

use a k dimensional indicator covariate. We note here that we did not explicitly include an intercept term

in the model. If an intercept is included, then only a (k − 1)-dimensional indicator vector is needed for

a k-sample comparison.

In a loop design (Kerr and Curchill 2001), in which multiple tissues are compared directly without

using a common reference, we can also use indicator variables to code the experiment. In the simplest

case where two samples are hybridized on the same slide, the SL model (1) becomes

yij = φi(xij) + βj + εij, (2)

where βj represents the difference in the expression levels of gene j after normalization.

3 Estimation and inference in SL Model

We use a semi-parametric approach for estimating φ and β simultaneously. Many smoothing procedures

can be used here for the estimation of φ. We choose the method of polynomial spline (Schumaker 1981).

This method is easy to implement, and has similar performance as other nonparametric curve estimation

approaches such as loess (Friedman et al. 2001).

Let b1, . . . , bQ be Q B-spline base functions. We approximate φi by

λs0 +

Q∑

q=1

bq(x)λiq ≡ b(x)′λi,

where b(x) = (1, b1(x), . . . , bQ(x))′, and λi = (λi0, λi1, . . . , λiQ)′ are coefficients to be estimated from

the data. Let λ = (λ1, . . . , λn). It is possible to use a data-driven approach to determine Q for each i,

so that each φi uses a different number of spline basis functions. However, here we choose to use the

same number of spline basis functions for each normalization curve. This has the advantage of keeping

the normalization consistent across the slides.

We use a least squares (LS) criterion in our estimation. Let w = {wij} be a matrix of user specified

weights. The simplest choice is to let wij = 1. We incorporate this weight matrix into the objective

function to allow for incorporation of quality measurements of the spots into the analysis. For instance,

we can let wij be reciprocal to the standard deviations associated with the log-intensity ratios. Such

standard deviations can be computed from the standard deviations from pixel intensities which are

usually available from microarray data output files. We can also use w as a filter to screen out or

down weighting lesser quality spots. The weighted LS criterion function is

Dw(λ, β) =

n∑

i=1

J∑

j=1

w2
ij[yij − b(xij)

′λi − z′iβj]
2. (3)
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Let φ = (φ1, . . . , φn) and β = (β1, . . . , βJ)′. One approach for minimizing Dw(λ, β) is to use the

Gauss-Seidel method, also called back-fitting algorithm (Hastie et al. 2001), that alternately updates λ

and β. Set λ(0) = 0. For k = 0, 1, 2, . . . ,

Step 1: Compute β(k) by minimizing Dw(λ(k), β) with respect to β.

Step 2: For the β(k) computed above, obtain λ(k+1) by minimizing Dw(λ, β(k)) with respect to λ.

Iterate Steps 1 and 2 until the desired convergence criterion is satisfied. Because the objective

function is strictly convex, the algorithm converges to the unique global optimal point. Suppose that

the algorithm converges at step K. Then the estimated values of βj are β̂j = β
(K)
j , j = 1, . . . , J , and the

estimated normalization curves are

φ̂i(x) = b(x)′λ
(K)
i , i = 1, . . . , n.

For the two-sample comparison problem described by model (2), and suppose the weights are all 1,

Step 1 above becomes simply taking the averages:

β
(k)
j = n−1

n∑

i=1

[yij − b(xij)
′λ

(k)
i ], j = 1, . . . , J.

The algorithm described above can be conveniently implemented in the statistical computing

environment R (Ihaka and Gentleman, 1996). Specifically, Steps 1 and 2 are least squares problems,

which can be solved by the function lm in R. The function bs can be used to create a basis matrix for

the polynomial splines.

After obtaining the estimates of φ and β, it is also desirable to estimate the variance-covariance

matrix of β̂. In principle, it can be estimated in a similar way as in the linear model. However,

computation of this variance-covariance matrix involves inverting a G × G matrix. When G ≈ 104,

as in many microarray experiments, direct inversion of this matrix can be difficult. One approach to get

around this difficulty is to use the bootstrap (Efron 1979; Efron and Tibshirani 1993). Although this

is also computationally intensive, it does not require inverting a high dimensional matrix. We propose

using the following bootstrap scheme. Let B be the bootstrap replication size.

(1) For slide i, i = 1, . . . , n, resample with replacement from (yij, xij), j = 1, . . . , J to obtain the

bth bootstrap sample (y
(b)
ij , x

(b)
ij ), j = 1, . . . , J .

(2) Fit the semilinear model using the bth bootstrap sample (y
(b)
ij , x

(b)
ij , zi), j = 1, . . . , J ; i = 1, . . . , n

to obtain the bootstrap estimate β(b). In the above, we have kept the covariate zi fixed.

(3) Compute the sample variance of the bootstrap estimates β(b), b = 1, . . . , B. This bootstrap

sample variance is used as an estimation of the variance of β̂.

There are more than one way to bootstrap in the current setting. For example, we can also resample

the residuals after fitting the SL model. We use the bootstrap scheme described above because its

resampling process most faithfully keeps the original data structure. Also, bootstrapping both yij and xij

relies less on the model assumption (Efron and Tibshirani, 1993).

Instead of the LS estimate, we can also use robust regression approaches. For example, we can

replace the L2 norm in the objective function by the L1 norm, which would result in the least absolute
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deviation (LAD) regression. We can also use other robust regression objective functions, such as Tukey’s

biweight function. The above iterative computation steps can still be applied with the chosen objective

function. However, computation in each step will be more demanding.

4 Examples

We now illustrate the SL model for microarray data by two data sets. As a point of comparison, we

also consider the loess normalization method of Yang et al. (2000). This is mainly to illustrate the

differences between the proposed normalization method and the loess normalization. We focus on the

normalization and its effect on the subsequent analysis. Therefore, we will not discuss some important

issues, such as the problem of multiple comparisons in determining the significance of the findings.

4.1 Apo AI data

The purpose of this experiment is to identify differentially expressed genes in the livers of mice with

very low HDL cholesterol levels compared to inbred mice (Callow et al. 2000). The treatment group

consists of 8 mice with the apo AI gene knocked-out and the control group consists of 8 C57B1/6 mice.

For each of these mice, target cDNA is obtained from mRNA by reverse transcription and labeled using

a red fluorescent dye (Cy5). The reference sample (green-fluorescent dye Cy3) used in all hybridizations

was obtained by pooling cDNA from the 8 control mice. The target cDNA is hybridized to microarrays

containing 5,548 cDNA probes.

This data set was analyzed by Callow et al. (2000) and Dudoit et al. (2000). Their analysis consists

of the following steps: (1) loess normalization; (2) computation of a two sample t-statistic for each

gene; (3) permutation to estimate the distribution the t-statistics and; (4) using the Westfall and Young

step-down method for adjusting p-values to correct for multiple comparison (Westfall and Young 1993).

Eight genes with adjusted p-value ≤ 0.01 are identified and subsequently sequence verified. These genes

are listed in the left panel of Table 1, in the order of the magnitude of their t-statistics.

We apply the proposed normalization and analysis method to this data set. As in Dudoit et al., we

use printing-tip dependent normalization. The SL model used here is

yijp = φip(xijp) + z′iβj + εijp,

where i = 1, . . . , 16, j = 1, . . . , # of spots in each block, p = 1, . . . , 16. Here j and i index genes

and slides as before, p indexes the pth printing-tip block. εijp’s are assumed to be i.i.d. normal with

mean 0 and variance σ2. The covariate xs = (1, 0)′ for the treatment group (apo AI knock out mice)

and xs = (0, 1)′ for the control group (C57B1/6 mice). The coefficient βj = (βj1, βj2). The contrast

βj1 − βj2 measures the expression difference for the jth gene between the two groups. The variances

of the estimators of this contrast are obtained by the bootstrap with bootstrap sample size B = 500

described in Section 3.
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As an example of the normalization results, Figure 1 displays the M vs. A plot and the printing-tip

dependent normalization curves in blocks 1, 4, 5, 9, 12, and 16 for the data from knock-out mouse 1.

The green line is the normalization curve based on the SL model, and the dotted red line is the loess

normalization curve. The degree of freedom used in the spline basis function in the SL normalization is

12, and the span used in the loess normalization is 0.40. We see that, although the overall trend of the

two normalization curves are similar, there are indeed differences between the two normalization curves

from the two methods.

Tables 1 and 2 lists the top 16 genes identified based on the proposed method and the method of

Dudoit et al. (2000), respectively. In Table 1, the numerator is the estimated expression difference

between the two groups based on the SL model, the denominator is the standard error computed based

on the bootstrap. The t-statistic is the ratio of the two. The p-values are given as a point of reference

of the “significance” of the t-statistics, they are approximate and should not be interpreted in a rigid

fashion. As mentioned earlier, we are mainly interested in the comparison of methods, so no multiple

comparison adjustment is made to these p-values. This does not affect our comparison of the different

methods. These remarks also apply to the second example below.

In both tables, the genes are listed in the order of the magnitude of their t-statistics. Eight of the 16

genes (ID 540, 2149, 5356, 4941, 4139, 1496, 2537, 1739) in Table 1 are the same as those identified by

Dudoit et al. However, the orders of the genes in the lists are different. It is also noticeable that many

genes in these two lists are different. For example, gene 541 is ranked number 7 in our analysis, but it is

not in the top 16 list based on the method of Dudoit et al.(2000).

Figure 3(a) shows the scatter plot of the estimated mean expression differences based on the SL

versus those calculated after the loess normalization. The colored spots represent the top 16 genes

identified from both methods. The yellow spots are the 8 genes common from both methods. The red

spots are the remaining 8 ones from the SL method, and the green ones are the remaining 8 from the

loess method. Figure 3(b) shows the boxplots of the expression differences based on the two methods.

We see from these two plots that the bulk of the expression differences have the same distribution.

However, at the high end of expression differences, the values from the SL model tend to be higher. The

correlation coefficient between the two expression differences is 0.85.

There are two reasons that the results are different. First, the different normalization procedures give

different expression differences. For example, for gene 2149, the mean difference based on the loess

normalization is 3.0806, the mean difference based the proposed method is 3.3294. For the eight genes

identified by Dudoit et al., the proposed method yields bigger mean differences. Because normalization

is done separately and use all the genes, the differentially expressed genes tend to pull the normalization

curve towards themselves. Therefore, it may lead to underestimates of the mean differences.

Second, the estimates of the standard errors are also different. The estimates based on the individual

genes have a relatively large range, from 0.016 to 0.53. As we can see from Table 2, the standard error

estimates based on the individual genes are quite erratic. The estimates based on the SL model ranges

from 0.19 to 0.23, and is centered around 0.21. We again note that these estimated standard errors based
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on the SL model are adjusted for the normalization, and depend on the total log-intensities.

4.2 Hippocampus data

The hippocampus experiment was carried out in the Functional Genomics Laboratory at the University

of Iowa College of Medicine. RNA samples were collected from mouse hippocampus and from the

remainder of the brain. 557 clones originating from non-normalized, normalized cDNA libraries

(Bonaldo et al. 1996) and from a cDNA library of rare mRNA messages from mouse hippocampus

were selected. The original purpose of this experiment was to compare the results of expression levels

based on sequence analysis with those based on the microarray analysis. However, this experiment also

provides us an opportunity to test our proposed method.

cDNA samples of tissues from hippocampus and the remainder of the brain in mice were prepared

and hybridized to 12 printed slides. Each slide contains 557 arrayed mice DNA, each of these 557

genes were printed 4 times on each slide. Some of the clones were not verified in the sequence analysis.

However, they are used in the normalization methods, but are not considered in the discussion of the

results below. In 6 of these 12 slides, cDNA from brain (without hippocampus) were labelled with

florescent Cy5, and cDNA from hippocampus were labelled with florescent Cy3. In the remaining 6

slides, the dye scheme is reversed.

For each clone, we computed a weighted average from the 4 printed spots as the intensity level for

each channel. The weights are reciprocal to the variances associated with the spots. These weights

are chosen to achieve the minimum variance among all the weighted averages. The variance associated

with a spot in a slide is computed from the standard deviation of the pixels that constitute the spot and

the number of the pixels. They are part of the data output from the GenePix 4000B scanner and the

GenePix Pro software (Axon Instruments Inc.). The log intensity ratio yij and log intensity product xij

is computed based on the weighted averages from the red and green channels for the jth gene in the ith

slide , i = 1, . . . , 12; j = 1, . . . , 557. Here in the intensity ratio, the intensity level of hippocampus is

always in the denominator, and the intensity level of brain without hippocampus is in the numerator, for

the data from all the 12 slides. Because two tissue samples are compared directly without resorting to a

reference sample, the SL model used for this data set is simply

yij = φi(xij) + βj + εij, i = 1, . . . , 12, j = 1, . . . , 557;

where βj measures the difference in expression levels of the jth gene after normalization. Here we

assume εij’s are i.i.d. N(0, σ2).

Figure 2 shows the M-A plots of the log-intensity ratios versus half log-intensity products for 6 of

the 12 slides in this data sets. In the first 3 slides shown in Figure 2, hippocampus is labelled with

Cy3(Green) and the remainder of the brain is labelled with Cy5(Red). In the second 3 slides, the dye

scheme is reversed. The SL normalization curves are imposed on the M-A plots as green lines, the loess

normalization curves are plotted as dotted red lines. Again, we see that they have similar overall trend,

but there exist appreciable differences between them.
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Tables 3 and 4 list the top 10 genes identified based on the proposed method and the method of

Dudoit et al. (2000), respectively. The computation involved in Table 3 is similar to that in Table 1. The

only difference is that for this data set, the number of clones is much fewer (557), the standard errors

of the estimated expression differences are calculated directly based on the linear model theory without

resorting to the bootstrap. The fact that the normalization curves are estimated from the data and its

associated uncertainty are taken into account in this calculation. Again, the clones are listed in the order

of the magnitude of their t-statistics. These two lists are completely different. Positive values of the

t-statistics suggest that the clones are more highly expressed in brain excluding hippocampus, although

the significance levels may not pass a desired threshold value. For the 10 genes listed in Table 3, the

estimated mean differences are greater than those listed in Table 4. The standard error estimates are more

stable and tend to be bigger than those in Table 4. The results of Table 3 correspond better to the results

of sequence analysis of the cDNA libraries used in this experiment.

Figures 3(c) and 3(d) are similar to 3(a) and 3(b), respectively. The top 10 genes identified from the

two methods are colored. In Figure 3(c), the red spots are the 10 genes from the SL method, and the

green ones are the 10 genes from the loess method. However, for this data set, there are no common

ones in the two top 10 lists. We see again that the bulk of the estimated expression differences from

the two methods have the same distribution, but the values from the SL model tend to be higher. The

correlation coefficient between the two estimated expression differences is 0.84.

5 Discussion

We proposed a SL model for normalization of microarray data and for identification of differentially

expressed genes. It is interesting to compare the proposed normalization method with the existing

methods, such as the loess normalization proposed by Yang et al. (2001) and further discussed by Tseng

et al. (2001). In the loess method, normalization is done separately by first fitting a separate curve for

each slide through the scatter plot of yij versus xij, j = 1, . . . , J for i = 1, . . . , n. Then the differences

between yij and the value of the fitted curve at xij are used as the ‘data’ in the subsequent analysis. In

comparison, we can write model (1) as:

yij − φi(xij) = z′iβj + εij,

Thus in our proposed approach, the estimation of the gene expression levels is also done by use of the

normalized values yij − φi(xij).

However, there are three important differences between the proposed approach and that of Yang

et al.(2001). First, the normalization curves φ and the parameters of interest β are estimated

simultaneously. With this integrated approach, there is no need to assume that the percentage of genes

with differential expression levels is small, or when this assumption is not satisfied, to use dye-swap

normalization, which in turn requires the assumption that the two normalization curves are symmetric.
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(However, we note that dye-swap as a design strategy is useful to balance the experimental conditions

and reduce bias due to different dye incorporation efficiencies.)

Second, normalization for each slide in our proposed approach is dependent upon the data of all

the sides in the same treatment group, with the β being the thread linking these slides. Each SL

normalization curve does not attempt to fit data from an individual slide, it only fits the data from genes

with constant expressions and those data for which the effects of differential expressions have been

removed. In comparison, the loess normalization curve of Yang et al. only uses data from a single slide,

and it is fitted from all the data from a single slide, which may lead to underestimation of the differences

in gene expressions. Thus in general, the SL normalization can be more sensitive in detecting moderately

differentially expressed genes.

Third, in the framework of the SL model, the uncertainty that is inherent in the normalization process

can be taken into account in the estimation of the standard errors of β. However, in the existing methods,

such as that of Dudoit et al.(2000), the uncertainty from estimation of the normalization curves is not

accounted for in the subsequent analysis.

The normalization we discussed can be considered as a type of location normalization, the purpose is

to remove the potential bias due to imbalance between the two channels and other experimental factors.

Sometimes it may be also necessary to perform scale normalization to make slides comparable in scale,

as discussed in Yang et al. (2000), although scale incompatibility among arrays seems to be of a lesser

problem in practice. We can extend the SL model to incorporate the scale normalization by introducing

a slide-specific parameter w = (τ1, . . . , τn) as follows:

yij − φi(xij)

τi

= z′iβj + εij, i = 1, . . . , n, j = 1, . . . , J,

where τi’s are restricted to be strictly positive. Computationally, we can proceed in a similar way as the

algorithm described in Section 4.

In summary, the SL model provides a framework for combined normalization and analysis of

microarray data. This method does not make the usual assumptions needed for the loess and dye-

swap normalization procedures, nor does it require to identify a set of constantly expressed genes prior to

normalization. It also naturally takes into account the uncertainty from the normalization process. For the

two examples we considered in Section 4, the proposed method yield reasonable results when compared

with the published results for the Apo AI data and the sequence analysis results for the hippocampus data.

Thus the proposed SL model for microarray data is an interesting alternative to the existing normalization

and analysis methods.
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Table 1: Callow et al. data: Top 16 genes from the analysis based on the SL model (The genes whose ID

numbers have the superscript ∗ appear in both Tables 1 and 2)

ID pvalue t-statistic numerator denominator

2149∗ 0.0000 18.2949 3.3294 0.1820

540∗ 0.0000 18.2315 3.2283 0.1771

5356∗ 0.0000 11.5480 2.1336 0.1848

4941∗ 0.0000 6.4465 1.2130 0.1882

4139∗ 0.0000 6.3530 1.2481 0.1965

1496∗ 0.0000 6.3059 1.1445 0.1815

541 0.0000 5.4741 0.9822 0.1794

2537∗ 0.0000 5.4533 0.9721 0.1783

1739∗ 0.0000 5.3161 0.9599 0.1806

1337 0.0000 4.8553 0.9054 0.1865

563 0.0000 4.5950 0.8523 0.1850

3809 0.0000 −4.3686 −0.7641 0.1749

5986 0.0000 −4.2459 −0.8142 0.1918

4220 0.0000 −4.1181 −0.7748 0.1881

5722 0.0001 3.8561 0.7014 0.1819

947 0.0002 3.7764 0.7378 0.1954
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Table 2: Callow et al. data: Top 16 genes from the method of Dudoit et al. (2000) (The genes whose ID

numbers have the superscript ∗ appear in both Tables 1 and 2)

ID pvalue t-statistic numerator denominator

2149∗ 0.0000 21.5031 3.0806 0.1433

4139∗ 0.0000 13.6330 1.0251 0.0752

5356∗ 0.0000 11.6053 1.7957 0.1547

540∗ 0.0000 11.8907 2.9852 0.2511

1739∗ 0.0000 9.6767 0.8511 0.0879

2537∗ 0.0000 10.0097 0.9371 0.0936

1496∗ 0.0000 8.4200 0.9195 0.1092

4941∗ 0.0000 7.0476 0.9241 0.1311

947 0.0001 5.6995 0.6287 0.1103

5759 0.0002 5.0944 0.2196 0.0431

1932 0.0023 4.3768 0.2529 0.0578

4631 0.0013 −4.1695 −0.2292 0.0550

4160 0.0017 3.9402 0.2488 0.0631

5604 0.0018 3.9521 0.3661 0.0926

2324 0.0019 3.9362 0.3079 0.0782

926 0.0020 3.8513 0.3332 0.0865

Table 3: Hippocampus data: Top 10 genes from the analysis based on the SL model

Gene ID p-value t-statistic numerator denominator

UI-M-BZ1-bkx-h-02-0-UI.s1 0.0000 -7.1099 -1.0537 0.1482

UI-M-AQ0-aae-h-02-0-UI.s1 0.0000 5.7338 1.0741 0.1873

UI-M-BZ1-bdp-f-01-0-UI.s1 0.0000 -5.5406 -0.8265 0.1492

UI-M-BH3-awc-g-02-0-UI.s4 0.0000 4.2744 0.6685 0.1564

UI-M-AQ0-aah-e-06-0-UI.s1 0.0001 3.9358 0.6428 0.1633

UI-M-BZ1-blk-g-12-0-UI.s1 0.0001 3.8087 0.5656 0.1485

UI-M-BZ1-bll-f-11-0-UI.s1 0.0003 -3.6384 -0.5387 0.1481

UI-M-AQ0-aaj-b-11-0-UI.s1 0.0005 3.5063 0.7772 0.2216

UI-M-AH0-acs-c-03-0-UI.s1 0.0005 3.4743 0.6459 0.1859

UI-M-BZ1-blc-e-02-0-UI.s1 0.0010 3.2816 0.4862 0.1482
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Table 4: Hippocampus data: Top 10 genes from the method of Dudoit et al. (2000)

ID p-value t-statistic numerator denominator

UI-M-BZ1-bfv-c-02-0-UI.s1 0.0043 3.5756 0.2128 0.0595

UI-M-BZ1-bfw-g-12-0-UI.s1 0.0214 -2.6803 -0.1805 0.0673

UI-M-BZ1-bft-a-15-0-UI.s1 0.0232 2.6345 0.1759 0.0668

UI-M-BZ1-bdq-b-02-0-UI.s1 0.0243 -2.6091 -0.2186 0.0838

UI-M-BZ1-bfr-g-04-0-UI.s1 0.0254 2.5840 0.3028 0.1172

UI-M-BZ1-bjl-g-03-0-UI.s1 0.0343 -2.4156 -0.1577 0.0653

UI-M-BZ1-bli-e-04-0-UI.s1 0.0350 2.4040 0.1566 0.0651

UI-M-BZ1-bfs-e-08-0-UI.s1 0.0372 2.3692 0.1358 0.0573

UI-M-BZ1-beh-g-12-0-UI.s1 0.0406 2.3195 0.5970 0.2574

UI-M-BZ1-bjn-c-11-0-UI.s1 0.0413 2.3095 0.1684 0.0729
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Figure 1: Apo AI data: Comparison of normalization curves in blocks 1, 4, 5, 9, 12 and 16 for the data

from knock-out mouse 1 in the treatment group. Green line: normalization curve based on SPL model;

Red line: normalization curve based on loess
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Figure 2: Hippocampus experiment data. Scatter plots of log intensity ratio versus log intensity product

for 6 slides from the hippocampus experiment. In the first 3 slides, hippocampus is labelled with Cy3(G)

and the remainder of the brain is labelled with Cy5(R). In the second 3 slides, the labelling scheme is

reversed. Green line: normalization curve based on SL model; Red line: normalization curve based on

loess
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Figure 3: Comparison of estimated expression differences (EED) based on the SL method and the

method of Dutoid et al. (2000). Figure 2(a). Apo AI data: scatter plot of EED based on the SL method

and EED based on the method of Dutoid et al. Figure 2(b). Apo AI data: boxplots of EED based on the

SL method and the method of Dutoid et al. Figure 2(c). Hippocampus data: scatter plot of EED based on

the SL method and EED based on the method of Dutoid et al. Figure 2(d). Hippocampus data: boxplots

of EED based on the SL method and the method of Dutoid et al.
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