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ABSTRACT

Motivated by the Guaranteed Minimum Death Benefits (GMDB) in variable

annuities, we are interested in valuing equity-linked options whose expiry date is

the time of death of the policyholder. Because the time-until-death distribution

can be approximated by linear combinations of exponential distributions or mix-

tures of Erlang distributions, the analysis can be reduced to the case where the

time-until-death distribution is exponential or Erlang.

We present two probability methods to price American options with an ex-

ponential expiry date. Both methods give the same results. An American option

with Erlang expiry date can be seen as an extension of the exponential expiry date

case. We calculate its price as the sum of the price of the corresponding European

option and the early exercise premium. Because the optimal exercise boundary

takes the form of a staircase, the pricing formula is a triple sum. We determine

the optimal exercise boundary recursively by imposing the “smooth pasting” con-

dition. The examples of the put option, the exchange option, and the maximum

option are provided to illustrate how the methods work.

Another issue related to variable annuities is the surrender behavior of the

policyholders. To model this behavior, we suggest using barrier options. We

generalize the reflection principle and use it to derive explicit formulas for outside

barrier options, double barrier options with constant barriers, and double barrier

options with time varying exponential barriers.

Finally, we provide a method to approximate the distribution of the time-

until-death random variable by combinations of exponential distributions or mix-

tures of Erlang distributions. Compared to directly fitting the distributions, my

method has two advantages: 1) It is more robust to the initial guess. 2) It is more

likely to obtain the global minimizer.

iii



PUBLIC ABSTRACT

Most variable annuities are essentially an equity investment fund embedded

with options or guarantees. These options or guarantees provide the policyholders

downside protection plus some chance of upside gains. To provide the protection,

insurance companies may buy put options. However, due to the uncertainty of the

time of payment, options with a random expiration date need to be considered.

In this thesis, we consider the valuation problem of American options with

exponentially distributed or Erlang distributed expiration date. With such expira-

tion dates, analytic pricing formulas can be obtained. Compared to the European

option, an American option allows its owner to exercise the option at any time

prior to the expiration date. Therefore, we can calculate the price of an American

option as the sum of the price of the corresponding European option and the early

exercise premium. To determine the optimal exercise boundary, we equate the

exercise value with the option price at the exercise boundary.

The surrender behavior of the policyholders is another issue related to vari-

able annuities. If policyholders choose to surrender the contract, they give up

the protection, stop paying fees to the insurance company and receive a surrender

value. Hence, the insurance company may choose to buy up-and-out put options

instead of regular put options to provide the protection, because barrier options

are cheaper. We derive explicit formulas for valuing various barrier options, in-

cluding outside barrier options and double barrier options.
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CHAPTER 1

INTRODUCTION

1.1 Objective of the thesis

The variable annuity was created in 1952 by TIAA (Teachers Insurance and

Annuity Association) as a method of investing for retirement of teachers and

professors. The background to create this financial product was in reaction to

rising inflation and lengthening life expectancies, and a dramatic expansion of

the education sector with the G.I. Bill. Initially, variable annuities were mainly

mutual funds and index funds.

In the 1980’s and 1990’s, volatilities the stock market caused some people

to lose faith in investing in stocks. Insurance companies made variable annuity

products more attractive by offering downside protections with minimum benefit

guarantees called riders. Most riders are one of the following four types: Guar-

anteed Minimum Death Benefit (GMDB), Guaranteed Minimum Income Benefit

(GMIB), Guaranteed Minimum Accumulation Benefit (GMAB), and Guaranteed

Minimum Withdrawal Benefit (GMWB). Most US variable annuity products have

at least one rider, and some popular products have a combination of riders.

These riders are generally embedded options. Since the time of death or

withdrawal is uncertain, options with random expiry dates need to be considered.

A key goal of this thesis is to value options with random expiry dates. Let T (x)

denote the time-until-death random variable for a life aged x. For t > 0, let S(t)

denote the value of a stock or a fund at time t. We are interested in evaluating

expectations of the form

E
[
e−rT (x)b (S(t), 0 ≤ t ≤ T (x))

]
(1.1.1)
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where the expectation is taken with respect to an appropriate probability distri-

bution, r is a force of interest and b (S (t) , 0 ≤ t ≤ T (x)) is the payoff. Note that

the payoff can be dependent on the history of the stock price up to the time of

death T (x). Examples of b (S (t) , 0 ≤ t ≤ T (x)) include

Call option: [S (T (x))−K]+

High water mark : Maximum
0≤t≤T (x)

S(t)

Up-and-out put option: I(Maximum
0≤t≤T (x)

S(t) < B) [K−S (T (x))]+

We know that the density function of the positive random variable T (x) can be

approximated by combinations (no restriction on the signs of the coefficients) of

exponential density functions,

fT (x)(t) ≈
∑
j

αjfτj(t) =
∑
j

αjλje
−λjt

or by mixtures (positive coefficients only) of Erlang distributions

fT (x)(t) ≈
∑
j

βjfYj(t) =
∑
j

βje
−λt λ

rj trj−1

(rj − 1)!

Then, under the assumption that T (x) is independent of the stock price process

{S(t)}, the problem of evaluating the expectations in 1.1.1 can be approximated

by evaluating ∑
j

αjE
[
e−rτjb (S(t), 0 ≤ t ≤ τj)

]
where τj are exponential random variables independent of {S(t)}, or by evaluating

∑
j

βjE
[
e−rYjb (S(t), 0 ≤ t ≤ Yj)

]

where Yj are Erlang random variables independent of {S(t)}.

Valuing American options with an Erlang distributed expiry date has another

2



function. We can use the result to approximate the price of an American option

with a fixed expiry date by setting the mean of the Erlang distribution to be the

expiry date and letting the variance to be small.

Another issue related to the pricing riders is policyholder’s behavior. Policy-

holder’s behavior includes policy lapses and surrenders, transfers between invest-

ment funds, and annuitization. I shall mainly discuss the lapse behavior in this

thesis. If policyholders choose to lapse their contracts, they give up the underlying

protection, stop paying fees to the insurer and receive a surrender value. Lapses

can be divided into two types: deterministic and dynamic lapses. Deterministic

lapses are due to unforeseen events in the policyholder’s life and are generally seen

as diversifiable. On the other hand, dynamic lapses result from an investment de-

cision change due to the evolution of markets. Therefore, they are very difficult to

diversify. In general, lapse rates are negatively related to internal rates of return,

such as high guaranteed minimum crediting rates, and positively related to exter-

nal rates of return, such as market interest rates or stock returns. Especially, when

the guarantee is deeply out-of-the-money, the policyholder has a strong incentive

to lapse the contract and choose an alternative investment product. This is simply

because the policyholder is paying high fees for a guarantee that is very unlikely

to be triggered in the future.

Suppose that a policyholder invests in a guaranteed minimum death benefit

(GMDB) product. The product guarantees the following payment to the policy-

holder when he dies,

Max(S(T (x)), K)

where K is the guaranteed minimum amount. Since

Max(S(T (x)), K) = S(T (x)) + [K − S(T (x))]+

the problem of valuing the guarantee becomes a problem of valuing a K-strike

3



put option that is exercised at the time of death. Because some of the guarantees

will not be exercised due to lapses, when an actuary prices a guarantee in a

variable annuity, he or she needs to consider these lapses in order to pay less for

the guarantee. To model the surrender and lapse behavior, we assume that the

policyholder will surrender his contract at the first moment the account value hits

a predetermined barrier. If we use MS(T (x)) to denote the running maximum of

the stock price until the time of death, we can buy a basket of barrier options

corresponding to the following formula,

∑
i

piI(MS(T (x)) < Li+1) [K − S(T (x))]+ (1.1.2)

Here, we use L1 < L2 < · · · to denote the barriers, and pi is the additional fraction

of policyholders who will surrender when the maximum stock price is larger than

Li and smaller than Li+1. From the above expression, we can see that the total

cost of a basket of up-and-out put options is lower than the price of put options,

since

[K − S(T (x))]+ =
∑
i

pi [K − S(T (x))]+ >
∑
i

piI(MS(T (x)) < Li+1) [K − S(T (x))]+

The closed-form expressions for each of the underlying options in (1.1.2) are avail-

able under the Black-Scholes model. Therefore, the valuation of a GMDB contract

under lapse assumption and the computation of Greeks required for establishing

a dynamic hedging strategy are both straightforward to perform.

1.2 Structure of the thesis

Chapter 2 serves as a brief introduction of some probability and stochastic

processes concepts. Chapters 3-6 form the main part of this thesis.

In Chapter 3, we focus on the valuation problem of barrier options. Barrier

options are useful for risk management of surrender and lapse behavior of poli-

4



cyholders. Applying the method of Esscher transforms, we calculate the price of

outside barrier options, double barrier options with constant barriers, and double

barrier options with time varying exponential barriers.

In Chapter 4, we consider the valuation problem of American options whose

expiration date is exponentially distributed and independent of the underlying

stock price process. The memory-less property of the exponential distribution

implies that the exercise boundary is flat. We present two alternative probability

methods for deriving the pricing formulas for this kind of American option. The

examples of the put option, the exchange option, and the maximum option are

provided.

In Chapter 5, the expiry date of the option is extended from the exponential

distribution to the Erlang distribution. We calculate the American option price as

the sum of the price of the European option and the early exercise premium. Since

the optimal exercise boundary has a staircase form, the early exercise premium can

be calculated through piece-wise integration. The pricing formula for the American

option with an Erlang distributed expiry date takes the form of a triple sum.

To determine the optimal exercise boundary, we recursively impose the “value

matching” condition for the price of options at the optimal exercise boundary. By

fixing the mean of the Erlang distribution and letting the shape parameter go to

infinity, we can obtain the price of the American option with a fixed expiry date.

In Chapter 6, we numerically approximate the distribution of T (x), the time-

until-death random variable for a life aged x, by the combinations of exponential

distributions and the mixtures of Erlang distributions. The problem is essentially

an optimization problem. We propose a splitting method to estimate the param-

eters. Through splitting the whole optimization problem into two sub-problems,

linear optimization and nonlinear optimization, the results are robust to the initial

guess of parameters. We also apply the adjustment procedure provided in Lee and

Lin (2010) to identify the shape parameters of Erlang distributions.

5



1.3 Notation

τ an independent exponential random variable with density function λe−λt

Tn, n ≥ 1, an independent Erlang distributed random variable with den-

sity function fTn(t) = e−λt λ
ntn−1

(n−1)!

{S(t), t ≥ 0} a single stock price process, which is modeled as S(t) =

S(0)eX(t) and

X(t) = µt+ σB(t), t ≥ 0 (1.3.1)

where B(t) is a standard Brownian motion (Wiener process), and µ and σ > 0 are

constants.

m(t) min
0≤s≤t

X(s), running minimum of X(s), s ≥ 0 until time t

M(t) max
0≤s≤t

X(s), running maximum of X(s), s ≥ 0 until time t

f rX(τ),m(τ)(x, y) discounted joint density function

MS(t) max
0≤s≤t

S(t) running maximum of the stock process

mS(t) min
0≤s≤t

S(t) running minimum of the stock process

{S(t), t ≥ 0} a stock vector price process

S(t) = (S0(t), S1(t), · · · , Sn−1(t))
′

For each stock Si(t),

Si(t) = S(0)eXi(t) i = 0, 1, 2 · · ·

{X(t), t ≥ 0} an n−dimensional Brownian motion,

X(t) = (X0(t), X1(t), · · · , Xn−1(t))
′
;

starting at 0 with a drift vector µ

µ = (µ0, µ1, · · · , µn−1)
′

6



and a diffusion matrix Σ

Σ =


σ2

0 · · · ρn−1σ0σn−1

... ... ...

ρn−1σ0σn−1 · · · σ2
n−1


n×n

where ρk is the correlation coefficient of X0(t) and Xk(t).

first hitting time of one side for stock price TU = inf
{
t ≥ 0

∣∣∣∣∣S(t) = U

}
first hitting time of two sides for stock price

TU,L = inf
{
t ≥ 0

∣∣∣∣∣S(t) = U orS(t) = L

}

first hitting time of two exponential boundaries for stock price

T
′

U,L = inf
{
t ≥ 0

∣∣∣∣∣S(t) = U(t) orS(t) = L(t)
}

first hitting time of one side for the ratio of two stocks

T ratioc˜∗ = inf
{
t ≥ 0

∣∣∣∣∣S1(t)
S2(t) = c˜∗

}

first hitting time of two sides for the ratio of two stocks

T ratioc˜∗,b˜∗ = inf
{
t ≥ 0

∣∣∣∣∣S1(t)
S2(t) = c˜∗or S1(t)

S2(t) = b˜∗
}

α < 0, β > 0 two roots of the following quadratic equation

1
2σ

2θ2 + (r − δ − 1
2σ

2)θ − (r + λ) = 0

α1 < 0, β1 > 0 two roots of the following quadratic equation

1
2σ

2θ2 + (δ1 − δ2 −
σ2

2 )θ − (δ1 + λ) = 0

7



where σ2 = σ2
1 + σ2

2 − 2ρσ1σ2.

α2 < 0, β2 > 0 two roots of the following quadratic equation

1
2σ

2θ2 + (δ2 − δ1 −
σ2

2 )θ − (δ2 + λ) = 0

where σ2 = σ2
1 + σ2

2 − 2ρσ1σ2.

α∗ < 0, β∗ > 0 two roots of the following quadratic equation

1
2σ

2x2 + µx− λ = 0

8



CHAPTER 2

PRELIMINARIES

2.1 Esscher transforms

Esscher transforms is a time-honored technique in actuarial science. It was

first introduced by F. Esscher in 1932. Gerber and Shiu (1994a) extends the con-

cept of Esscher transforms from the case for a single random variable to that for

a Levy process. Let {X(t)} be a Levy process and h be a real number. The ex-

pectation of g (X(t), 0 ≤ t ≤ T ) with respect to the changed probability measure,

indexed by h, is defined as

E [g (X(t), 0 ≤ t ≤ T ) ; h] =
E
[
g (X(t), 0 ≤ t ≤ T ) ehX(T )

]
E [ehX(T )]

Esscher transforms have very elegant factorization formulas

E
[
ekX(T )g (X(t), 0 ≤ t ≤ T ) ; h

]
= E

[
ekX(T ); h

]
× E [g (X(t), 0 ≤ t ≤ T ) ; h+ k]

For an n-dimensional Levy process {X(t)} =
{

(X1(t), · · · , Xn(t))
′}
, and vector

h = (h1, · · · , hn)
′
, k = (k1, · · · , kn)

′
. The expectation of g (X(t), 0 ≤ t ≤ T )

with respect to the changed probability measure, indexed by h, is defined as

E [g (X(t), 0 ≤ t ≤ T ) ; h] =
E
[
g (X(t), 0 ≤ t ≤ T ) e〈h,X(T )〉

]
E [e〈h,X(T )〉]

Correspondingly, the factorization formula can be extended to

E
[
e〈k,X(T )〉g (X(t), 0 ≤ t ≤ T ) ; h

]
= E

[
e〈k,X(T )〉; h

]
× E [g (X(t), 0 ≤ t ≤ T ) ; h+ k]

9



Let X(t) = µt+ σB(t), t > 0 be a Brownian motion, we have

E
[
ezX(t); h

]
=

E
[
e(z+h)X(t)

]
E [ehX(t)]

= MX(t)(z + h)
MX(t)(h)

= exp
(
z(µ+ hσ2)t+ z2σ2t

2

)

The above means that under Esscher transform indexed by h, a Brownian motion

with drift µ and volatility σ is still a Brownian motion with the same volatility σ,

but with a changed drift µ + hσ2. If h = −2µ
σ2 , the drift of X(t) is changed to its

negative. Therefore, {X(t), t > 0} under Esscher transform indexed by −2µ
σ2 can

be thought as a reflection of {X(t), t > 0} under the original measure.

2.2 Reflection principle

Theorem 2.2.1. (The reflection principle). Let X(t) be a Brownian motion as

defined in (1.3.1), if µ = 0, we have

Pr [X(T ) ≤ x andM(T ) > y] = Pr [X(T ) ≤ x− 2y] , y ≥ max(x, 0).

(2.2.1)

If µ is not necessary 0, then

Pr [X(T ) ≤ x andM(T ) > y] = eRyPr [X(T ) ≤ x− 2y] , y ≥ max(x, 0).

(2.2.2)

where R equals to 2µ
σ2 .

Remark 2.2.1. When µ 6= 0, R = 2µ
σ2 is the non-zero number such that

{
e−RX(t), t ≥ 0

}
is a martingale.
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2.3 The Poisson process and the Erlang distribution

Consider a Poisson process {N(t)} with rate λ, and denote the time of the

first event by τ1. Further, for n > 1, let τn denote the elapsed time between the

(n−1)st and the nth event. We know τn, n = 1, 2, . . ., are independent identically

distributed exponential random variables with rate parameter λ. If we use Tn to

denote the arrival time of the nth event, it is easily seen that

Tn =
n∑
i=1

τi, n ≥ 1 (2.3.1)

Therefore, Tn has a gamma distribution with parameters n and λ. That is, the

probability density function of Tn is

fTn(t) = e−λt
λntn−1

(n− 1)!

The gamma distribution with a positive integer shape parameter is also called the

Erlang distribution. Because of the equivalence of the following two events

Tn > t ⇐⇒ N(t) < n

the two events have the same probabilities,

P (Tn > t) = P (N(t) < n) (2.3.2)

That is, ∫ ∞
t

λne−λs
sn−1

(n− 1)!ds =
n−1∑
j=0

e−λt
(λt)j
j! (2.3.3)

which can also be derived by integration by parts. Consequently,

P (Tn > t ≥ Tn−1) = P (Tn > t)− P (Tn−1 > t) = e−λt
(λt)n−1

(n− 1)! (2.3.4)
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2.4 Feynman–Kac theorem

Theorem 2.4.1. Suppose X(t) satisfies the stochastic differential equation

dX(t) = µ (X(t), t) dt+ σ (X(t), t) dB(t)

Then the function

h(x, t) = E
[
e−
∫ T
t
r(X(u), u)dug (X(T )) | X(t) = x

]

solves the partial differential equation

ht + µ(x, t)hx + 1
2σ

2(x, t)hxx = r(x, t)h(x, t) (2.4.1)

with the boundary condition

h (x, T ) = g (x) .
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CHAPTER 3

BARRIER OPTION

In this chapter, I will extend the reflection principle to a multivariate geo-

metric Brownian motion using Esscher transforms. This method has been applied

by Jun Yang to study the price of the barrier options and the lookback options.

We first use it to calculate the price of the outside up-and-out barrier option.

Through multiple reflections, the double barrier option could also be valued. At

last, the valuation method of the double barrier option whose boundary is the

time varying exponential function with different rates is provided.

3.1 Literature review

Prior works that have already been devoted to barrier options pricing include

Merton (1973), Reiner and Rubinstein (1991), Heynen and Kat (1994a, 1994b),

Kunitomo and Ikeda (1992), Geman and Yor (1996), Buchen and Konstandatos

(2009). Merton (1973) first provided a closed-form formula for a down and out

call option using the method of differential equations. Following Merton’s pa-

per, Reiner and Rubinstein (1991) used probabilistic methods to develop pricing

formulas for eight types of standard barrier options.The barrier options hedging

problem has been first proposed by Carr and Bowie (1994). They provide a static

hedging method for studying path-dependent options. Later, in Carr, Ellis and

Gupta (1998), they generalize this method to more general exotic options.

Both the method of differential equations and probabilistic methods have

been greatly extended to some complex barrier options. For example, partial time

barrier options, where the barrier is monitored only at the start or end of the life of

the option were priced by Heynen and Kat (1994a), using differential equations.

Another extention Heynen and Kat (1994b) made is to the case of two stocks

13



(outside barrier option), where the payoff function depends on one stock and the

barrier event depends on another stock. Later, Kwok, Wu and Yu (1998) consider

options written on the maximum of several assets.

Working in a slightly different direction, using the probability density func-

tion, Kunitomo and Ikeda (1992) first derived the valuation formulas for double-

knock-out call and put, which is an option with two distinct triggers that define the

fluctuation of an underlying asset. Alternatively, Geman and Yor (1996) derived

an expression for Laplace transformations of the double knock-out call and put

and then numerically inverted these expression to obtain the required price. The

innovation has continued; Buchen and Konstandatos (2009) considered an arbi-

trary double-knock-out barrier option with exponential time varying boundaries.

The method they used was termed as the method of images for the Black-Scholes

equation.

3.2 Generalized reflection principle

In this section, I will extend the reflection principle for Brownian motion to

a multivariate geometric Brownian motion case. Theorem 3.2.1 can be seen as an

application of the reflection principle for multivariate geometric Brownian motion.

In this chapter, we useR0 to denote a non-zero number such that
{
e−R0X0(t), t ≥ 0

}
is a martingale.

Proposition 3.2.1. Let


 X0(t)

X1(t)

 ; t ≥ 0

 be a two dimensional Brownian

motion. For a given function g (·), we have

E
[(
e−R0X0(t)

)
g
(
−X0(t), X1(t)− 2ρ1

σ1

σ0
X0(t)

)]
= E [g (X0(t), X1(t))] (3.2.1)
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Proof. By the factorization formula, we have

E
[(
e−R0X0(t)

)
g
(
−X0(t), X1(t)− 2ρ1

σ1

σ0
X0(t)

)]

= E
[
e−R0X0(t)

]
× E

g (−X0(t), X1(t)− 2ρ1
σ1

σ0
X0(t)

)
;

 −R0

0


 (3.2.2)

Since
{
e−R0X0(t), t ≥ 0

}
is a martingale and X0(0) = 0, we have E

[
e−R0X0(t)

]
= 1.

Also, we have the following relationship

 −X0(t)

X1(t)− 2ρ1
σ1
σ0
X0(t)

 =

 −1 0

−2ρ1
σ1
σ0

1


 X0(t)

X1(t)

 .

Under the Esscher measure indexed by the parameter vector

 −R0

0

,

 −X0(t)

X1(t)− 2ρ1
σ1
σ0
X0(t)

 ; t ≥ 0


is a two dimensional Brownian motion with the drift vector

 −1 0

−2ρ1
σ1
σ0

1



 µ0

µ1

+

 σ2
0 ρ1σ0σ1

ρ1σ0σ1 σ2
1


 −R0

0


 =

 µ0

µ1



and the diffusion matrix

 −1 0

−2ρ1
σ1
σ0

1


 σ2

0 ρ1σ0σ1

ρ1σ0σ1 σ2
1


 −1 −2ρ1

σ1
σ0

0 1

 =

 σ2
0 ρ1σ0σ1

ρ1σ0σ1 σ2
1

 .

Since a normal distribution is only determined by its mean and variance, the
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distribution of process


 −X0(t)

X1(t)− 2ρ1
σ1
σ0
X0(t)

 ; t ≥ 0



under the Esscher measure indexed by the parameter vector

 −R0

0

 is same as

that of the process


 X0(t)

X1(t)

 ; t ≥ 0

 under the original measure. Therefore,

E

g (−X0(t), X1(t)− 2ρ1
σ1

σ0
X0(t)

)
;

 −R0

0


 = E [g (X0(t), X1(t))] .

Following (3.2.2), we obtain the desired result.

Using Proposition 3.2.1, I will give the poof for Theorem 3.2.1 with two

stocks case. The proof can be easily generated to n stocks.

Theorem 3.2.1. For t ∈ [0, T ] and a given function g (·), define

f (S0(t), S1(t), · · · , Sn−1(t), t) = Et [g (S0(T ), S1(T ), · · · , Sn−1(T ))]

Then, for each positive constant B,

Et
[(
S0(T )−R0

)
g

(
B

S0(T ) , S1(T )S0(T )−2ρ1
σ1
σ0 , · · · , Sn−1(T )S0(T )−2ρn−1

σn
σ0

)]

=
(
S0(t)−R0

)
f

(
B

S0(t) , S1(t)S0(t)−2ρ1
σ1
σ0 , · · · , Sn−1(t)S0(t)−2ρn−1

σn
σ0 , t

)

Proposition 3.2.2 is the two-stock case of Theorem 3.2.1 and Proposition

3.2.3 is the special case with one stock.
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Proposition 3.2.2. For t ∈ [0, T ] and a given function g (·, ·), define

f (S0(t), S1(t), t) = Et [g (S0(T ), S1(T ))]

Then, for each positive constant B,

Et
[(
S0(T )−R0

)
g

(
B

S0(T ) , S1(T )S0(T )−2ρ1
σ1
σ0

)]

=
(
S0(t)−R0

)
f

(
B

S0(t) , S1(t)S0(t)−2ρ1
σ1
σ0 , t

)
(3.2.3)

Proof. Since S0(T ), S1(T ) can be written as S0(t)eX0(T )−X0(t) and S1(t)eX1(T )−X1(t),

the expectation of

(
S0(T )−R0

)
g

(
B

S0(T ) , S1(T )S0(T )−2ρ1
σ1
σ0

)

can be written as

Et
[
S0(t)−R0

(
eX0(T )−X0(t)

)−R0
g
(

B

S0(t)e
−(X0(T )−X0(t)),

S1(t)S0(t)−2ρ1
σ1
σ0 exp

[
(X1(T )−X1(t))− 2ρ1

σ1

σ0
(X0(T )−X0(t))

] )]

Following proposition 3.2.1, the above equals

Et
[
S0(t)−R0g

(
B

S0(t)e
(X0(T )−X0(t)), S1(t)S(t)−2ρ1

σ1
σ0 eX1(T )−X1(t)

)]

=
(
S0(t)−R0

)
f

(
B

S0(t) , S1(t)S0(t)−2ρ1
σ1
σ0 , t

)
.

Proposition 3.2.3. For t ∈ [0, T ] and a given (payoff) function g (.), if we define

f (S(t), t) = Et [g(S(T ))]. Then, for each positive constant B,

Et
[(
S(T )−R

)
g

(
B

S(T )

)]
=
(
S(t)−R

)
f

(
B

S(t) , t
)
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Remark 3.2.1. The result above can also be derived through the Feynman-Kac

Theorem 2.4.1. If we define

h(s, t) = s−Rf
(
B

s
, t
)
,

we can show that it satisfies the following partial differential equation

ht + (µ+ 1
2σ

2)shs + 1
2σ

2s2hss = 0. (3.2.4)

The derivatives of h(s, t) are

ht = s−Rft

(
B

s
, t
)

(3.2.5)

hs = −Rs−R−1f
(
B

s
, t
)
−Bs−R−2fs

(
B

s
, t
)

(3.2.6)

hss = R(R + 1)s−R−2f
(
B

s
, t
)

+BRs−R−3fs

(
B

s
, t
)

+B(R + 2)s−R−3fs

(
B

s
, t
)

+B2s−R−4fss

(
B

s
, t
)

(3.2.7)

Substituting the above derivatives into the left-hand side of (3.2.4), we have

s−Rft

(
B

s
, t
)
− (µ+ 1

2σ
2)Rs−Rf

(
B

s
, t
)
− (µ+ 1

2σ
2)Bs−R−1fs

(
B

s
, t
)

+ 1
2σ

2R(R + 1)s−Rf
(
B

s
, t
)

+ 1
2σ

2B(2R + 2)s−R−1fs

(
B

s
, t
)

+ 1
2σ

2B2s−R−2fss

(
B

s
, t
)

The above can be simplified as

s−R
(
ft

(
B

s
, t
)

+ (µ+ 1
2σ

2)B
s
fs

(
B

s
, t
)

+ 1
2σ

2
(
B

s

)2
fss

(
B

s
, t
))

(3.2.8)
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Since f (S(t), t) = Et [g(S(T ))] is a martingale, f(s, t) satisfies

ft + (µ+ 1
2σ

2)sfs + 1
2σ

2s2fss = 0.

Therefore, (3.2.8) equals zero. Also h(s, t) satisfies the terminal condition

h(s, T ) = s−Rf
(
B

s
, T
)

= s−Rg
(
B

s

)

Therefore, according to the Feynman-Kac Theorem, we have

h(S(t), t) =
(
S(t)−R

)
f

(
B

S(t) , t
)

= Et
[(
S(T )−R

)
g

(
B

S(T )

)]

3.3 Main results

In this section, we defineMS(T ) = max
0≤t≤T

S(t) as the running maximum of the

stock price process and mS(T ) = min
0≤t≤T

S(t) as the running minimum of the stock

price process. Correspondingly, M(T ) without subscript S is defined as max
0≤t≤T

X(t)

and m(T ) without subscript S is defined as min
0≤t≤T

X(t). Claim 3.3.1 considers the

pricing problem of barrier options whose payoff depends on the value of two stocks,

the barrier stock being one of them. This can be thought as a slight generalization

of the outside barrier option, which is studied in Heynen and Kat (1994b).

Claim 3.3.1. If the initial stock price S0(0) is lower than level U , the payoff function

π (S0(T ), S1(T ))× I(MS0(T ) < U) (3.3.1)

has the same expectation as that of

π (S0(T ), S1(T ))× I(S0(T ) < U)

−
(
S0(T )
U

)−R0

π

 U2

S0(T ) , S1(T )
(
S0(T )
U

)−2ρ10
σ1
σ0

× I(S0(T ) > U) (3.3.2)
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Proof. There are two situations over the time interval [0, T ].

a, The barrier U is never hit before time T , then the payoff from (3.3.1) is

π(S0(T ), S1(T )), which is the same as the payoff from (3.3.2);

b, The barrier U is hit before time T . At the hitting time, the up-and-out

option becomes void, and hence there is no longer any payoff. We need to show

that the expectation of (3.3.2) taken at the hitting time is also zero.

Consider g(s0, s1) = π(s0, s1)× I(s0 < U), and TU is the first passage time

(hitting time) when S0(t) hits the barrier U , which is defined as

TU = inf
{
t ≥ 0

∣∣∣∣∣S0(t) = U

}
(3.3.3)

According to the definition in proposition 3.2.2, the expectation of the first term

of (3.3.2) can be written as

f (U, S1(TU), TU) = ETU [g(S0(T ), S1(T ))]

and the second term of (3.3.2) can be written as

(
S0(T )
U

)−R0

π

 U2

S0(T ) , S1(T )
(
S0(T )
U

)−2ρ10
σ1
σ0

× I( U2

S0(T ) < U)

According to the definition of g (·, ·), the expectation of the above can be written

as

ETU

(S0(T )
U

)−R0

g

 U2

S0(T ) , S1(T )
(
S0(T )
U

)−2ρ10
σ1
σ0

 .
Following proposition 3.2.2, given B = U2, the above equals to

(
S0(TU)
U

)−R0

f

 U2

S0(TU) , S1(TU)
(
S0(TU)
U

)−2ρ10
σ1
σ0
, TU

 .
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Since at time TU , S0(TU) equals U , we have

(
S0(TU)
L

)−R0

f

 U2

S0(TU) , S1(TU)
(
S0(TU)
U

)−2ρ10
σ1
σ0
, TU

 = f (U, S1(TU), TU) .

The expectation of the second term in (3.3.2) equals to f (U, S1(TU), TU), which

is same as the expectation of the first term in (3.3.2). Therefore, the expectation

of (3.3.2) taken at the first passage time TU is zero.

Remark 3.3.1. The intuition is that the up-and-out payoff can be replicated by a

“buy/sell-and-hold” strategy, i.e., static hedging instead of dynamic hedging. At

time 0, an investor would long a security corresponding to the first term in (3.3.2),

and short a security corresponding to the second term in (3.3.2). Once the stock

price hits the barrier, the investor shorts the security corresponding to the first

term in (3.3.2), and uses the revenue to buy back security corresponding to the

second term in (3.3.2). Since the result that the expectation of (3.3.2) taken at

the time TU is zero will be frequently used, we refer to it as Fact 3.3.1.

Fact 3.3.1. If TU < T , taken at the time TU , the expectation of

π (S0(T ), S1(T ))× I(S0(T ) < U)

−
(
S0(T )
U

)−R0

π

 U2

S0(T ) , S1(T )
(
S0(T )
U

)−2ρ10
σ1
σ0

× I(S0(T ) > U)

is zero.

Correspondingly, for one stock case, we have the following fact. We will

use it to prove Claim 3.3.2, which is the price of the double barrier option with

arbitrary payoffs.

Fact 3.3.2. If the stock price S(t) hits the barrier U before expire date T , taken

at the hitting time, the expectation of

π (S(T ))× I(S(T ) < U)−
(
S(T )
U

)−R
π

(
U2

S(T )

)
× I(S(T ) > U) (3.3.4)
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is zero.

Example 3.3.1. (Up-and-Out exchange option) We calculate the price under

risk-neutral measure and assume two stocks do not pay dividends. If S2(0) < U ,

the payoff function

(S1(T )− S2(T ))+ × I(MS2(T ) < U) (3.3.5)

has the same expectation as that of

(S1(T )− S2(T ))+ × I(S2(T ) < U)

−
(
S2(T )
U

)−R2
S1(T )

(
S2(T )
U

)−2ρ12
σ1
σ2
− U2

S2(T )


+

× I( U2

S2(T ) < U) (3.3.6)

The expectation of the discounted value of

(S1(T )− S2(T ))+ × I(S2(T ) < U)

can be calculated straightforwardly by Esscher Transform. It equals

S1(0)NN
(
d1(ln S2(0)

U
), d2(ln S1(0)

S2(0)), ρ
)

− S2(0)NN
(
d3(ln S2(0)

U
), d4(ln S1(0)

S2(0)), ρ
)

(3.3.7)
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where

d1(x) = −
ln x+

(
r − 1

2σ
2
2 + ρ12σ1σ2

)
T

σ2
√
T

d2(x) =
ln x+ 1

2σ
2T

σ
√
T

d3(x) = −
ln x+

(
r + 1

2σ
2
2

)
T

σ2
√
T

d4(x) = d2(x)− σ2
√
T

ρ = σ2 − ρ12σ1

σ
, and σ2 = σ2

1 + 2ρ12σ1σ2 + σ2
2

The expectation of the discounted value of the second line in (3.3.6) can be cal-

culated using proposition 3.2.2 and the result in (3.3.7), it equals to

S1(0)
(
S2(0)
U

)−R2−2ρ12
σ1
σ2
NN

d1(ln U

S2(0)), d2

ln
S1(0)

U

(
S2(0)
U

)1−2ρ12
σ1
σ2

 , ρ


−
(
S2(0)
U

)−R2 U2

S2(0)NN
d3(ln U

S2(0)), d4

ln
S1(0)

U

(
S2(0)
U

)1−2ρ12
σ1
σ2

 , ρ


(3.3.8)

Therefore the price of the up-and-out exchange option equals

S1(0)NN
(
d1(ln S2(0)

U
), d2(ln S1(0)

S2(0)), ρ
)

− S2(0)NN
(
d3(ln S2(0)

U
), d4(ln S1(0)

S2(0)), ρ
)

− S1(0)
(
S2(0)
U

)−R2−2ρ12
σ1
σ2
NN

d1(ln U

S2(0)), d2

ln
S1(0)

U

(
S2(0)
U

)1−2ρ12
σ1
σ2

 , ρ


+
(
S2(0)
U

)−R2 U2

S2(0)NN
d3(ln U

S2(0)), d4

ln
S1(0)

U

(
S2(0)
U

)1−2ρ12
σ1
σ2

 , ρ


Claim 3.3.2. If the initial stock price S(0) is between level U and level L, the

23



double knock-out option with constant barrier whose payoff function is

π (S(T ))× I(MS(T ) < U)I(mS(T ) > L) (3.3.9)

has the same expectation as that of

∞∑
k=−∞

(
L

U

)−Rk
π

(
U2kS(T )
L2k

)
× I(L < U2kS(T )

L2k < U)

−
∞∑

k=−∞

(
Lk−1S(T )

Uk

)−R
π

(
U2k

L2(k−1)S(T )

)
× I(L < U2k

L2(k−1)S(T ) < U) (3.3.10)

Proof. Same as the proof of Claim 3.3.1, two situations are considered over the

time interval [0, T ].

a. The barriers U and L are never hit before time T , then the payoff from

(3.3.9) is π(S(T )), which is the same as the payoff from (3.3.10).

b. The barriers U or L is hit before time T . At the hitting time, the double

barrier option becomes void, and hence there is no longer any payoff. We need to

show that the expectation of (3.3.10) taken at the time when the stock price hits

either U or L is zero. Here the first passage (hitting) time is defined as

TU,L = inf
{
t ≥ 0

∣∣∣∣∣S(t) = U orS(t) = L

}

I will show the case at TU,L, the stock price equals U . The case of S(TU,L) = L

can be proved similarly . According to Fact 3.3.2, if we define

πk(s) =
(
Lk

Uk

)−R
π

(
U2ks

L2k

)
× I(L < U2ks

L2k )

taken at the time when the stock price first hit level U , the expectation of

πk (S(T ))× I(U
2kS(T )
L2k < U)
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equals to the expectation of

(
S(T )
U

)−R
πk

(
U2

S(T )

)
× I( U2kU2

L2kS(T ) < U)

=
(
S(T )Lk
Uk+1

)−R
π

(
U2(k+1)

L2kS(T )

)
× I(L < U2(k+1)

L2kS(T ) < U)

Therefore, the expectation of (3.3.10) taken at the time when the stock price

hits level U is zero. Now we show the expectation of the first sum in (3.3.10)

converges. The convergence of the second sum in (3.3.10) can be shown similarly.

Here, we assume π(x) is bounded by M when L ≤ x ≤ U . Since
(
L
U

)−R
> 1, the

convergence of the expectation of the sum from −∞ to 0 can be easily shown.

We shall use the ratio test to prove the convergence of the expectation of the sum

from 1 to ∞. Since when k goes to infinity,

E
[(

L
U

)−R(k+1)
I(L < U2(k+1)S(T )

L2(k+1) < U)
]

E
[(

L
U

)−Rk
I(L < U2kS(T )

L2k < U)
]

=
(
L

U

)−R Pr
(
ln( L2k+3

U2k+2S(0)) < X(T ) < ln( L2k+2

U2k+1S(0))
)

Pr
(
ln( L2k+1

U2kS(0)) < X(T ) < ln( L2k

U2k−1S(0))
)

Both the denominator and the numerator of the above go to zero. To keep the

calculation simple, we assume X(T ) = B(T ) (µ = 0 and σ = 1). Applying

L’Hospital’s rule, the above is proportional to

φ
(
ln( L2k+2

U2k+1S(0))
)
− φ

(
ln( L2k+3

U2k+2S(0))
)

φ
(
ln( L2k

U2k−1S(0))
)
− φ

(
ln( L2k+1

U2kS(0))
)

where φ(x) is the density function of the standard normal distribution. The result

that the above converges to zero as k goes to infinity can be obtained by algebra.

Therefore, the expectation of the first sum in (3.3.10) converges.

Combining the Fact 3.3.1 and the proving of Claim 3.3.2, we are able to

calculate the value of the double outside knock-out option with flat bound. We
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give the result without proof.

Claim 3.3.3. If the initial stock price S0(0) is between level U and level L, double

outside knock-out option with constant barrier whose payoff function is

π (S1(T ), S0(T ))× I(MS0(T ) < U)I(mS0(T ) > L) (3.3.11)

has the same expectation as that of

∞∑
k=−∞

(
L

U

)−R0k

π

S1(T )
(
Lk

Uk

)−2ρ10
σ1
σ0
,
U2kS0(T )

L2k

× I(L < U2kS0(T )
L2k < U)

−
∞∑

k=−∞

(
Lk−1S0(T )

Uk

)−R0

π

S1(T )
(
S0(T )Lk−1

Uk

)−2ρ10
σ1
σ0
,

U2k

L2(k−1)S0(T )


× I(L < U2k

L2(k−1)S0(T ) < U) (3.3.12)

Now we generalize the boundaries of the double barrier option to be timed-

dependent. We assume the upper and lower boundaries have the form U(t) =

Ueβt and L(τ) = Leαt, with U > L > 0 and β > α > 0. We define the first

passage(hitting) time as

T
′

U,L = inf
{
t ≥ 0

∣∣∣∣∣S(t) = U(t) orS(t) = L(t)
}

(3.3.13)

Since at time T ′U,L, the stock price can be either U(T ′U,L) or L(T ′U,L), to distinguish

between two cases, we refer T ′U as the first hitting time S(T ′U) = U(T ′U) and for

all t < T
′
U , S(t) 6= L(t), and refer T ′L as the first hitting time S(T ′L) = L(T ′L) and

for all t < T
′
L , S(t) 6= U(t). Therefore the first passage T ′U,L either equals to T ′U

or T ′L. Similar to Fact 3.3.2, we have the following result.

Fact 3.3.3. If T ′U < T , taken at the time T ′U , the expectation of

π (S(T ))× I(S(T ) < U(T )) (3.3.14)
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is same as the expectation of

(
S(T )
U(T )

)−R′
π

(
U(T )2

S(T )

)
× I(U(T )2

S(T ) < U(T )) (3.3.15)

where R′ = 2(µ−β)
σ2 .

Proof. If we define g(s) = π(s) × I(s < U(T )), according to the definition in

proposition 3.2.3

f
(
S(T ′U), T ′U

)
= ET ′U (g(S(T )) (3.3.16)

By the factorization formula,

ET ′U

(S(T )
U(T )

)−R′
π

(
U(T )2

S(T )

)
× I(U(T )2

S(T ) < U(T ))


= ET ′U

(S(T )
U(T )

)−R′× ET ′U

(
π

(
U(T )2

S(T )

)
× I(U(T )2

S(T ) < U(T )), −R′
)

Because of the martingale property,

ET ′U

(S(T )
U(T )

)−R′ = 1

and

ET ′U

(
π

(
U(T )2

S(T )

)
× I(U(T )2

S(T ) < U(T )), −R′
)

= ET ′U

(
g

(
U(T )2

S(T )

)
, −R′

)

= ET ′U

g
U(T ′U)2e2β(T−T ′U )

S(T ′U) e−[X(T )−X(T ′U ]

 , −R′
 .

Under the changed probability measure indexed by −R′ , the drift of the linear
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Brownian motion {X(t)} is changed from µ to µ− 2(µ−β)
σ2 σ2 = −µ+ 2β. Hence

ET ′U

g
U(T ′U)2e2β(T−T ′U )

S(T ′U) e−[X(T )−X(T ′U )]

 , −R′


= ET ′U

g
U(T ′U)2e2β(T−T ′U )

S(T ′U) e[X(T )−X(T ′U )]−2β(T−T ′U )


= f

(
U(T ′U)2

S(T ′U) , T
′

U

)

Since S(T ′U) = U(T ′U), we get the desired result.

Now we can calculate the price of a double barrier option with exponential

time varying upper and lower barrier levels.

Claim 3.3.4. If the initial stock price S(0) is between level U and level L, the double

knock-out option with exponential time varying barrier whose payoff function is

π(S)× I
(
Leαt < S(t) < Ueβt, for any t ∈ (0, T ]

)
(3.3.17)

has the same expectation as that of

∞∑
k=−∞

(
Lk(k+1)

Uk2Sk

)−R′ (
Uk(k−1)Sk

Lk2

)−R′′
π

(
U2kS

L2k

)
× I(L < U2kS

L2k < U)

−
∞∑

k=−∞

(
Lk(k+1)Sk+1

U (k+1)2

)−R′ (
Uk(k+1)

Lk2Sk

)−R′′
π

(
U2(k+1)

L2kS

)
× I(L < U2(k+1)

L2kS
< U)

(3.3.18)

where R′ = 2(µ−β)
σ2 and R′′ = 2(µ−α)

σ2 . To simplify the notation, we use S, U and L

to denote S(T ), U(T ) and L(T ).

Proof. Similar to the previous proofs, there are two cases over the time interval

[0, T ]. If the barrier U(t) and L(t) are never hit before time T , the payoff function

of (3.3.17) is π(S) , which is same as the payoff function in (3.3.18). Conversely, if

either barrier U(t) and L(t) is hit before time T , the payoff function of (3.3.17) is

0. We need to show at the hitting time, the expectation of (3.3.18) also equals to
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zero. As the proof in Claim 3.3.3, we will show the case when S(T ′U,L) = U(T ′U,L),

namely, at time T ′U , the expectation of (3.3.18) equals zero. The case of S(T ′U,L) =

L(T ′U,L), namely, at time T ′L can be derived using the same method. According to

Fact 3.3.3, if we define

πk(s) =
(
Lk(k+1)

Uk2sk

)−R′ (
Uk(k−1)sk

Lk2

)−R′′
π

(
U2ks

L2k

)
× I(L < U2ks

L2k ),

taken at the time T ′U , the expectation of

πk (S)× I(U
2ks

L2k < U)

equals to the expectation of

(
S

U

)−R′
πk

(
U2

S

)
× I(U

2kU2

L2kS
< U)

the above equals to

(
Lk(k+1)Sk+1

U (k+1)2

)−R′ (
Uk(k+1)

Lk2Sk

)−R′′
π

(
U2(k+1)

L2kS

)
× I(L < U2(k+1)

L2kS
< U)

which is the term in the second line of (3.3.18). The convergence of the expecta-

tion of each line in (3.3.18) can be proved similarly to the proof in Claim 3.3.2.

Therefore, the expectation of (3.3.18) taken at time T ′U is zero.

Example 3.3.2. The time-0 price of the call option, which is nullified before its

expiry date whenever the underlying asset price reaches the upper boundary Beβt

or the lower boundary Aeαt for any t ∈ (0, T ]. The corresponding payoff function

is

(S(T )−K)+ × I
(
Leαt < S(t) < Ueβt, for any t ∈ (0, T ]

)
(3.3.19)

Here we assume L < K < U and 0 < α < β. According to Claim 3.3.4, it has the
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same expectation as that of

∞∑
k=−∞


(
LeαT

)k(k+1)

(UeβT )k2
S(T )k


−R′ 

(
UeβT

)k(k−1)
S(T )k

(LeαT )k2


−R′′ 

(
UeβT

)2k
S(T )k

(LeαT )2k −K


+

× I(LeαT <

(
UeβT

)2k
S(T )k

(LeαT )2k < UeβT ) (3.3.20)

−
∞∑

k=−∞


(
LeαT

)k(k+1)
S(T )k+1

(UeβT )(k+1)2


−R′ 

(
UeβT

)k(k+1)

(LeαT )k2
S(T )k


−R′′ 

(
UeβT

)2(k+1)

(LeαT )2k S(T )
−K


+

× I(LeαT <

(
UeβT

)2(k+1)

(LeαT )2k S(T )
< UeβT ) (3.3.21)

Here we calculate the price under risk-neutral measure and assume the stock does

not pay dividends, therefore µ = r − 1
2σ

2. Since D < K, (3.3.20) equals

∞∑
k=−∞


(
LeαT

)(k+1)

(UeβT )k S(T )


−kR′ 

(
UeβT

)(k−1)
S(T )

(LeαT )k


−kR′′ 

(
UeβT

)2k
S(T )k

(LeαT )2k −K


× I(K <

(
UeβT

)2k
S(T )k

(LeαT )2k < UeβT )

The expectation of the above can be calculated straightforwardly by Esscher

Transform. It equals

S(0)erT
∞∑

k=−∞

(
Uk

Lk

)kR′−(k−1)R′′+2 (
L

S(0)

)kR′′−kR′

×
(
N

[
d1(ln U

2kS(0)
L2kK

)
]
−N

[
d1(ln U2kS(0)

L2kUeβT
)
])

−K
∞∑

k=−∞

(
Uk

Lk

)kR′−(k−1)R′′ (
L

S(0)

)kR′′−kR′

×
(
N

[
d2(ln U

2kS(0)
L2kK

)
]
−N

[
d2(ln U2kS(0)

L2kUeβT
)
])

with

d1(x) =
ln x+

(
r + 1

2σ
2
)
T

σ
√
T
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d2(x) = d1(x)− σ
√
T

Through algebra calculation, (3.3.21) equals

∞∑
k=−∞


(
LeαT

)k(k−1)

(UeβT )(k−1)2
S(T )k−1


−R′ 

(
UeβT

)k(k−1)
S(T )k

(LeαT )k2


−R′′

×


(
LeαT

)2k

(UeβT )2(k−1) S(T )
−K

× I(K <

(
LeαT

)2k

(UeβT )2(k−1) S(T )
< UeβT )

The expectation of the above equals

S(0)erT
∞∑

k=−∞

(
Lk

Uk−1S(0)

)R′′k−R′ (k−1)+2

×
(
N

[
d1(ln L2kS(0)

U2k−2SK
)
]
−N

[
d1(ln L2k

U2k−2S(0)UeβT )
])

−K
∞∑

k=−∞

(
Lk

Uk−1S(0)

)R′′k−R′ (k−1)

×
(
N

[
d2(ln L2kS(0)

U2k−2SK
)
]
−N

[
d2(ln L2k

U2k−2S(0)UeβT )
])
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Therefore, the time-0 price of the double exponential barrier call option equals

S(0)
∞∑

k=−∞


(
N

[
d1(ln U

2kS(0)
L2kK

)
]
−N

[
d1(ln U2kS(0)

L2kUeβT
)
])

×
(
Uk

Lk

)kR′−(k−1)R′′+2 (
L

S(0)

)kR′′−kR′

−
(
N

[
d1(ln L2kS(0)

U2k−2SK
)
]
−N

[
d1(ln L2k

U2k−2S(0)UeβT )
])

×
(

Lk

Uk−1S(0)

)R′′k−R′ (k−1)+2


−Ke−rT
∞∑

k=−∞


(
N

[
d2(ln U

2kS(0)
L2kK

)
]
−N

[
d2(ln U2kS(0)

L2kUeβT
)
])

×
(
Uk

Lk

)kR′−(k−1)R′′ (
L

S(0)

)kR′′−kR′

−
(
N

[
d2(ln L2kS(0)

U2k−2SK
)
]
−N

[
d2(ln L2k

U2k−2S(0)UeβT )
])

×
(

Lk

Uk−1S(0)

)R′′k−R′ (k−1)


The result above corresponds to the result in Ikeda and Kuintomo (1992).

The essential difference (d2 → d1,R
′ → R

′ + 2,R′′ → R
′′ + 2) between the two

sum in the above expression is due to the change of the measure.
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CHAPTER 4

AMERICAN OPTION WITH EXPONENTIAL EXPIRY

DATE

4.1 Introduction

American options can be exercised at any time prior to the expiry date,

whereas European options can only be exercised at the expiry date. Since the

additional right should not be worthless, we expect American options to be worth

more than their European counterparts. For a standard American call option

without dividends, there is no advantage to exercise it prematurely. Therefore, it

can be valued in the same way as a European call option. However, the majority

of American options are subject to early exercise. An exercise boundary is a time

path of critical stock prices at which early exercise occurs. The optimal exercise

boundary of an American option is not known in advance but has to be determined

as part of the solution to the valuation problem. For general American options,

due to the absence of simple expressions for the optimal exercise boundary, we

have difficulty deriving closed form formulas.

In this chapter we consider the valuation problem of American options whose

expiry dates are exponentially distributed and independent of the underlying stock

price process. The owner of this kind of American options can exercise at any time

up to and including some random expiry date. Since the memory-less property of

the exponential distribution implies the exercise boundary is flat, the analytic pric-

ing formulas for American options with exponentially distributed expiry dates are

obtainable. Carr (1998) used the Black-Scholes PDE method to obtain the pricing

formula of an American put option with an exponentially distributed expiry date.

Motivated by Gerber and Shiu (1994b) and Gerber, Shiu and Yang (2012), I shall

provide two alternative probability methods for deriving the pricing formulas for
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American options with exponentially distributed expiry dates. The first method

calculates the price of American options as the sum of rebate options and barrier

options. The second method decomposes the value of American options into the

sum of the value of European options and the early exercise premium. The struc-

ture of this Chapter is as follows. In section 4.2, I use the American put option as

an example to illustrate how these two probability methods work. In section 4.3,

two methods are generalized to evaluate an exchange option. In section 4.4, the

pricing problem of American maximum options is considered.

4.2 Put option

4.2.1 Two methodologies

We assume under the risk neutral probability measure, the time t stock price

is also modeled as

S(t) = S(0)eX(t), t ≥ 0

and

X(t) = (r − δ − 1
2σ

2)t+ σB(t), t ≥ 0

where {B(t)} is a standard Brownian motion, and r, δ, σ are the constant risk-free

interest rate, the continuous dividend rate of the stock and the volatility of the

stock. We also define τ as an exponential random variable independent of {B(t)}

with the density function fτ (t) = λe−λt. Since the American option holder can

exercise the option at any time during the life of the option, in order to determine

the price of an American put option with a strike price K, we need to choose S˜
to maximize the following representation

sup
S˜ E

[
e−r(TS˜∧τ)[K − S(TS˜ ∧ τ)]+

]
, S(0) > S˜ (4.2.1)

where TS˜ is defined as the first passage time with respect to the exercise boundary
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S˜ ,
TS˜ = inf

{
t ≥ 0

∣∣∣∣∣S(t) = S˜
}

For the fixed time of expiry date, the optimal exercise boundary is time-

dependent. However, if the expiry date is exponentially distributed, the memory-

less property of the exponential distribution implies that as calendar time elapses,

the option gets no closer to its expiry date, and thus the passage of time has no

effect on its optimal exercise boundary. Therefore, the exercise boundary becomes

flat. If we use S to denote the optimal exercise boundary, we can rewrite (4.2.1)

as an iterated expectation:

E
{
E
[
e−r(TS∧τ)[K − S(TS ∧ τ)]+

∣∣∣∣∣τ
]}

=
∫ ∞

0
E
[
e−r(TS∧t)[K − S(TS ∧ t)]+

∣∣∣∣∣τ = t

]
fτ (t)dt

Because of the independence of the exponential random variable τ and the stock

price process, the above can be simplified as:

∫ ∞
0

E
[
e−r(TS∧t)[K − S(TS ∧ t)]+

]
λe−λtdt

=
∫ ∞

0
E
[
e−rTS [K − S]I(TS < t)

]
λe−λtdt

+
∫ ∞

0
E
[
e−rt[K − (S(t)]+I(TS > t)

]
λe−λtdt

= E
[
e−rTS [K − S]I(TS < τ)

]
+ E

[
e−rτ [K − (S(τ)]+I(TS > τ)

]
(4.2.2)

From the above, we can see that the value of an American put with an

exponentially distributed expiration date is the Laplace-Carson transform of a

fixed expiration date option which is the sum of a down-and-out put with barrier

S and rebateK−S, maximized over a barrier. For an American option with a fixed

expiration date, there is normally no closed form formula. However, for some of

these options there are closed formulas for their Laplace-Carson transforms. Hence

there is at least one way to price them numerically by inverting the transform.
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The second approach for determining the price of an American put option

with an exponentially distributed expiry date is motivated by another representa-

tion of the price of American options [a rigorous proof is given in Krylov (1980)]

E[e−rτ [K − S(τ)]+] +
∫ τ

0
e−rtE [[Kr − δS(t)] I(S(t) < S)] dt (4.2.3)

The first term of (4.2.3) represents the value of the usual European put option

while the second term of (4.2.3) represents the early exercise premium. The early

exercise premium can be understood as the compensation paid to the holder when

the early exercise right is forfeited. It can be expressed in terms of the exer-

cise boundary in the form of an integral. The optimal exercise boundary S can

be determined by applying the value matching condition at the optimal exercise

boundary S. This means at the optimal exercise boundary S, the value of the

American put option equals to its exercise value K − S.

4.2.2 Rebate option

We start to evaluate the first part of (4.2.2)

E
[
e−rTS [K − S]I(TS < τ)

]

which is an immediate rebate option with the payoff K −S. We will use the mar-

tingale approach to derive the formula. This approach is first developed in Gerber

and Shiu (1994b). We consider the stochastic process
{
e−rtS(t)θI(t < τ), t > 0

}
.

Because of the independence of the exponential random variable τ and the stock

price process, the martingale condition is equivalent to choosing θ such that

1
2σ

2θ2 + (r − δ − 1
2σ

2)θ − (r + λ) = 0 (4.2.4)

Let α < 0, β > 0 be the two roots of the above quadratic equation. Since we

evaluate the price of the an put option, the initial stock price S(0) > S. Following
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martingale with power α

{
e−rtS(t)αI (t < τ) , 0 < t < TS

}
(4.2.5)

is bounded. Applying the optional sampling theorem, we have

E
[
e−rTSS(TS)αI(TS < τ)

]
= S(0)α (4.2.6)

Since S(TS) = S, the time-0 value of immediate rebate K − S is,

(K − S) E[e−rTSI(TS < τ)] = (K − S)
(
S(0)
S

)α

Remark 4.2.1. For the case S(0) < S, the following process (the power of S(t) is

β) {
e−rtS(t)βI (t < τ) , 0 < t < TS

}
(4.2.7)

is a bounded martingale. Applying the optional sampling theorem and the condi-

tion S(TS) = S, we have

E[e−rTSI(TS < τ)] =
(
S(0)
S

)β

4.2.3 Barrier option

The second part of (4.2.2)

E
[
e−rτ [K − (S(τ)]+I(TS > τ)

]

is the time-0 value of a down-and-out put option with exponential expiration date.

The valuation problem of this option has been studied in Gerber, Shiu and Yang
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(2012). Here, we give a quick review. Since the following two events are equivalent,

TS > τ ⇐⇒ min
0≤t≤τ

S(t) > S

The payoff of a down-and-out put option equals

[K − S(τ)]+I( min
0≤t≤τ

S(t) > S) (4.2.8)

Using the notation in 1.3, the price of a down-and-out put option equals to the

expected discounted value of (4.2.8), which is

E
[
e−rτ [K − S(0)eX(τ)]+I(S(0)em(τ) > S)

]
. (4.2.9)

To evaluate the above, the key is to calculate so called discounted density function,

which is defined as

f rX(τ),m(τ)(x, y) =
∫ ∞

0
e−rtfX(t),m(t)(x, y)fτ (t)dt, y ≤ min(x, 0)

where fX(t),m(t)(x, y) is the joint probability density function of X(t) and m(t).

We give the detailed calculation of the above in the Appendix. Here, we give the

result directly

f rX(τ),m(τ)(x, y) = λ
1
2σ

2 e
−βx+(β−α)y, y ≤ min(x, 0). (4.2.10)

where β and α is defined in the previous section.

Remark 4.2.2. Integrating (4.2.10) over y, we obtain the discounted density func-

tion of X(τ).

f rX(τ)(x) =


κe−αx, x ≤ 0

κe−βx, x > 0
(4.2.11)

where κ = λ
1
2σ

2(β−α) .
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Once we know the discounted density function, (4.2.9) equals

λ
1
2σ

2

∫ 0∧ln( K
S(0))

ln
(

S

S(0)

) [∫ ln( K
S(0))

y
[K − S(0)ex]+ e

−βxdx

]
e(β−α)ydy

Depending on the different values of the initial stock price, the time-0 value of

down-and-out put options with an exponentially distributed expiry date have dif-

ferent representation. If S(0) > K, it equals

E[e−rτ [K − S(τ)]+ I(TS > τ)]

=
(
S(0)
K

)α (
κK

−α(1− α)

)

+
(
− λ

1
2σ

2
1
−αβ

K + λ
1
2σ

2
S

(1− α)(β − 1) −
κK(1−β)Sβ

β(β − 1)

)(
S(0)
S

)α
(4.2.12)

If S < S(0) ≤ K, it equals

E[e−rτ [K − S(τ)]+ I(TS > τ)]

= K
λ

λ+ r
− S(0) λ

λ+ δ
+
(
S(0)
K

)β (
κK

β(β − 1)

)

+
(
− λ

1
2σ

2
1
−αβ

K + λ
1
2σ

2
S

(1− α)(β − 1) −
κK(1−β)Sβ

β(β − 1)

)(
S(0)
S

)α
(4.2.13)

Remark 4.2.3. Following Gerber, Shiu and Yang (2012), the first part of (4.2.12),(
S(0)
K

)α (
κK

−α(1−α)

)
, is the price of an out-of-the-money European put with exponen-

tially distributed expiry date. Similarly, the price of an out-of-the-money Euro-

pean call with exponentially distributed expiry date equals
(
S(0)
K

)β (
κK

β(β−1)

)
. We

use the put-call parity to calculate the price of an in-the-money European put

with exponentially distributed expiry date, which is the second line of the equa-

tion (4.2.13).

K
λ

λ+ r
− S(0) λ

λ+ δ
+
(
S(0)
K

)β (
κK

β(β − 1)

)
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Remark 4.2.4. Because of the identity

Knock-out Option = Ordinary Option−Knock-in option

The last line of (4.2.12) and (4.2.13) is the price of the knock-in put option.

Remark 4.2.5. Through (4.2.6), we have

E[e−rTSI(TS < τ)] =
(
S(0)
S

)α

The above implies the price of one dollar payable at the first hitting barrier time

equals
(
S(0)
S

)α
. Because of the following relationships

α + β = −
(r − δ − 1

2σ
2)

1
2σ

2 and αβ = −(r + λ)
1
2σ

2

conditional on the initial stock price equals S, the price of the put option is

E[e−rτ [K − S(τ)]+ |S(0) = S]

= λ
1
2σ

2
1
−αβ

K − λ
1
2σ

2
S

(1− α)(β − 1) + κK(1−β)Sβ

β(β − 1)

Remark 4.2.6. Following Remarks 4.2.4 and 4.2.5, we have the following relation-

ship

E[e−rτ [K − S(τ)]+ I(TS < τ)]

= ETS [e−r(τ−TS) [K − S(τ)]+ |S(TS) = S]× E[e−rTSI(TS < τ)]

= E0[e−rτ [K − S(τ)]+ |S(0) = S]× E[e−rTSI(TS < τ)] (4.2.14)

Intuitively, to calculate the price of the down-and-in option with an exponentially
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distributed expiry date, we first discount the payoff function from the expiry date

to the first hitting barrier time, then discount it to the initial time. The second

equality of (4.2.14) is due to the memoryless property of the exponential distribu-

tion and the strong Markov property of the stock process.

4.2.4 First methodology

According to (4.2.2), the value of an American put with an exponentially

distributed expiry date equals to the sum of the value of an immediate rebate

K − S and a down-and-out put option. We have calculated each of them in the

previous sections. The sum of them equals, if K < S(0)

(
S(0)
K

)α (
κK

−α(1− α)

)

+
(
− λ

1
2σ

2
1
−αβ

K + λ
1
2σ

2
S

(1− α)(β − 1) −
κK(1−β)Sβ

β(β − 1) +K − S
)(

S(0)
S

)α
(4.2.15)

if S < S(0) ≤ K, it equals

K
λ

λ+ r
− S(0) λ

λ+ δ
+
(
S(0)
K

)β (
κK

β(β − 1)

)

+
(
− λ

1
2σ

2
1
−αβ

K + λ
1
2σ

2
S

(1− α)(β − 1) −
κK(1−β)Sβ

β(β − 1) +K − S
)(

S(0)
S

)α
(4.2.16)

If S(0) ≤ S, we should optimally exercise the option and the value of the American

option equals to its exercise value K − S(0). To determine the optimal exercise

boundary S, we would choose S to maximize (4.2.15) or (4.2.16). That is to choose

S to maximize

(
− λ

1
2σ

2
1
−αβ

K + λ
1
2σ

2
S

(1− α)(β − 1) −
κK(1−β)Sβ

β(β − 1) +K − S
)(

S(0)
S

)α
(4.2.17)
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If δ = 0, the optimal exercise boundary S has an explicit expression

S = K

(
r(β − 1)

λ

) 1
β

Otherwise, we need numerically calculate it. If S(0) > S, the time-0 value of an

American put option with an exponentially distributed expiration date is obtained

by substituting the value of S into (4.2.15) or (4.2.16). We set the parameters

δ = 0.01, σ = 0.3, r = 0.05. Figure 4.1 shows the relationship between the

optimal exercise boundary and the strike price. The ratio of the optimal exercise

boundary and the strike price is a fixed positive number. Figure 4.2 shows the

relationship between the optimal exercise boundary and the parameter of the

exponential distribution λ. Figure 4.3 and 4.4 graph the value of the American

put option with an exponential expiry date against the stock price.

Figure 4.1: Optimal exercise boundary vs Strike price

Remark 4.2.7. If λ→ 0, the optimal critical stock price will converge to K α
α−1 . It

equals to K r
r+ 1

2σ
2 , when the dividend rate equals zero.
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Figure 4.2: Optimal exercise boundary vs λ

Figure 4.3: American put option vs stock price with λ = 1

4.2.5 Second methodology

The second approach for determining the price of an American put option is

to decompose it into the sum of the value of the European put option and the early

exercise premium. For American put options with an exponentially distributed
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Figure 4.4: American put option vs stock price with K = 80

expiry date, the early exercise premium has the following integral representation,

KrE
[∫ τ

0
e−rtI(S(t) < S)dt

]
− δE

[∫ τ

0
e−rtS(t)I(S(t) < S)dt

]
(4.2.18)

An intuitive argument for the above representation is: Before the expiration date,

when the stock price is smaller than an exercise boundary, the option holder should

exercise the option. The option holder will receive [Kr−S(t)δ]dt at those times t

when the option has been exercised optimally. This is because the option holder

would have earned interest Krdt from the strike price received and lost dividend

S(t)δdt from the short position of the stock if he were to choose to exercise his put

option. In general the exercise boundary should depend on time t, but because of

the memory-less property of the exponential distribution, the exercise boundary
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is flat here. (4.2.18) equals

KrE
[∫ ∞

0
I(t < τ)e−rtI(S(t) < S)dt

]
− δE

[∫ ∞
0

I(t < τ)e−rtS(t)I(S(t) < S)dt
]

= KrE
[∫ ∞

0
e−λte−rtI(S(t) < S)dt

]
− δE

[∫ ∞
0

e−λte−rtS(t)I(S(t) < S)dt
]

= Kr

λ
E
[
e−rτI(S(τ) < S)

]
− δ

λ
E
[
e−rτS(τ)I(S(τ) < S)

]
= Kr

λ

(
S(0)
S

)α
κ

−α
− S(0)δ

λ

(
S(0)
S

)α−1
κ

1− α

The first equality is due to the independence of the expiry time and the stock price

process. The third equality is obtained by writing the expected value as an integral

with respect to the discounted density function ofX(τ) (4.2.11). Following Gerber,

Shiu and Yang (2012), if S(0) > K, the price of an out-of-the-money European

put with an exponentially distributed expiration date equals

E[e−rτ [K − S(τ)]+] =
(
S(0)
K

)α (
κK

−α(1− α)

)

If S(0) < K, we use put-call parity to generate the price of in-the-money case

E[e−rτ [K − S(τ)]+] = K
λ

λ+ r
− S(0) λ

λ+ δ
+
(
S(0)
K

)β (
κK

β(β − 1)

)
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Therefore, the value of an American put option with an exponentially distributed

expiry date equals



(
S(0)
K

)α (
κK

−α(1−α)

)
+
(
S(0)
S

)α
K r

λ
κ
−α −

S(0)δ
λ

(
S(0)
S

)α−1
κ

1−α
if K < S(0)

K λ
λ+r − S(0) λ

λ+δ +
(
S(0)
K

)β (
κK

β(β−1)

)
+
(
S(0)
S

)α
K r

λ
κ
−α −

S(0)δ
λ

(
S(0)
S

)α−1
κ

1−α ,
if S < S(0) ≤ K

K − S(0) if S(0) ≤ S

(4.2.19)

To determine S, we need to impose the continuity condition in (4.2.19) at the

optimal exercise boundary S, namely, the option value should be equal to the

exercise value at the optimal exercise boundary S. A financial interpretation of

the necessity of the continuity of the price is provided by Carr, P., Jarrow, R.,

and Myneni, R. (1992). After purchasing the American put option, the investor

would instantaneously exercise the option whenever the stock price falls to the

optimal exercise price and purchase back the option whenever the stock price rises

to the optimal exercise price. We require the high-contact condition in order to

ensure that these transactions are self-financing. Therefore we have the following

equation

K
λ

λ+ r
− S λ

λ+ δ
+
(
S

K

)β ( κK

β(β − 1)

)
+K

r

λ

κ

−α
− S δ

λ

κ

1− α = K − S

If the dividend rate equals to zero, the optimal exercise boundary S has an explicit

expression which is the same as the result of the first method.
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4.3 Exchange option

In this section, I generalize the above pricing methods to the case of the

American exchange option with an exponentially distributed expiration date. In

the remaining section, we assume the time t stock i, i = 1, 2 price is also modeled

as

Si(t) = Si(0)eXi(t), t ≥ 0

and

Xi(t) = (r − δi −
1
2σ

2
i )t+ σiBi(t), t ≥ 0

where r, δi, σi are the constant risk-free interest rate, the continuous dividend rate

of the stock i and the volatility of the stock i, respectively. Here, {B1(t), B2(t)} is a

two dimensional Wiener process with its correlation coefficient corr(B1(t), B2(t)) =

ρ. For S1(0)
S2(0) < c˜∗, the value of an American exchange option with exponentially

distributed expiry date can be represented as

sup
c˜∗ E

[
e
−r(T ratio

c˜∗ ∧τ)[S1(T ratioc˜∗ ∧ τ)− S2(T ratioc˜∗ ∧ τ)]+
]
, (4.3.1)

where T ratioc˜∗ is the first passage (hitting) time, which is defined as

T ratioc˜∗ = inf
{
t ≥ 0

∣∣∣∣∣S1(t)
S2(t) = c˜∗

}
(4.3.2)

= inf
{
t ≥ 0

∣∣∣∣∣S1(0)eX1(t)−X2(t) ≥ c˜∗S2(0)
}

The definition of T ratioc˜∗ indicates that the decision to exercise the option depends

on the ratio of two stock prices. If we use c∗ to denote the unknown optimal ratio,

depending on whether the first passage time is earlier than the expiry time or not,
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(4.3.1) is decomposed as the following

E
[
e−rT

ratio
c∗ [S1(T ratioc∗ )− S2(T ratioc∗ )]+I(T ratioc∗ < τ)

]
+ E

[
e−rτ [S1(τ)− S2(τ)]+I(T ratioc∗ ≥ τ)

]
(4.3.3)

We regard the first part of the above as a rebate option and the second part as a

barrier option.

4.3.1 Perpetual exchange option

To evaluate the first part of (4.3.3), we used the martingale approach which has

been used in Gerber and Shiu (1996a) to evaluate the price of a perpetual exchange

option. The first part of (4.3.3) is

E
[
e−rT

ratio
c∗ [S1(T ratioc∗ )− S2(T ratioc∗ )]+I(T ratioc∗ < τ)

]
(4.3.4)

where T ratioc∗ is defined according to (4.3.2). To evaluate (4.3.4), we consider the

stochastic process
{
e−rtS1(t)θS2(t)1−θI(t < τ), t > 0

}
. The martingale condition

is equivalent to choosing θ such that

σ2

2 θ
2 + (δ2 − δ1 −

σ2

2 )θ − (δ2 + λ) = 0 (4.3.5)

where σ =
√
σ2

1 + σ2
2 − 2ρσ1σ2. Let β2 > 0 and α2 < 0 be the two roots of the

equation (4.3.5). Since the initial ratio of the two stocks is smaller than c∗, we

consider the martingale

{
e−rtS1(t)β2S2(t)1−β2I(t < τ), t > 0

}
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Stopping the martingale at the finite stopping time t ∧ T ratioc∗ and applying the

optional sampling theorem yields

(
S1(0)
S2(0)

)β2

S2(0) = E
[
e−rT

r
c∗S1(T ratioc∗ )β2S2(T ratioc∗ )1−β2I(T ratioc∗ < τ)I(T ratioc∗ ≤ t)

]
+ E

[
e−rtS1(t)β2S2(t)1−β2I(t < τ)I(t < T ratioc∗ )

]
= c∗β2E

[
e−rT

r
c∗S2(T ratioc∗ )I(T ratioc∗ < τ)I(T ratioc∗ ≤ t)

]
+ e−rtE

[
S1(t)β2S2(t)1−β2I(t < τ)I(t < T ratioc∗ )

]

If T rc∗ > t, then S1(t) < c∗S2(t). Since β2 > 0 , we have

(
S1(t)
S2(t)

)β2

I(t < T ratioc∗ ) < c∗β2

Hence

e−rtE
[
S1(t)β2S2(t)1−β2I(t < τ)I(t < T ratioc∗ )

]
is bounded by e−rtc∗β2E [S2(t)I(t < τ)], which tends to 0 as t tends to ∞. There-

fore, as t tends to ∞, we have

(
S1(0)
S2(0)

)β2

S2(0) = c∗β2E
[
e−rT

ratio
c∗ S2(T ratioc∗ )I(T ratioc∗ < τ)

]

It follows from the representation of (4.3.4) and the condition S1(T ratio
c∗ )

S2(T ratio
c∗ ) = c∗that,

for S1(0)
S2(0) < c∗

E
[
e−rT

ratio
c∗ S2(T ratioc∗ )[S1(T ratioc∗ )

S2(T ratioc∗ ) − 1]+I(T ratioc∗ < τ)
]

=
(
S1(0)
S2(0)

)β2 S2(0)
c∗β2

(c∗ − 1)

(4.3.6)
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4.3.2 Exchange option with a slanted barrier

In this subsection, we consider the pricing problem of an exchange option with a

slanted barrier, which is the second part of (4.3.3). We would like to calculate

E
[
e−rτ [S1(τ)− S2(τ)]+I(T ratioc∗ > τ)

]
(4.3.7)

The expectation (4.3.7) is equivalent to

E
[
e−rτS2(τ)[S1(τ)

S2(τ) − 1]+I(T ratioc∗ > τ)
]

=
∫ ∞

0
e−rtE

[
S2(t)[S1(t)

S2(t) − 1]+I(T ratioc∗ > t)
]
fτ (t)dt

Since

E
[
S2(t)[S1(t)

S2(t) − 1]+I(T ratioc∗ > t)
]

=E [S2(t)]× E

[S1(t)
S2(t) − 1]+I(T ratioc∗ > t);

 0

1




and

E [S2(t)] = S2(0)e(r−δ2)t

The expectation (4.3.7) is equal to

E

e−δ2τ [S1(0)eX1(τ)−X2(τ) − S2(0)]+I(T ratioc∗ > τ);

 0

1


 (4.3.8)

The above can be thought as the value of an up-and-out call option for asset

S1(0)eX1(t)−X2(t) with strike price S2(0) and the force of interest δ2 .

Since

Var

X1(t)−X2(t);

 0

1


 = σ2

1 + σ2
2 − 2ρσ1σ2,
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which we write as σ2, and

E

X1(t)−X2(t);

 0

1


 = δ2 − δ1 −

1
2σ

2

Following (A.3) in Gerber, Shiu and Yang (2012), if S1(0) < S2(0) , (4.3.8) equals

to

(
S1(0)
S2(0)

)β2 ( κ2S2(0)
β2(β2 − 1)

)

+
(

λ

λ+ δ2
S2(0)− λ

λ+ δ1
c∗S2(0)− κ2S2(0)(1−α2) (c∗S2(0))α2

α2(α2 − 1)

)(
S1(0)
c∗S2(0)

)β2

(4.3.9)

If 1 ≤ S1(0)
S2(0) < c∗ , (4.3.8) equals to

S1(0) λ

λ+ δ1
− S2(0) λ

λ+ δ2
+
(
S1(0)
S2(0)

)α2 ( κ2S2(0)
α2(α2 − 1)

)

+
(

λ

λ+ δ2
S2(0)− λ

λ+ δ1
c∗S2(0)− κ2S2(0)(1−α2) (c∗S2(0))α2

α2(α2 − 1)

)(
S1(0)
c∗S2(0)

)β2

(4.3.10)

where κ2 = λ
1
2σ

2(β2−α2) .

Remark 4.3.1. The first part of (4.3.9) is the price of an out-of-the-money option

to exchange S2 for S1 at the exponential distributed expiry date, which means if

S1(0) ≤ S2(0),

E
[
e−rτ [S1(τ)− S2(τ)]+

]
=
(
S1(0)
S2(0)

)β2 ( κ2S2(0)
β2(β2 − 1)

)
(4.3.11)

Remark 4.3.2. The first line of (4.3.10) is the price of an in-the-money option to

exchange S2 for S1 at the exponential distributed expiry date. To evaluate it, we

first calculate the price of an out-of-the-money option to exchange S1 for S2. Due
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to the symmetry, if S2(0) ≤ S1(0), we have

E
[
e−rτ [S2(τ)− S1(τ)]+

]
=
(
S2(0)
S1(0)

)β1 ( κ1S1(0)
β1(β1 − 1)

)

where α1 < 0, β1 > 0 are the two roots of the equation (4.3.12), and κ1 =
λ

1
2σ

2(β1−α1)
σ2

2 θ
2 + (δ1 − δ2 −

σ2

2 )θ − (δ1 + λ) = 0 (4.3.12)

Applying put-call parity, if S2(0) < S1(0), the price of an in-the-money option to

exchange S2 for S1 equals

E
[
e−rτ [S1(τ)− S2(τ)]+

]
= S1(0) λ

λ+ δ1
− S2(0) λ

λ+ δ2
+
(
S2(0)
S1(0)

)β1 ( κ1S1(0)
β1(β1 − 1)

)
(4.3.13)

Remark 4.3.3. We have the following relationship for the roots of the equations

(4.3.5) and (4.3.12),

α1 + β2 = 1 β1 + α2 = 1

Following the above, we haveκ1 = κ2. Therefore, another representation of the

price of an out-of-the-money option to exchange S1 for S2 is

E
[
e−rτ [S2(τ)− S1(τ)]+

]
=
(
S1(0)
S2(0)

)α2 ( κ2S2(0)
α2(α2 − 1)

)

4.3.3 First methodology

From (4.3.3), the value of an American exchange option with exponentially dis-

tributed expiry date equals to the sum of the value of a rebate option and a barrier

exchange option. According to the calculation in the previous two subsections, if
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S1(0) < S2(0), the value of an American option to exchange S2 for S1 at the

exponential distributed expiry date is

(
S1(0)
S2(0)

)β2 ( κ2S2(0)
β2(β2 − 1)

)

−
(

λ

λ+ δ1
c∗ − λ

λ+ δ2
+ κ2c

∗α2

α2(α2 − 1) − (c∗ − 1)
)(

S1(0)
c∗S2(0)

)β2

S2(0)

if 1 ≤ S1(0)
S2(0) < c∗, it equals

S1(0) λ

λ+ δ1
− S2(0) λ

λ+ δ2
+
(
S1(0)
S2(0)

)α2 ( κ2S2(0)
α2(α2 − 1)

)

−
(

λ

λ+ δ1
c∗ − λ

λ+ δ2
+ κ2c

∗α2

α2(α2 − 1) − (c∗ − 1)
)(

S1(0)
c∗S2(0)

)β2

S2(0)

For the case of S1(0)
S2(0) ≥ c∗, the option should be optimally exercised. The exercise

value equals S1(0) − S2(0). To determine the optimal exercise ratio c∗, we select

c∗ to maximize the following

−
(

λ

λ+ δ1
c∗ − λ

λ+ δ2
+ κ2c

∗α2

α2(α2 − 1) − (c∗ − 1)
)(

S1(0)
c∗S2(0)

)β2

S2(0)

Taking derivative with respect to c∗ and setting it equal to zero, we have

δ2β2

λ+ δ2
c∗−β2 + δ1α1

λ+ δ1
c∗α1 + λ

λ+ δ2

β2

β1
c∗(α1−β1) = 0 (4.3.14)

The value of c∗ can be numerically calculated.

4.3.4 Second methodology

Similar to the put option, the second approach for determining the value

of an American exchange option is to decompose its value into the sum of the

price of a European exchange option and the early exercise premium. The value

of a European exchange option has been studied in (4.3.11) and (4.3.13). We now

calculate the early exercise premium. To compensate the option holders who lose
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the right of early exercise, cash flow [δ1S1(t) − S2(t)δ2]dt should be paid when

the option would have been exercised optimally. The exercise condition is the

following: the ratio of the two stocks is larger than the optimal exercise boundary

c∗. Therefore, the early exercise premium has the following representation

δ1E
∫ τ

0
e−rtS1(t)I(S1(t)

S2(t) > c∗)dt− δ2E
∫ τ

0
e−rtS2(t)I(S1(t)

S2(t) > c∗)dt (4.3.15)

The above equals

δ1

λ
E
[
e−rτS1(τ)I(S1(τ)

S2(τ) > c∗);
]
− δ2

λ
E
[
e−rτS2(τ)I(S1(τ)

S2(τ) > c∗)
]

= δ1

λ

∫ ∞
0

λe−λtE
[
e−rtS1(t)

]
× E

I(S1(t)
S2(t) > c∗);

 1

0


 dt

− δ2

λ

∫ ∞
0

λe−λtE
[
e−rtS2(t)

]
× E

I(S1(t)
S2(t) > c∗);

 0

1


 dt

= δ1

λ
E

e−δ1τS1(0)I(S1(τ)
S2(τ) > c∗);

 1

0


− δ2

λ
E

e−δ2τS2(0)I(S1(τ)
S2(τ) > c∗);

 0

1




If S1(0)
S2(0) < c∗, the above equals

δ1

λ
S1(0)

(
S1(0)
S2(0)c∗

)−α1 κ1

−α1
− δ2

λ
S2(0)

(
S1(0)
S2(0)c∗

)β2 κ2

β2
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Therefore, the formula for the price of an American option to exchange S2 for S1

equals



(
S1(0)
S2(0)

)β2 ( κ2S2(0)
β2(β2−1)

)
+ δ1

λ
S1(0)

(
S1(0)
S2(0)c∗

)−α1 κ1
−α1
− δ2

λ
S2(0)

(
S1(0)
S2(0)c∗

)β2 κ2
β2

if S1(0)
S2(0) < 1

S1(0) λ
λ+δ1 − S2(0) λ

λ+δ2 +
(
S2(0)
S1(0)

)β1 ( κ1S1(0)
β1(β1−1)

)
+ δ1

λ
S1(0)

(
S1(0)
S2(0)c∗

)−α1 κ1
−α1
− δ2

λ
S2(0)

(
S1(0)
S2(0)c∗

)β2 κ2
β2

if 1 ≤ S1(0)
S2(0) < c∗

S1(0)− S2(0) if c∗ ≤ S1(0)
S2(0)

(4.3.16)

Similar to the case of put option, to determine optimal exercise boundary c∗,

which is a ratio of two stocks, we impose the continuity condition in (4.3.16) at

the optimal exercise boundary c∗, which means the value of American exchange

option equal to its exercise value at the optimal exercise boundary c∗. We can

numerically solve the following equation for c∗

c∗
λ

λ+ δ1
− λ

λ+ δ2
+ 1
c∗β1

(
κ1c
∗

β1(β1 − 1)

)
+ δ1

λ
c∗

κ1

−α1
− δ2

λ

κ2

β2
= c∗ − 1

The above can be simplified as

c∗α1
δ1α1

λ+ δ1
+ δ2β2

λ+ δ2
c∗−β2 + λ

λ+ δ1

α1

α2
c∗(α1−β1) = 0

which is equivalent to equation (4.3.14).
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4.4 Maximum option

4.4.1 First methodology

In this section, I consider the valuation problem of American maximum

options with exponentially distributed expiry date. Similar to the examples of

American put options and American exchange options, it can also be priced by

two methodologies. For 0 < b˜∗ < S1(0)
S2(0) < c˜∗, the value of an American exchange

option with exponentially distributed expiry date can be represented as

sup
c˜∗,b˜∗E

[
e
−r(T ratio

c˜∗,b˜∗∧τ)max[S1(T ratioc˜∗,b˜∗ ∧ τ), S2(T ratioc˜∗,b˜∗ ∧ τ)]
]
, (4.4.1)

where T ratioc˜∗,b˜∗ is defined as

T ratioc˜∗,b˜∗ = inf
{
t ≥ 0

∣∣∣∣∣S1(t)
S2(t) = c˜∗or S1(t)

S2(t) = b˜∗
}

(4.4.2)

Here, it is sufficient to consider 0 < b˜∗ ≤ 1 ≤ c˜∗. The option holder will exercise

the option if the ratio of two stocks is either higher than c˜∗ or lower than b˜∗. If we
use c∗ and b∗ to denote the optimal ratios to make (4.4.1) maximized, depending

on whether the first passage time T ratioc∗,b∗ is earlier than the expiry date τ or not,

the first methodology calculates the price of the maximum option as the following

E
[
e−rT

ratio
c∗,b∗max[S1(T ratioc∗,b∗ ), S2(T ratioc∗,b∗ )]I(T ratioc∗,b∗ ≤ τ)

]
+ E

[
e−rτmax[S1(τ), S2(τ)]I(T ratioc∗,b∗ > τ)

]
(4.4.3)

The first expectation of (4.4.3) can be written as,

E
e−rT ratioc∗,b∗max[S1(T ratioc∗,b∗ ), S2(T ratioc∗,b∗ )]I(T ratioc∗,b∗ ≤ τ)

×
[
I(
S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = c∗) + I(

S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = b∗)

] (4.4.4)
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With the definitions

γ = E
[
e−rT

ratio
c∗,b∗S2(T ratioc∗,b∗ )I(T ratioc∗,b∗ ≤ τ)I(

S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = c∗)

]

and

η = E
[
e−rT

ratio
c∗,b∗S2(T ratioc∗,b∗ )I(T ratioc∗,b∗ ≤ τ)I(

S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = b∗)

]

we can rewrite the (4.4.4) as

γc∗ + η =
(
c∗ 1

) γ

η



To determine the expectation γ and η, we apply the similar argument in section

(4.3.1) to the following two martingales

{
e−rtS1(t)β2S2(t)1−β2I(t < τ), t > 0

}

and {
e−rtS1(t)α2S2(t)1−α2I(t < τ), t > 0

}
Applying the optional sampling theorem, if b∗ < S1(0)

S2(0) < c∗, we obtain the equa-

tions (
S1(0)
S2(0)

)β2

S2(0) = γc∗β2 + ηb∗β2

and (
S1(0)
S2(0)

)α2

S2(0) = γc∗α2 + ηb∗α2

whose solution is

 γ

η

 =

 c∗β2 b∗β2

c∗α2 b∗α2


−1

(
S1(0)
S2(0)

)β2
S2(0)(

S1(0)
S2(0)

)α2
S2(0)


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Therefore (4.4.4) equals

(
c∗ 1

) c∗β2 b∗β2

c∗α2 b∗α2


−1

(
S1(0)
S2(0)

)β2
S2(0)(

S1(0)
S2(0)

)α2
S2(0)

 (4.4.5)

The second expectation of (4.4.3)

E
[
e−rτmax[S1(τ), S2(τ)]I(T ratioc∗,b∗ > τ)

]
(4.4.6)

can be written as

E
[
e−rτmax[S1(τ), S2(τ)]

]
− E

{
e−rτmax[S1(τ), S2(τ)]I(T ratioc∗,b∗ ≤ τ)

[
I(
S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = c∗) + I(

S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = b∗)

]}

(4.4.7)

Motivated by (4.2.14), the second expectation of (4.4.7) can be written as

ET ratio
c∗,b∗

[e−r(τ−T
ratio
c∗,b∗ ) 1

S2(0)max[S1(τ), S2(τ)]|
S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = c∗]

× E[e−rT
ratio
c∗,b∗S2(T ratioc∗,b∗ )I(T ratioc∗,b∗ < τ)I(

S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = c∗)]

+ ET ratio
c∗,b∗

[e−r(τ−T
ratio
c∗,b∗ ) 1

S2(0)max[S1(τ), S2(τ)]|
S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = b∗]

× E[e−rT
ratio
c∗,b∗S2(T ratioc∗,b∗ )I(T ratioc∗,b∗ < τ)I(

S1(T ratioc∗,b∗ )
S2(T ratioc∗,b∗ ) = b∗)]
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Due to the memoryless property of the exponential distribution and the strong

Markov property of the stock process, the above equals

 E[e−rτ 1
S2(0)max[S1(τ), S2(τ)]|S1(0)

S2(0) = c∗]

E[e−rτ 1
S2(0)max[S1(τ), S2(τ)]|S1(0)

S2(0) = b∗]


′

×

 c∗β2 b∗β2

c∗α2 b∗α2


−1

(
S1(0)
S2(0)

)β2
S2(0)(

S1(0)
S2(0)

)α2
S2(0)

 (4.4.8)

Substituting the price of European maximum option with exponential distributed

expiry date, (4.4.8) equals

 c∗α2
(

κ1
−β1α2

)
+ λc∗

λ+δ1

b∗β2
(

κ2
−β2α1

)
+ λ

λ+δ2


′  c∗β2 b∗β2

c∗α2 b∗α2


−1

(
S1(0)
S2(0)

)β2
S2(0)(

S1(0)
S2(0)

)α2
S2(0)

 (4.4.9)

To determine the optimal value of c∗ and b∗, we need to maximize the following

which is the difference of (4.4.5) and (4.4.9)

 c∗α2
(

κ1
β1α2

)
+ δ1c∗

λ+δ1

b∗β2
(

κ2
β2α1

)
+ δ2

λ+δ2


′  c∗β2 b∗β2

c∗α2 b∗α2


−1

(
S1(0)
S2(0)

)β2
S2(0)(

S1(0)
S2(0)

)α2
S2(0)



Taking derivative with respect to c∗ and b∗ and setting them equal to zero, we

obtain
β1δ1c

∗

(λ+ δ1)

(
b∗

c∗

)β2

+ λ

λ+ δ2

α2

α1
b∗β2 = − α2δ2

λ+ δ2
(4.4.10)

and
λ

λ+ δ2

β2

β1

( 1
c∗

)β1

+ β2δ2

λ+ δ2

1
c∗

(
b∗

c∗

)−α2

= − α1δ1

λ+ δ1
(4.4.11)

The optimal exercise ratio c∗ and b∗ can be numerically calculated.
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4.4.2 Second methodology

Similar to the case of the put options and the exchange options, the price

of an American maximum option has another representation. The price can be

calculated as the sum of the price of a European maximum option and the early

exercise premium. The early exercise premium for a maximum option equals

δ1E
∫ τ

0
e−rtS1(t)I(S1(t)

S2(t) > c∗)dt+ δ2E
∫ τ

0
e−rtS2(t)I(S1(t)

S2(t) < b∗)dt

= δ1

λ
E

e−δ1τS1(0)I(S1(τ)
S2(τ) > c∗);

 1

0


+ δ2

λ
E

e−δ2τS2(0)I(S1(τ)
S2(τ) < b∗);

 0

1




If the ratio of the two stocks is between b∗ and c∗, b∗ < S1(0)
S2(0) ≤ c∗, the above equals

δ1

λ
S1(0)

(
S1(0)
S2(0)c∗

)−α1 κ1

−α1
− δ2

λ
S2(0)

(
S1(0)
S2(0)b∗

)α2 κ2

α2
(4.4.12)

If S1(0) < S2(0), the price of a European maximum option with an exponentially

distributed expiration date equals

E
[
e−rτmax [S1(τ), S2(τ)]

]
= E

[
e−rτmax [S1(τ)− S2(τ), 0]

]
+ E

[
e−rτS2(τ)

]
=
(
S1(0)
S2(0)

)β2 ( κ2S2(0)
β2(β2 − 1)

)
+ S2(0) λ

λ+ δ2
(4.4.13)

If S2(0) < S1(0), it equals

E
[
e−rτmax [S1(τ), S2(τ)]

]
= E

[
e−rτmax [S2(τ)− S1(τ), 0]

]
+ E

[
e−rτS1(τ)

]
=
(
S2(0)
S1(0)

)β1 ( κ1S1(0)
β1(β1 − 1)

)
+ S1(0) λ

λ+ δ1
(4.4.14)

When the ratio of the two stocks is lower than b∗ or higher than c∗, the option

should be optimally exercised and the option holders will be paid either S2(0)

or S1(0). Therefore, we have the following formula for the price of an American
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maximum option with exponentially distributed expiry date



S2(0) if S1(0)
S2(0) ≤ b∗

(
S1(0)
S2(0)

)β2 ( κ2S2(0)
β2(β2−1)

)
+ S2(0) λ

λ+δ2

+ δ1
λ
S1(0)

(
S1(0)
S2(0)c∗

)−α1 κ1
−α1
− δ2

λ
S2(0)

(
S1(0)
S2(0)b∗

)α2 κ2
α2

if b∗ < S1(0)
S2(0) ≤ 1

(
S2(0)
S1(0)

)β1 ( κ1S1(0)
β1(β1−1)

)
+ S1(0) λ

λ+δ1

+ δ1
λ
S1(0)

(
S1(0)
S2(0)c∗

)−α1 κ1
−α1
− δ2

λ
S2(0)

(
S1(0)
S2(0)b∗

)α2 κ2
α2

if 1 < S1(0)
S2(0) ≤ c∗

S1(0) if S1(0)
S2(0) > c∗

To determine the optimal exercise ratio c∗ and b∗, we impose the continuity con-

dition at c∗ and b∗ and have the following two equations,

b∗β2

(
κ2

β2(β2 − 1)

)
+ λ

λ+ δ2
+ δ1

λ
b∗
(
b∗

c∗

)−α1 κ1

−α1
− δ2

λ

κ2

α2
= 1 (4.4.15)

and

c∗−β1

(
κ1

β1(β1 − 1)

)
+ λ

λ+ δ1
+ δ1

λ

κ1

−α1
− δ2

λ

1
c∗

(
c∗

b∗

)α2 κ2

α2
= 1 (4.4.16)

Through algebra calculation, we can verify equations (4.4.15) and (4.4.16) are

equivalent to (4.4.10) and (4.4.11).

4.5 Appendix

4.5.1 Derivation of (4.2.10)

In Gerber, Shiu and Yang (2012), they provide a derivation for the dis-

counted density function f rX(τ),m(τ)(x, y). Here we give an alternative derivation.
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To simplify the derivation, we assume X(t) has the following density function

fX(t)(x) = 1√
2πtσ

e−
(x−µt)2

2σ2t

We first use the reflection principle to derive the joint probability density function

fX(t),M(t)(x, y)1

fX(t),M(t)(x, y) = − ∂2

∂y∂x
Pr [X(t) ≤ x&M(t) > y]

= − ∂2

∂y∂x
eRyPr [X(t) ≤ x− 2y]

= − ∂

∂y
eRyfX(t)(x− 2y)

= −eRy
(
R + ∂

∂y

)
fX(t)(x− 2y)

Through algebra calculation, the joint probability density function fX(t),M(t)(x, y)

equals

fX(t),M(t)(x, y) = 2(2y − x)
σ3
√

2πt3
exp

µx−
1
2µ

2t− (2y−x)2

2t
σ2


Now we consider the discounted density function of X(τ) and M(τ), which is

defined as

f rX(τ),M(τ)(x, y) =
∫ ∞

0
e−rtfX(t),M(t)(x, y)fτ (t)dt, y ≥ max(x, 0) (4.5.2)

1The last equality is because of the exponential shift formula

∂

∂z
[eazg(z)] = aeazg(z) + eaz ∂

∂z
g(z) = eaz(a+ ∂

∂z
)g(z) (4.5.1)

It can also be derived by using the product rule.
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Substituting the joint probability density function fX(t),M(t)(x, y) and the density

function of τ into (4.5.2),

f rX(τ),M(τ)(x, y)

=
∫ ∞

0
e−rt

2(2y − x)
σ3
√

2πt3
exp

µx−
1
2µ

2t− (2y−x)2

2t
σ2

λeλtdt
= 2λ
σ2 exp(µx

σ2 )×
∫ ∞

0
exp

{
−

1
2µ

2 + σ2 (r − λ)
σ2 t

}
(2y − x)
σ
√

2πt3
exp

{
−(2y − x)2

2tσ2

}
dt

Because of the identity

∫ ∞
0

e−ζt
ae−

a2
2t

√
2πt3

dt = e−a
√

2ζ

which is the Laplace transform of the probability density function for the first

passage time of a standard Brownian motion at the level a, the discounted joint

density function f rX(τ),M(τ)(x, y) equals

f rX(τ),M(τ)(x, y) = exp(−2y − x
σ

√
2

1
2µ

2 + σ2 (r − λ)
σ2 )× 2λ

σ2 exp(µx
σ2 )

= 2λ
σ2 exp(µx

σ2 −
2y − x
σ2

√
2
(1

2µ
2 + σ2 (r − λ)

)
) (4.5.3)

Let µ = r − δ − 1
2σ

2, the above equals

λ
1
2σ

2 e
−αx−(β−α)y (4.5.4)

where α < 0, β > 0 are the two roots of the following quadratic equation.

1
2σ

2θ2 + (r − δ − 1
2σ

2)θ − (r + λ) = 0

To derive the discounted joint density function of X(τ) and m(τ), since

m(t) = −max {−X(s); 0 ≤ s ≤ t}
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we can use the previous result with M(t) replaced by −m(t) and
(
r − δ − 1

2σ
2
)
is

to be replaced by −
(
r − δ − 1

2σ
2
)
. The positive and negative roots of the equation

1
2σ

2θ2 − (r − δ − 1
2σ

2)θ − (r + λ) = 0

equals −α and −β. Therefore the discounted joint density function of X(τ) and

m(τ) equals

f rX(τ),m(τ)(x, y) = λ
1
2σ

2 e
−βx+(β−α)y, y ≤ min(x, 0).

Here in (4.5.4), we replace x with −x, y with −y, α with −β and β with −α.
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CHAPTER 5

AMERICAN OPTION WITH ERLANG EXPIRY DATE

5.1 Introduction

In this chapter, the expiry date of the option is extended from the expo-

nential distribution to the Erlang distribution. The Erlang distribution is a two-

parameter distribution, and the exponential can be seen as a special case of the

Erlang distribution. Similar to the exponential case, we calculate the price of

American options with an Erlang distributed expiry date as the sum of the price

of a corresponding European option and the early exercise premium. But the

calculation here is not as simple as the exponential case. The tedious calculation

is mainly due to the form of the optimal exercise boundary. The optimal exercise

boundary for an American option with an Erlang distributed expiry date takes

the form of a staircase. This is because the Erlang distribution with shape pa-

rameter n follows the same distribution as the sum of n independent exponential

distributions, and for the exponential distributed expiry date, the optimal exer-

cise boundary is flat. To determine the optimal exercise boundary, we recursively

impose the “value matching” condition for the price of the option at the optimal

exercise boundary. If we fix the mean of the Erlang distribution, and let n go to

infinity, the Erlang distribution will converge to a fixed point. Following that, the

price of the American option with an Erlang distributed expiry date will converge

to the price of the American option with a fixed date.

The structure of this chapter is as follows. In section 5.2, I derive the dis-

counted density function of X(Tn). Section 5.3 considers the valuation problem

of European style options with the Erlang distributed expiry date. Section 5.4

derives the formulas for the price of the American put option whose expiry date is

Erlang distributed. Section 5.4 numerically approximates the price of the Ameri-
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can put option with a fixed expiry date by the price of American put options with

the Erlang distributed expiry date. Section 5.6 includes the valuation of American

exchange options with the Erlang distributed expiry date .

5.2 Discounted density function of X(Tn)

Let {X(t) = µt+ σB(t), t ≥ 0}, where B(t) is a standard Brownian motion

(Wiener process), and µ and σ > 0 are constants. We also assume Tn follows

Erlang(n, λ) distribution and it is independent of the process {X(t)}. We are

now interested in the distribution of X(Tn). i.e., we want to find the probability

density function of X(Tn). One way to calculate the density function fX(Tn)(x) is

to integrate the product of the conditional density function of fX(Tn)|Tn(x | t) and

the density function fTn(t) with respect to t. It equals to

fX(Tn)(x) =
∫ ∞

0
fX(Tn)|Tn(x | t)fTn(t)dt

Because of the independence of Tn and {X(t)}, we have fX(Tn)|Tn(x | t) = fX(t)(x).

Therefore, the above equals

fX(Tn)(x) =
∫ ∞

0

1√
2πσ2t

e−
(x−µt)2

2σ2t
λn

(n− 1)!t
n−1e−λtdt

The integration seems difficult. To avoid this difficulty, we would calculate the

moment generating function of X(Tn) and then invert it to find fX(Tn)(x). The

moment generating function of X(Tn) equals

MX(Tn)(t) = E[etX(Tn)] = E[E[etX(Tn)|Tn]]

Because of the independence of Tn and {X(t)}, the above equals

( λ

λ−Ψ(t))n
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where Ψ(t) = µt + 1
2σ

2t2. Let α∗ < 0 and β∗ > 0 be the roots of the quadratic

equation
1
2σ

2x2 + µx− λ = 0

The moment generating function of X(Tn) is

MX(Tn)(t) = ( λ

−1
2σ

2(t− α∗)(t− β∗))n

Thus, the probability density function of X(Tn) is1

fX(Tn)(x) = 1
2πi

∫ i∞

−i∞
e−zxMX(Tn)(z)dz

= 1
2πi

∫ i∞

−i∞
e−zx( λ

−1
2σ

2(z − α∗)(z − β∗))ndz

If we define f(z) = e−zxMX(Tn)(z) and make the substitution z = Reiθ, we have

f(z)dz = f(Reiθ)Reiθidθ

For any x > 0, R > β∗ + 1, since

|f(Reiθ)Reiθi| = |e−ReiθxMX(Tn)(Reiθ)Reiθi| ≤ Ce−Rx cos(θ) 1
Rn−1(R− β∗)n ≤ C

1

The moment generating function is

MX(Tn)(t) =
∫ ∞
−∞

etxfX(Tn)(x)dx

By the Fourier inversion formula, the probability density function fX(Tn)(x) is

fX(Tn)(x) = 1
2π

∫ ∞
−∞

e−itxMX(Tn)(it)dt

Then make the change of variable z = it

fX(Tn)(x) = 1
2π

∫ i∞

−i∞
e−zxMX(Tn)(z)d (−iz)
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and

lim
R→∞

f(Reiθ)Reiθi = 0

according to the dominated convergence theorem, we have

lim
R→∞

∫ θ=−π2

θ=π
2

f(Reiθ)d
(
Reiθ

)
= 0

Figure 5.1: Semicircular contour in the right half-plane

We integrate f(z) with respect to the semicircular contour in the right half-

plane (Figure 5.1), because of the Residue Theorem, we have

1
2πi

(∫ iR

−iR
f(z)dz +

∫ −π2
π
2

f(Reiθ)Reiθidθ
)

= (−1)Res(f, β∗)

where Res(f, β∗) denotes the residual of f at β∗. Since when R goes to infinity,

the second part of the above goes to zero. We have for any x > 0,

fX(Tn)(x) = 1
2πi

∫ i∞

−i∞
e−zxMX(Tn)(z)dz = (−1)Res(f, β∗)
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and since β∗ is a pole of order n, we have

Res(f, β∗) = 1
(n− 1)! limz→β∗

( ∂
∂z

)n−1[(z − β∗)ne−zx( λ

−1
2σ

2(z − α∗)(z − β∗))n]

= 1
(n− 1)!(

−λ
1
2σ

2 )n lim
z→β∗

( ∂
∂z

)n−1[e−zx( 1
(z − α∗))n] (5.2.1)

To evaluate the (n−1)th derivative in (5.2.1), we apply the exponential shift for-

mula (4.5.1). By induction, we have

∂

∂z

m

[eazg(z)] = eaz(a+ ∂

∂z
)mg(z)

Making the substitution m = n − 1, a = −x and g(z) = (z − α∗)−n in the above

formula, we have

( ∂
∂z

)n−1[e−zx(z − α∗)−n]

= e−zx(−x+ ∂

∂z
)n−1[(z − α∗)−n]

= e−zx
n−1∑
k=0

(
n− 1
k

)
(−x)k( ∂

∂z
)n−1−k(z − α∗)−n

= e−zx
n−1∑
k=0

(
n− 1
k

)
(−1)n−1xk

(2n− 2− k)!
(n− 1)! (z − α∗)−n−(n−1−k)

Thus, (5.2.1) equals

1
(n− 1)!(

−λ
1
2σ

2 )ne−β∗x
n−1∑
k=0

(
n− 1
k

)
(−1)n−1xk

(2n− 2− k)!
(n− 1)! (β∗ − α∗)−2n+k+1

= −e
−β∗x

(n− 1)!(
λ

1
2σ

2(β∗ − α∗))n ×
n∑
k=1

(
n− 1
k − 1

)
xk−1 (2n− 1− k)!

(n− 1)! (β∗ − α∗)−n+k

= −( λ
1
2σ

2(β∗ − α∗))ne−β∗x
n∑
k=1

(
2n−k−1
n−k

)
(k − 1)!(β∗ − α∗)n−kx

k−1

Therefore, for x > 0, the probability density function of X(Tn) is

fX(Tn)(x) = (−1)Res(f, β∗) = ( λ
1
2σ

2(β∗ − α∗))ne−β∗x
n∑
k=1

(
2n−k−1
n−k

)
(k − 1)!(β∗ − α∗)n−kx

k−1
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Similarly, to find fX(Tn)(x) for any x < 0, we integrate f(z) with respect to

the semicircular contour in the left half-plane (Figure 5.2), we have

Figure 5.2: Semicircular contour in the left half-plane

fX(Tn)(x) = 1
2πi

∫ i∞

−i∞
e−zxMX(Tn)(z)dz = Res(f, α∗)

and

Res(f, α∗) = 1
(n− 1)!(

−λ
1
2σ

2 )n lim
z→α∗

( ∂
∂z

)n−1[e−zx( 1
(z − β∗))n]

Therefore,

fX(Tn)(x) = Res(f, α∗) = ( λ
1
2σ

2(β∗ − α∗))ne−α∗x
n∑
k=1

(
2n−k−1
n−k

)
(k − 1)!(β∗ − α∗)n−k (−x)k−1

We summarize the above as the following Proposition.

Proposition 5.2.1. Let {X(t)} be a Brownian motion with drift parameter µ and

diffusion parameter σ2, and Tn be an Erlang(λ, n) random variable independent

of {X(t)}. The density function of X(Tn) is

fX(Tn)(x) =


κ∗ne−α

∗x
n∑
k=1

(2n−k−1
n−k )

(k−1)!(β∗−α∗)n−k (−x)k−1, x ≤ 0

κ∗ne−β
∗x

n∑
k=1

(2n−k−1
n−k )

(k−1)!(β∗−α∗)n−kx
k−1, x > 0

where κ∗ = λ
1
2σ

2(β∗−α∗) , and α∗ < 0 and β∗ > 0 are the roots of the quadratic
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equation
1
2σ

2x2 + µx− λ = 0.

Now we are interested in the discounted density function, which is defined

as

f rX(Tn)(x) =
∫ ∞

0
e−rtfX(t)(x)fTn(t)dt.

The discounted density function is useful when we calculate the price of options.

Lemma 5.2.1 is a factorization formula, and Lemma 5.2.2 can be thought as a

generalization of Proposition 5.2.1.

Lemma 5.2.1. Let {X(t)} be a Brownian motion with drift parameter µ and

diffusion parameter σ2, and Tn be an Erlang(λ, n) random variable independent

of {X(t)}. For a given function h(x), we have the following identity

E
[
e−rTnh (X(Tn))

]
= E

[
e−rTn

]
E∗ [h (X(Tn))] (5.2.2)

where the asterisk signifies that there is a change of probability measure such that

Tn follows the distribution Erlang(λ+ r, n).

Proof. We start with the left hand side of (5.2.2)

E
[
e−rTnh (X(Tn))

]
=
∫ ∞

0
e−rth (X(t)) fTn(t)dt

=
∫ ∞

0
e−rth (X(t)) λn

(n− 1)!e
−λttn−1dt

= λn

(λ+ r)n
∫ ∞

0
h (X(t)) (λ+ r)n

(n− 1)! e
−(λ+r)ttn−1dt

= E
[
e−rTn

]
E∗ [h (X(Tn))]

As an application of Lemma 5.2.1, the quantity of the discounted density

function is given in Lemma 5.2.2.
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Lemma 5.2.2. Let {X(t)} be a Brownian motion with drift parameter µ and

diffusion parameter σ2, and Tn be an Erlang(λ, n) random variable independent

of {X(t)}. The discounted density function equals

f rX(Tn)(x) =


κne−αx

n∑
k=1

(2n−k−1
n−k )

(k−1)!(β−α)n−k (−x)k−1, x ≤ 0

κne−βx
n∑
k=1

(2n−k−1
n−k )

(k−1)!(β−α)n−kx
k−1, x > 0

where κ = λ
1
2σ

2(β−α) , and α < 0 and β > 0 are the roots of the quadratic equation

1
2σ

2x2 + µx− (λ+ r) = 0. (5.2.3)

The above formula is the formula (2.36) in Gerber, Shiu and Yang (2012),

which was not derived by the method of complex variables.

5.3 European style options

To consider the pricing problem, we need to do the calculation under risk

neutral measure. We consider the drift parameter µ equals to r − δ − 1
2σ

2, which

means X(t) = (r − δ − 1
2σ

2)t + σB(t), t > 0. Similar to the previous chapters,

the time t stock price is also modeled as S(t) = S(0)eX(t), t ≥ 0. The following

lemma is useful to derive the price of an out-of-money European put option.

Lemma 5.3.1. Let Tn be an Erlang(n, λ) random variable independent of the

stock price process and L < S(0). For each m > α, the price of the out-of-the-

money all-or-nothing put option equals

E
[
e−rTn [S(Tn)]mI(S(Tn) < L)

]

=S(0)m
(

L

S(0)

)m−α
κn

(m− α)n
n−1∑
i=0

(
lnS(0)

L

)i
(m− α)i

i!

n−i−1∑
l=0

(m− α)l
(β − α)l

(
n− 1 + l

l

)

where κ = λ
1
2σ

2(β−α) , and α and β are the roots of the quadratic equation (5.2.3)

with µ = r − δ − 1
2σ

2.
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Proof. The expectation of e−rTn [S(Tn)]mI(S(Tn) < L) is the double integration,

with respect to x and t, of

e−rt[S(0)ex]mI(S(0)ex < L)fX(t)(x)fTn(t)

By defining the discounted density function

f rX(Tn)(x) =
∫ ∞

0
e−rtfX(t)(x)fTn(t)dt,

the expectation of e−rTn [S(Tn)]mI(S(Tn) < L) equals

∫ ∞
−∞

[S(0)ex]mI(S(0)ex < L)f rX(Tn)(x)dx

Substituting the discounted density function with the form we derived in the last

section, the above equals

∫ ln L
S(0)

−∞
[S(0)ex]mκne−αx

n∑
j=1

(
2n−j−1
n−j

)
(j − 1)! (β − α)n−j

(−x)j−1 dx

= S(0)mκn
n∑
j=1

(
2n−j−1
n−j

)
(j − 1)! (β − α)n−j

∫ ∞
lnS(0)

L

e−(m−α)xxj−1dx

Multiplying and dividing (m− α)n, the above equals

S(0)m κn

(m− α)n
n∑
j=1

(
2n−j−1
n−j

)
(j − 1)! (β − α)n−j

(m− α)n−j
∫ ∞

lnS(0)
L

e−(m−α)x(m− α)jxj−1dx

Because of the identity (2.3.2), we have the following

∫ ∞
lnS(0)

L

e−(m−α)x(m− α)jxj−1dx = (j − 1)!e(α−m)lnS(0)
L

j−1∑
i=0

(
(m− α)lnS(0)

L

)i
i!
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Therefore, the expectation of e−rTn [S(Tn)]mI(S(Tn) < L) equals

S(0)mκn
(m− α)n

n∑
j=1

(
2n−j−1
n−j

)
(j − 1)! (β − α)n−j

(m−α)n−j(j−1)!e(α−m)lnS(0)
L

j−1∑
i=0

(
(m− α)lnS(0)

L

)i
i!

= S(0)m
(
S(0)
L

)α−m
κn

(m− α)n
n∑
j=1

(
2n−j−1
n−j

)
(β − α)n−j (m− α)n−j

j−1∑
i=0

(
(m− α)lnS(0)

L

)i
i!

If we define n− j = l, the above equals to

S(0)m
(
S(0)
L

)α−m
κn

(m− α)n
0∑

l=n−1

(
n−1+l

l

)
(β − α)l (m− α)l

n−l−1∑
i=0

(
(m− α)lnS(0)

L

)i
i!

Interchanging the order of sum, the above equals

S(0)m
(

L

S(0)

)m−α
κn

(m− α)n
n−1∑
i=0

(
(m− α)lnS(0)

L

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β − α)l (m− α)l

The formula for the value of an out-of-the-money put option is given in

Corollary 5.3.1 below.

Corollary 5.3.1. If S(0) > K, The value of an out-of-the-money European put

option,

E[e−rTn [K − S(Tn)]+|S(0) > K]

= K

(
K

S(0)

)−α
κn

(−α)n
n−1∑
i=0

(
−αlnS(0)

K

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β − α)l (−α)l

− S(0)
(
K

S(0)

)1−α
κn

(1− α)n
n−1∑
i=0

(
(1− α)lnS(0)

K

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β − α)l (1− α)l (5.3.1)
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Proof. The expectation of e−rTn [K − S(Tn)]+ can be written as

E[e−rTnKI(S(Tn) < K)]− E[e−rTnS(Tn)I(S(Tn) < K)]

= KE[e−rTn [S(Tn)]0I(S(Tn) < K)]− E[e−rTnS(Tn)I(S(Tn) < K)]

If S(0) > K, according to Lemma 5.3.1, we have

= K

(
K

S(0)

)−α
κn

(−α)n
n−1∑
i=0

(
−αlnS(0)

K

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β − α)l (−α)l

− S(0)
(
K

S(0)

)1−α
κn

(1− α)n
n−1∑
i=0

(
(1− α)lnS(0)

K

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β − α)l (1− α)l

Remark 5.3.1. Following Carr (1998), we define

p = −α
β−α ; q = β

β−α ; p̂ = 1−α
β−α ; q̂ = β−1

β−α

R = λ
λ+r ; 2ε = β − α

for the case of that the dividend rate δ equals to zero, we have

κ
−α = qR and κ

1−α = q̂

The value of an out-of-the-money put option is

K

(
S(0)
K

)α
(qR)n

n−1∑
i=0

(
lnS(0)

K

)i
(2ε)i

i!

n−i−1∑
l=0

(
n− 1 + l

l

)
pi+l

−K
(
S(0)
K

)α
q̂n

n−1∑
i=0

(
lnS(0)

K

)i
(2ε)i

i!

n−i−1∑
l=0

(
n− 1 + l

l

)
p̂i+l

which is formula (43) in Carr (1998).

Lemma 5.3.2. Let Tn be an Erlang(n, λ) random variable independent of the
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stock price process. If S(0) < H, it can be shown that the price of out-of-the-

money all-or-nothing call option equals

E
[
e−rTn [S(Tn)]mI(S(Tn) > H)

]

= S(0)m
(
S(0)
H

)β−m
κn

(β −m)n
n−1∑
i=0

(
(β −m)ln H

S(0)

)i
i!

n−i−1∑
l=0

(β −m)l
(β − α)l

(
n− 1 + l

l

)

where κ, α and β are defined in Lemma 5.3.1.

Proof. Same as the proof in Lemma 5.3.1, the expectation of

e−rTn [S(Tn)]mI(S(Tn) > H)

equals

∫ ∞
ln H
S(0)

[S(0)ex]mκne−βx
n∑
j=1

(
2n−j−1
n−j

)
(j − 1)!(β − α)n−j x

j−1dx

= S(0)mκn
n∑
j=1

(
2n−j−1
n−j

)
(j − 1)!(β − α)n−j

∫ ∞
ln H
S(0)

e(m−β)xxj−1dx

= S(0)m κn

(β −m)n
n∑
j=1

(
2n−j−1
n−j

)
(j − 1)!(β − α)n−j (β −m)n−j

∫ ∞
ln H
S(0)

e(m−β)x(β −m)jxj−1dx

Because of the identity (2.3.2), we have the following

∫ ∞
ln H
S(0)

e(m−β)x(β −m)jxj−1dx = (j − 1)!e(m−β)ln H
S(0)

j−1∑
i=0

(
−(m− β)ln H

S(0)

)i
i!

Therefore, the expectation of e−rTn [S(Tn)]mI(S(Tn) > H) equals

S(0)mκn
(β −m)n

n∑
j=1

(
2n−j−1
n−j

)
(j − 1)!(β − α)n−j (β−m)n−j(j−1)!e(m−β)ln H

S(0)

j−1∑
i=0

(
−(m− β)ln H

S(0)

)i
i!

= S(0)m
(
H

S(0)

)m−β
κn

(β −m)n
n∑
j=1

(
2n−j−1
n−j

)
(β − α)n−j (β −m)n−j

j−1∑
i=0

(
−(m− β)ln H

S(0)

)i
i!
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If we define n− j = l, the above equals to

S(0)m
(
H

S(0)

)m−β
κn

(β −m)n
0∑

l=n−1

(
n−1+l

l

)
(β − α)l (β −m)l

n−l−1∑
i=0

(
−(m− β)ln H

S(0)

)i
i!

= S(0)m
(
S(0)
H

)β−m
κn

(β −m)n
n−1∑
i=0

(
(β −m)ln H

S(0)

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β − α)l (β −m)l

Corollary 5.3.2. If S(0) < K, The value of an out-of-the-money European call

option is

E[e−rTn [S(Tn)−K]+|S(0) < K]

= S(0)
(
S(0)
K

)β−1
κn

(β − 1)n
n−1∑
i=0

(
(β − 1)ln K

S(0)

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β − α)l (β − 1)l

−K
(
S(0)
K

)β
κn

βn

n−1∑
i=0

(
βln K

S(0)

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β − α)lβ

l (5.3.2)

Proof. The proof is similar as Corollary 5.3.1.

Remark 5.3.2. For the case of that the dividend rate δ equals to zero, we have

κ
β−1 = p̂; and κ

β
= pR

The value of an out-of-the-money call option is

S(0)
(
S(0)
K

)β−1

p̂n
n−1∑
i=0

(
ln K
S(0)

)i
(2ε)i

i!

n−i−1∑
l=0

(
n− 1 + l

l

)
q̂i+l

−K
(
S(0)
K

)β
(pR)n

n−1∑
i=0

(
ln K
S(0)

)i
(2ε)i

i!

n−i−1∑
l=0

(
n− 1 + l

l

)
qi+l

which is same as formula (44) in Carr (1998).
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5.4 American put option

In this section, I shall derive the formula for the price of an American put

option whose expiry date is Erlang distributed. We first provide following lemmas

which are useful to calculate the price of an American put option. Here, we define

Tn, n ≥ 1 according to (2.3.1), and they are independent of the stock price process.

Lemma 5.4.1. For non-negative functions g(x), we have the following identity

E[
∫ Tk

Tk−1
e−rtg(S(t))dt] = 1

λ
E[e−rTkg(S(Tk))] (5.4.1)

Proof. We start from left-hand side of (5.4.1)

E[
∫ Tk

Tk−1
e−rtg(S(t))dt] = E[

∫ ∞
0

I(Tk−1 ≤ t ≤ Tk)e−rtg(S(t))dt]

Since I(Tk−1 ≤ t ≤ Tk)e−rtg(S(t)) is non-negative, we could interchange the order

of integration and expectation, the right-hand side of the above equals

∫ ∞
0

E[I(Tk−1 ≤ t ≤ Tk)e−rtg(S(t))]dt (5.4.2)

Because of the independence of Tn, n ≥ 1 and the stock price process and (2.3.4),

(5.4.2) equals

∫ ∞
0

e−λt
(λt)k−1

(k − 1)!E[e−rtg(S(t))]dt

= 1
λ

∫ ∞
0

e−λt
λktk−1

Γ(k) E[e−rtg(S(t))]dt

Since e−λt λktk−1

Γ(k) is the density function of Erlang(k, λ) distribution, the above

could be written as
1
λ
E[e−rTkg(S(Tk))]

which is the right-hand side of (5.4.1).
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Lemma 5.4.2. The price of the payoff
∫ Tn

0 e−rtS(t)δdt equals

E
{∫ Tn

0
e−rtS(t)δdt

}
= S(0)− E

{
e−rTnS(Tn)

}
(5.4.3)

Proof. we can rewrite the left-hand side of (5.4.3) as an iterated expectation

E
{∫ Tn

0
e−rtS(t)δdt

}
= E

[
E
{∫ Tn

0
e−rtS(t)δdt

}
|Tn

]

Because of the independence of Tn and the stock price process, the right-hand side

of the above equals ∫ ∞
0

E
[∫ t

0
e−ruS(u)δdu

]
fTn(t)dt (5.4.4)

where fTn(t) is the density function of Tn. According to the Fundamental Theorem

Asset Pricing,

E
[∫ t

0
e−ruS(u)δdu

]
= S(0)− E

[
S(t)e−rt

]
Therefore (5.4.4) equals

∫ ∞
0

(
S(0)− E

[
S(t)e−rt

])
fTn(t)dt

= S(0)− E
{
e−rTnS(Tn)

}

Now, we are ready to calculate the value of an American put option whose

expiry date is Erlang distributed. Similar to the exponential case, an American

put option with Erlang distributed expiry date can be calculated as the sum of the

price of a European put option and the early exercise premium. If we assume the

expiry date Tn follows Erlang(n, λ), the early exercise premium can be represented

as

E
[∫ Tn

0
e−rt(Kr − δS(t))I(S(t) < St)dt

]
(5.4.5)

Here St is the optimal exercise boundary. In the exponential case, the optimal
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exercise boundary St is flat. Since an Erlang(n, λ) distribution can be viewed as

the sum of the n exponential distributions, i.e. Tn = ∑n
i=1 τi, where τi, n = 1, 2, . . .

, are independent and identically distributed exponential random variables with

rate parameter λ, the optimal exercise boundary takes the form of a piece wise

constant. We assume

Sn < Sn−1 < Sn−2 < . . . . . . < S1 < S0 = K

is the optimal exercise boundary in each sub-period. Then, if the initial stock

price is larger than exercise boundary Sn, the price of an American put option

can be represented as the expectation of

e−rTn [K − S(Tn)]+ +
n∑
k=1

[
∫ Tk

Tk−1
e−rt[Kr − S(t)δ]I(S(t) < Sn+1−k)dt] (5.4.6)

The first term of (5.4.6) can be written as

e−rTn [K − S(Tn)]+ = e−rTn [S(Tn)−K]+ + e−rTn [K − S(Tn)]

by put-call parity. Because of I(S(t) < Sn+1−k) = 1 − I(S(t) ≥ Sn+1−k), the

second term of (5.4.6) can be written as

n∑
k=1

[
∫ Tk

Tk−1
e−rt[Kr − S(t)δ]I(S(t) < Sn+1−k)dt]

=
m∑
k=1

[
∫ Tk

Tk−1
e−rt[Kr − S(t)δ]I(S(t) < Sn+1−k)dt]

+
n∑

k=m+1
[
∫ Tk

Tk−1
e−rt[Kr − S(t)δ](1− I(S(t) ≥ Sn+1−k))dt]

Also, we can see that the expectation of

n∑
k=m+1

[
∫ Tk

Tk−1
e−rt[Kr − S(t)δ]dt]
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is the same as that of2

−e−rTn [K − S(Tn)] + e−rTm [K − S(Tm)]

Therefore, the price of an American put option equals to the expectation of

e−rTn [S(Tn)−K]+ + e−rTm [K − S(Tm)]

+
m∑
k=1

[∫ Tk

Tk−1
e−rt[Kr − S(t)δ]I(S(t) < Sn+1−k)dt

]

−
n∑

k=m+1

[∫ Tk

Tk−1
e−rt[Kr − S(t)δ]I(S(t) > Sn+1−k)dt

]
(5.4.8)

Theorem 5.4.1. The price of the American put equals



pn(S(0)) +
n∑
k=1

bk(S(0)) S(0) > K

cn(S(0)) + vni (S(0)) +
n−i+1∑
k=1

bk(S(0))−
n∑

k=n−i+2
ak(S(0)) S(0) ∈ (Si, Si−1]

K − S(0) S(0) ≤ Sn

(5.4.9)

where pn(S(0)) is defined as (5.3.1) which is the price of an out-of-the-money
2

E
{

n∑
k=m+1

[
∫ Tk

Tk−1

e−rt[Kr − S(t)δ]dt]
}

= E
{∫ Tn

Tm

e−rt[Kr − S(t)δ]dt
}

= E
{∫ Tn

Tm

e−rtKrdt
}
− E

{∫ Tn

Tm

e−rtS(t)δdt
}

(5.4.7)

The first integral on the right hand side of (5.4.7)∫ Tn

Tm

e−rtKrdt = −K[e−rTn − e−rTm ]

According to Lemma 5.4.2, the last expectation in (5.4.7) is

E
{∫ Tn

Tm

e−rtS(t)δdt
}

= E
{
e−rTmS(Tm)

}
− E

{
e−rTnS(Tn)

}
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European put option, cn(S(0)) is defined as (5.3.2) which is the price of an out-

of-the-money European call option , bk(S(0)) is defined as

bk(s) =

Kr

λ

(
Sn+1−k

s

)−α κk

(−α)k
k−1∑
j=0

(
ln s
Sn+1−k

)j
(−α)j

j!

k−j−1∑
l=0

(−α)l
(β − α)l

(
k − 1 + l

l

)

− δ

λ
s
(
Sn+1−k

s

)1−α κk

(1− α)k
k−1∑
j=0

(
ln s
Sn+1−k

)j
(1− α)j

j!

k−j−1∑
l=0

(1− α)l
(β − α)l

(
k − 1 + l

l

)

which can be interpreted as the present value of the cash flow received for the kth

period if the initial price S(0) is larger than Sn+1−k, ak(S(0)) is defined as

ak(s) =

Kr

λ

(
s

Sn+1−k

)β
κk

βk

k−1∑
j=0

βj
(
lnSn+1−k

s

)j
j!

k−j−1∑
l=0

βl

(β − α)l

(
k − 1 + l

l

)

− δ

λ
s

(
s

Sn+1−k

)β−1
κk

(β − 1)k
k−1∑
j=0

(
lnSn+1−k

s

)j
(β − 1)j

j!

k−j−1∑
l=0

(β − 1)l
(β − α)l

(
k − 1 + l

l

)

which can be interpreted as the present value of the cash flow paid for the kth

period if the initial price S(0) is smaller than Sn+1−k and vni (S(0)) is defined as

vni (S(0)) = K

(
λ

λ+ r

)n−i+1

− S(0)
(

λ

λ+ δ

)n−i+1

which equals to price of the payoff K − S(Tn−i+1).

Proof. Recall we have the inequality

Sn < Sn−1 < Sn−2 < . . . . . . < S1 < S0 = K

For the case when S(0) > K, we use Corollary 5.3.1 to calculate the expectation

of the first term of (5.4.6), which is the price of an out-of-the-money put option.

The expectation of the second term of (5.4.6) can be calculated using Lemma 5.4.1
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and Lemma 5.3.1. According to Lemma 5.4.1.

E
[∫ Tk

Tk−1
e−rt[Kr − S(t)δ]I(S(t) < Sn+1−k)dt

]

equals
1
λ
E
[
e−rTk [Kr − S(Tk)δ]I(S(Tk) < Sn+1−k)

]
The above equals to

Kr

λ

(
Sn+1−k

S(0)

)−α
κk

(−α)k
k−1∑
j=0

(
ln S(0)
Sn+1−k

)j
(−α)j

j!

k−j−1∑
l=0

(−α)l
(β − α)l

(
k − 1 + l

l

)

− δS(0)
λ

(
Sn+1−k

S(0)

)1−α
κk

(1− α)k
k−1∑
j=0

(
ln S(0)
Sn+1−k

)j
(1− α)j

j!

k−j−1∑
l=0

(1− α)l
(β − α)l

(
k − 1 + l

l

)

Since (5.4.8) can be written as

e−rTn [S(Tn)−K]+ + e−rTm [K − S(Tm)]

+
m∑
k=1

 ∫ Tk

Tk−1
e−rt[Kr − S(t)δ]I (S(t) < Sn+1−k)

× [I (S(0) < Sn+1−k) + I (S(0) > Sn+1−k)] dt


−
n∑

k=m+1

 ∫ Tk

Tk−1
e−rt[Kr − S(t)δ]I(S(t) > Sn+1−k)

× [I(S(0) < Sn+1−k) + I(S(0) > Sn+1−k)] dt
 (5.4.10)

For the case of S(0) ∈ (Si, Si−1], we choose m = n− i+ 1. We can use Corollary

5.3.2 to derive the first term of (5.4.10), which is the price of an out-of-the-

money call option. Similarly to the calculation of the second term of (5.4.6), the

expectation of the second line of (5.4.10) can be derived with Lemma 5.4.1 and

Lemma 5.3.1, and the third line of (5.4.10) can be derived with Lemma 5.4.1 and

Lemma 5.3.2. The second part of the (5.4.10) can be calculated by the law of
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iterated expectations,

E
[
e−rTn−i+1 [K − S(Tn−i+1)]

]
= E

{
E
[
e−rTn−i+1 [K − S(Tn−i+1)]

]
|Tn−i+1

}
= E

{
Ke−rTn−i+1 − S(0)e−δTn−i+1

}
= K

(
λ

λ+ r

)n−i+1

− S(0)
(

λ

λ+ δ

)n−i+1

For the case of S(0) ≤ Sn, we need to exercise the American option immediately,

so the value of the American option equals to the exercise value.

The optimal exercise boundary can be determined by imposing the “smooth

pasting” condition at the optimal exercise boundary. Continuity at the optimal

exercise price for each m = 1, 2, 3 . . . n implies

K − Sm = cm(Sm) + vmm(Sm) + b1(Sm)−
m∑
k=2

ak(Sm) (5.4.11)

We can solve Sm in the above equation recursively.

Remark 5.4.1. The formula (26) for the American put option with the Erlang

distributed expiry date in Carr (1998) is



pn(S(0)) +
n∑
k=1

bk(S(0)) S(0) > K

vni (S(0)) +
n−i+1∑
k=1

bk(S(0)) +
n−i+1∑
k=1

ak(S(0)) S(0) ∈ (Si, Si−1]

K − S(0) S(0) ≤ Sn

Compared to the result we obtain, the above implies

cn(S(0)) =
n∑
k=1

ak(S(0))
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Remark 5.4.2. Since the exponential distribution can be thought as a special case

of the Erlang distribution with the shape parameter equal to 1, the pricing formula

(5.4.9) with n = 1 is same to the formula (4.2.19).

5.5 Numerical results

If we fix λn = T and increase the value of n, the Erlang(n, λ) distributed

expiration date will converge to a fixed point T . As a result, (5.4.9) will converge

to the price of an American option with fixed expiration date T . However, with a

large n, the calculation in (5.4.9) will not be efficient. Similarly to Carr (1998), we

use Richardson extrapolation to improve computational efficiency. Here we use an

example to illustrate how Richardson extrapolation works. We use y(T, n) and

ŷ(T, n) to denote the accurate and approximate value of an American put option

whose expiration date is Erlang(n, T
n
) distributed. Substituting n by 1

∆ , we could

define the function P (T, ∆) as y(T, 1
∆) and P̂ (T, ∆) as ŷ(T, 1

∆). Since a large

n implies a small ∆, We could approximate P (T, ∆) by its Taylor expansion at

∆ = 0:

P̂ (T, ∆) ≈ P̂ (T, 0) + P̂ ′(T, 0)∆ + 1
2 P̂
′′(T, 0)∆2

Substituting in ∆ = 1, ∆ = 1
2 , and ∆ = 1

3 leads to three equations in the three

unknowns P̂ (T, 0), P̂ ′(T, 0), and P̂ ′′(T, 0). Inverting the system implies that the

three-point extrapolation is given by

P̂ (T, 0) = 1
2P (T, 1)− 4P (T, 1

2) + 9
2P (T, 1

3)

From Marchuk and Shaidurov (1983, p. 24), an N−point Richardson extrapo-

lation P̂N(T, 0) is the following weighted average of N values of American put

options with Erlang distributed expiration dates:

P̂N(T, 0) =
N∑
n=1

(−1)N−nnN
n!(N − n)! P (T, 1

n
).
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An N−point Richardson extrapolation for the optimal exercise boundary at time

t can be obtained by the following sum:

Ŝ
N(t) =

N∑
n=1

(−1)N−nnN
n!(N − n)! Sn(T − t)

where Sn(T − t) is the optimal exercise boundary determined by (5.4.11). Figure

5.3 shows the prices of American and European put options for different initial

stock prices with five-point Richardson extrapolation. The parameters are the

following: K = 80, σ = 0.3, r = 0.1, T = 1. Figure 5.4 shows the optimal exercise

boundary with five-point Richardson extrapolation.

Figure 5.3: Price of American put option

Figure 5.4: Optimal exercise boundary for American put option
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5.6 American exchange option

In this section, I shall calculate the price of an American exchange option

whose expiry date is Erlang distributed. Similar to the exponential case, the

decision to exercise an option depends on the ratio of the two stock prices. We

calculate the price of this option as the sum of the European style option and the

early exercise premium. The early exercise premium can be represented as

E
[∫ Tn

0
e−rt(δ1S1(t)− δ2S2(t))I(S1(t)

S2(t) > ct)dt
]

Here ct is the optimal exercise boundary. Namely, an American exchange option

should be optimally exercised when the price ratio of two stocks is larger than

the optimal exercise boundary. Similarly to the put options which we discussed

in last section , the optimal exercise boundary for an American exchange option

takes the form of a piece wise constant . We assume

cn > cn−1 > cn−2 > . . . . . . > c1 > c0 = 1

is the optimal exercise boundary in each sub-period. Then, if the initial ratio of

two stock prices is smaller than exercise boundary cn, the expectation of the early

exercise premium can be represented as

n∑
k=1

[∫ Tk

Tk−1
e−rt (δ1S1(t)− δ2S2(t)) I(S1(t)

S2(t) > cn+1−k)dt
]

The above equals to

m∑
k=1

[∫ Tk

Tk−1
e−rt (δ1S1(t)− δ2S2(t)) I(S1(t)

S2(t) > cn+1−k)dt
]

+
n∑

k=m+1

[∫ Tk

Tk−1
e−rt (δ1S1(t)− δ2S2(t))

(
1− I(S1(t)

S2(t) < cn+1−k)
)
dt
]
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Also, we can see the expectation of

n∑
k=m+1

[
∫ Tk

Tk−1
e−rt(δ1S1(t)− δ2S2(t))dt]

is the same as that of3

e−rTm [S1(Tm)− S2(Tm)] + e−rTn [S2(Tn)− S1(Tn)]

According to put-call parity, we have

[S1(Tn)− S2(Tn)]+ + [S2(Tn)− S1(Tn)] = [S2(Tn)− S1(Tn)]+

Therefore, the price of an American exchange option equals to the expectation of

e−rTn [S2(Tn)− S1(Tn)]+ + e−rTm [S1(Tm)− S2(Tm)]

+
m∑
k=1

[∫ Tk

Tk−1
e−rt (δ1S1(t)− δ2S2(t)) I(S1(t)

S2(t) > cn+1−k)dt
]

−
n∑

k=m+1

[∫ Tk

Tk−1
e−rt (δ1S1(t)− δ2S2(t)) I(S1(t)

S2(t) < cn+1−k)dt
]

(5.6.2)

3

E
{

n∑
k=m+1

[
∫ Tk

Tk−1

e−rt(δ1S1(t)− δ2S2(t))dt]
}

= E
{∫ Tn

Tm

e−rt(δ1S1(t)− δ2S2(t))dt
}

= E
{∫ Tn

Tm

e−rtδ1S1(t)dt
}
− E

{∫ Tn

Tm

e−rtδ2S2(t)dt
}

(5.6.1)

According to Lemma 5.4.2, , we have

E
{∫ Tn

Tm

e−rtδ1S1(t)dt
}

= E
{
e−rTmS1(Tm)

}
− E

{
e−rTnS1(Tn)

}

E
{∫ Tn

Tm

e−rtδ2S2(t)dt
}

= E
{
e−rTmS2(Tm)

}
− E

{
e−rTnS2(Tn)

}
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Before we calculate the price of an American exchange option with an Erlang

distributed expiration date, we provide the following Lemmas.

Lemma 5.6.1. If S1(0)
S2(0) < h, we have the following identity

E
[∫ Tk

Tk−1
e−rt(δ1S1(t)− δ2S2(t))I(S1(t)

S2(t) > h)dt
]

= ak (S1(0), S2(0)) (5.6.3)

and

ak(s1, s2) =

s1δ1

λ

(
s1/s2

h

)−α1 κk1
(−α1)k ×

k−1∑
j=0

(−α1)j
(
ln h
s1/s2

)j
j!

k−j−1∑
l=0

(−α1)l
(−α1 + β1)l

(
k − 1 + l

l

)

− s2δ2

λ

(
s1/s2

h

)β2 κk2
βk2
×

k−1∑
j=0

βj2
(
ln h
s1/s2

)j
j!

k−j−1∑
l=0

βl2
(β2 − α2)l

(
k − 1 + l

l

)
(5.6.4)

where β1 > 0, α1 < 0 are the roots of the quadratic equation (4.3.12) and β2 >

0, α2 < 0 are the roots of the quadratic equation (4.3.5) .

Proof. The left-hand side of (5.6.3) can be calculated using Lemma 5.4.1

E
[∫ Tk

Tk−1
e−rt(δ1S1(t)− δ2S2(t))I(S1(t)

S2(t) > h)dt
]

= 1
λ
E
[
e−rTk(δ1S1(Tk)− δ2S2(Tk))I(S1(Tk)

S2(Tk)
> h)

]
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The above equals to

δ1

λ

∫ ∞
0

f(t)E
[
e−rtS1(t)

]
× E

I(S1(t)
S2(t) > h);

 1

0


 dt

− δ2

λ

∫ ∞
0

f(t)E
[
e−rtS2(t)

]
× E

I(S1(t)
S2(t) > h);

 0

1


 dt

= δ1

λ
E

e−δ1TkS1(0)I(S1(Tk)
S2(Tk)

> h);

 1

0




− δ2

λ
E

e−δ2TkS2(0)I(S1(Tk)
S2(Tk)

> h);

 0

1




To calculate the above, we use Lemma 5.3.2 for the asset S1(0)
S2(0)e

X1(t)−X2(t) under

the different measures and the discount rates. If S1(0)
S2(0) < h, the above equals

ak (S1(0), S2(0)) where ak(s1, s2) is defined as (5.6.4).

Similarly to the Lemma 5.6.1, we have Lemma 5.6.2 for the reverse inequality.

The proof is similar to the proof of Lemma 5.6.1.

Lemma 5.6.2. If S1(0)
S2(0) > l, we have the following identity

E
[∫ Tk

Tk−1
e−rt(δ1S1(t)− δ2S2(t))I(S1(t)

S2(t) < l)dt
]

= bk (S1(0), S2(0)) (5.6.5)

and

bk(s1, s2)

= s1δ1

λ

(
l

s1/s2

)β1 κk1
βk1

k−1∑
j=0

(
ln s1/s2

l

)j
βj1

j!

k−j−1∑
l=0

βl1
(β1 − α1)l

(
k − 1 + l

l

)

− s2δ2

λ

(
l

s1/s2

)−α2 κk2
(−α2)k

k−1∑
j=0

(
ln s1/s2

l

)j
(−α2)j

j!

k−j−1∑
l=0

(−α2)l
(β2 − α2)l

(
k − 1 + l

l

)

Lemma 5.6.3 and Lemma 5.6.4 calculate the price of an out-of-the-money

European exchange option whose expiry date is Erlang distributed.
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Lemma 5.6.3. If S1(0)
S2(0) > 1, the price of an out-of-the-money European exchange

option S2 for S1 equals

E
[
e−rTn [S2(Tn)− S1(Tn)]+

]
= en2 (S1(0)S2(0))

where

en2 (s1 s2) =s2

(
s2

s1

)β1−1 κn1
(β1 − 1)n

n−1∑
i=0

(
(β1 − 1)ln s1

s2

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β1 − α1)l (β1 − 1)l

− s1

(
s2

s1

)β1 κn1
βn1

n−1∑
i=0

(
β1ln s1s2

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β1 − α1)lβ

l
1 (5.6.6)

Proof. The price of an out-of-the-money European exchange option S2 for S1

equals

E
[
e−rTn [S2(Tn)− S1(Tn)]+

]
=E

[
e−rTnS1(Tn)[S2(Tn)

S1(Tn) − 1]+
]

=
∫ ∞

0
f(t)E

[
e−rtS1(t)

]
× E

[S2(t)
S1(t) − 1]+;

 1

0


 dt

=E

e−δ1TnS1(0)[S2(t)
S1(t) − 1]+;

 1

0




If S1(0)
S2(0) > 1, the above is the price of an out-of-the-money European call option for

asset S2(0)
S1(0)e

X2(t)−X1(t) under the different measure and the discount rate δ1. Using

Lemma 5.3.2, the above equals to en2 (S1(0)S2(0)), where en2 (s1 s2) is defined as

(5.6.6).

Similar to the calculation of the exchange option S2 for S1, the price of an

out-of-the-money European exchange option S1 for S2 is given in Lemma 5.6.4.

The proof is similar as the proof of Lemma 5.6.3.

Lemma 5.6.4. If S1(0)
S2(0) < 1, the price of an out-of-the-money European exchange
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option S1 for S2 equals

E
[
e−rTn [S1(Tn)− S2(Tn)]+

]
= en1 (S1(0)S2(0))

where

en1 (s1, s2) =s1

(
s1

s2

)β2−1 κn2
(β2 − 1)n

n−1∑
i=0

(
(β2 − 1)ln s2

s1

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β2 − α2)l (β2 − 1)l

− s2

(
s1

s2

)β2 κn2
βn2

n−1∑
i=0

(
β2ln s2s1

)i
i!

n−i−1∑
l=0

(
n−1+l

l

)
(β2 − α2)lβ

l
2 (5.6.7)

The price of the American exchange option with Erlang distributed expiry

date is given in the following theorem.

Theorem 5.6.1. The price of the American exchange option with Erlang dis-

tributed expiry date equals



en1 (S1(0), S2(0)) +
n∑
k=1

ak (S1(0), S2(0)) S1(0)
S2(0) < 1

en2 (S1(0), S2(0)) + vni (S1(0), S2(0))

+
n−i+1∑
k=1

ak (S1(0), S2(0))−
n∑

k=n−i+2
bk (S1(0), S2(0))

S1(0)
S2(0) ∈ (ci−1, ci]

S1(0)− S2(0) S1(0)
S2(0) ≥ cn

(5.6.8)

where en1 (s1, s2), en2 (s1, s2), ank(s1, s2), bnk(s1, s2), is defined above, and vni (s1, s2)

is defined as

vni (s1, s2) = s1

(
λ

λ+ δ1

)n−i+1

− s2

(
λ

λ+ δ2

)n−i+1

Proof. For the case of S1(0)
S2(0) ≥ cn, we need to exercise the option immediately.

Therefore the price of the American exchange option with Erlang distributed

expiry date equals to its exercise value S1(0) − S2(0). For the case of S1(0)
S2(0) ∈

(ci−1, ci], we need to calculate the expected value of (5.6.2). Similar to the proof of
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Theorem 5.4.1, we choose m = n−i+1. The expectation of e−rTn−i+1 [S1(Tn−i+1)−

S2(Tn−i+1)] equals

S1(0)
(

λ

λ+ δ1

)n−i+1

− S2(0)
(

λ

λ+ δ2

)n−i+1

The expectation of the remaining part of (5.6.2) is calculated in Lemma 5.6.1,

Lemma 5.6.2 and Lemma 5.6.3. For the case of S1(0)
S2(0) < 1, we calculate the expec-

tation of

e−rTn [S1(Tn)−S2(Tn)]+ +
n∑
k=1

[∫ Tk

Tk−1
e−rt (δ1S1(t)− δ2S2(t)) I(S1(t)

S2(t) > cn+1−k)dt
]
.

Using Lemma 5.6.1 and Lemma 5.6.4, we can obtain the first line of (5.6.8).

Remark 5.6.1. A put option could been thought as a special case of the exchange

option. If stock one is a fixed number, pricing formula (5.6.8) will be degenerated

to (5.4.9).

The optimal exercise boundary ci, i = 1, 2 . . . can be determined by imposing

the “value matching” condition at the optimal exercise boundary.
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CHAPTER 6

FITTING LIFE DISTRIBUTION

6.1 Introduction

A key idea used in my thesis is that the distribution of T (x), the time-

until-death random variable, can be approximated by combinations of exponential

distributions or mixtures of Erlang distributions. In this Chapter, I would first

propose a method to illustrate how to approximate the density function of Tx

with a linear combination of exponential densities. Then I extend this method to

estimate the linear coefficients, the shape parameters, and the rate parameter of

mixtures of Erlang distributions with the common rate parameter.

As shown in Dufresne (2007a) and Ko and Ng (2007), combinations of expo-

nential distributions are a (weakly) dense subset in the space of all probability dis-

tributions with support R+. Hence any positive distribution can be approximated

by combinations of exponential distributions. Note that the linear coefficients are

not restricted to be non-negative. Dufresne (2007a) also proposes a non-statistical

method to estimate the parameters. By introducing Jacobian polynomials, the

parameters are obtained by integrating various polynomials. The efficiency of

Dufresne’s method highly depends on the several parameters to be specified in

advance, but he does not provide a scheme for selecting the parameters.

Because the exponential distribution is a one-parameter distribution, and its

coefficient of variation is one, to approximate well a distribution with a coefficient

of variation that is far from unity, we need a large number of exponential distri-

butions. In contrast, the Erlang distribution is a two-parameter distribution with

larger degree of freedom. Fewer Erlang distributions are needed to achieve the

same accuracy. Similarly to combinations of exponential distributions, it is shown

in Tijms (1994, p.163) that mixtures of Erlang distributions with the same rate
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parameter are dense in the space of positive distributions. Tijms (1994, p.163)

also provides a mathematical method of parameter estimation, but the estimation

is not satisfactory, because to fit the data well, a large number of Erlang distribu-

tions must be used, which results in slow convergence and overfitting problem. In

other words, it is not practical to directly use the approximation in Tijms (1994,

p.163). Following Tijms’s work, Lee and Lin (2010) iteratively use the EM algo-

rithm in Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977) to estimate the

parameters of a mixture of Erlang distributions with a common rate parameter.

Lee and Lin (2010) also propose an adjustment and diagnosis procedure to identify

the shape parameters of Erlang distributions. Though

In section 6.2, I propose a method to estimate the linear coefficients and

rate parameters of combinations of exponential distributions. Through splitting

the original problem into two sub-problems, the linear optimization and nonlinear

optimization, the results are more robust to the initial guess. In section 6.3, I apply

the adjustment procedure provided in Lee and Lin (2010) to extend this method

to estimate the parameters of mixtures of Erlang distributions. In section 6.4, I

numerically fit the life table data to combinations of exponential distributions and

mixtures of Erlang distributions and evaluate the fitting results.

6.2 Combinations of exponential distributions

The survival distribution of the class of approximating distributions, combi-

nations of exponential distributions, has the following representation,

tpx =
n∑
j=1

αje
−λjt, t ≥ 0, λj > 0, j = 1, . . . , n, 1 ≤ n <∞

To fit combinations of exponential distributions to the distribution of T (x), we

first calculate the survival probability through the life table,

kp̂x = P (T (x) > k) = lx+k

lx
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Here lx is the number of living people at age x. Mathematically, the fitting problem

can be formalized by the following. First we make a choice for n, the number of

exponential distributions. Then we seek the parameters α1, · · · , αn, λ1, · · · , λn,

which minimize the weighted sum of squares,

∑
k≥1

wk


kpx −

n∑
j=1

αje
−λjk

2

, (6.2.1)

subject to
n∑
j=1

αj = 1

and λ1 > 0, · · · , λn > 0. The above fitting problem (6.2.1) can be split into two

sub-problems, the linear and nonlinear problems. The linear problem is to solve

the following optimization:

αopt(λ1, · · · , λn) = arg min
α1, ··· , αn

∑
k≥1

wk


kpx −

n∑
j=1

αje
−λjk

2

, (6.2.2)

Here we use αopt to denote the optimized vector for (α1, · · · , αn). Once the rate

parameters λis are given, the above is a linear programming, which has a unique

global minimizer. We replace the linear coefficients of function with the optimal

value αopt = (αopt1 , · · · , αoptn ), and obtain the following:

f(λ1, · · · , λn, k ; αopt) =
n∑
j=1

αoptj e−λjk (6.2.3)

The non-linear optimization is to seek the rate parameters λ1, · · · , λn to minimize

the following: ∑
k≥1

wk
[
kpx − f(λ1, · · · , λn, k ; αopt)

]2
.

The above optimization is equivalent to the the fitting problem (6.2.1). It is a

nonlinear optimization problem, and furthermore, it is not a convex optimization

problem. Therefore, only the local minimizer can be obtained. We use the trust

region method, which is a numerical optimization method tailored for non-linear
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optimization, to numerically calculate the optimal λis. Compared to directly solv-

ing the optimization problem (6.2.1), the split problem has two more advantages:

1)It is more robust to the initial guess. 2)It is more likely to obtain the global

minimizer.

Remark 6.2.1. If we would like to value life-contingent options that will expire at

a fixed time T , we could approximate

tpxI(t < T )

by combinations of exponential distributions, and use the results in Chapter 4.

However, we need a large number of exponential functions to obtain a reasonably

good approximation. This is because that the above function has a big jump from

Tpx to 0 at t = T . Here, we suggest the method presented in section 10 of Gerber,

Shiu and Yang (2012). Using the memoryless property of exponential distribution,

it derives the analytic pricing formula for the options that will expire at a fixed

time T .

6.3 Mixture of the Erlang distributions

The density function of m mixtures of Erlang distributions with common

rate parameter λ is defined as

f(x) =
m∑
i=1

αie
−λx λ

rixri−1

(ri − 1)!

with α > 0, and ∑m
i=1 αi = 1. Integrating the density function from x to ∞, we

have the survival distribution

F̄ (x) =
m∑
i=1

αi

∫ ∞
x

e−λt
λritri−1

(ri − 1)!dt (6.3.1)
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It is shown in Tijms (1994, p. 163) that the probability distribution of any pos-

itive random variable can be approximated by a mixture of Erlang distributions

with the same rate parameter. Detailed proof will be provided in the Appendix.

Mathematically, the fitting problem could be characterized as follows. We seek

the parameters α1, · · · , αm, r1, · · · , rm, λ, which minimize the weighted sum of

squares, ∑
k≥1

wk

[
kpx −

m∑
i=1

αi

∫ ∞
x

e−λt
λritri−1

(ri − 1)!dt
]2

,

subject to
m∑
j=1

αj = 1

and α1 > 0, · · · , αm > 0, r1, r2 · · · , rm are integers and λ > 0. For a fixed set of

shape parameters, we would use the algorithm provided in the last section. The

difference here is that the rate parameter for each Erlang distribution is the same.

After applying the algorithm we provided above, the rate parameter and the

linear coefficient locally minimize the distance between the empirical distribution

and the desired distribution (mixtures of Erlang distributions). It only locally

minimizes the distance because the shape parameters are not altered by the al-

gorithm. We need to consider the shape parameters in a larger set. Since it is

impossible to consider the whole set of the natural numbers, we use the following

procedure to expand the selection of the parameters. This procedure is motivated

by the work of Lee and Lin (2010).

1) Initially, the algorithm is run for the set of shape parameters {r1, r2, · · · , rm}.

2) The algorithm will be run again for the set {r1, r2, · · · , rm + 1}. If the

new distance between the empirical distribution and the desired distribution is

lower, the new parameter set replaces the old one. Otherwise, we go to the next

step. This step is repeated until the distance between the empirical distribution

and the desired distribution is not improved.

3) This procedure is then applied to the (m− 1)th shape and so forth until

all the shapes are treated.
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4) Repeat steps 2 and 3 in a similar fashion, but instead of increasing the

value of the shape parameters, we will decrease them. We will run the algorithm

starting from the shapes {r1, r2, · · · , rm − 1}, the final estimates of the previous

execution of the algorithm.

Another point I need to mention is the initialization of the parameters. A

good initialization of the parameters can improve the computational speed. Simi-

lar to Lee and Lin (2010), our initialization is also based on the method provided by

Tijm (1994, p. 163) which ensures good starting values and fast convergence. First

we choose an m, the number of Erlang distributions. Based on the Tijm’s approxi-

mation, the shape parameters of each Erlang distribution are ri = i, i = 1, 2, . . .m.

The common rate parameter λ is chosen such that m
λ

is approximately equal to

the maximum data point. Notice that the Erlang distributions do not need to

share the same rate parameter. If the rate parameter can be different among the

Erlang distributions, we may have a better approximation and with fewer terms.

6.4 Numerical results

In this section we use an example to evaluate the fitting results. We use the

life table for males published by the US Social Security Department in 2013. The

data set is from http://www.ssa.gov/oact/STATS/table4c6.html. All com-

putations are performed with MATLAB, and the description of the functions is

provided in the Appendix. Figure 6.1 shows the empirical survival distribution of

T (45).

Figure 6.2 shows the fitting results using 4, 6, 8 and 10-terms of exponential

distributions. Here, the weights have been set equally. Since the linear coefficients

are not restricted to be positive, the fitting distributions may be negative in place.

The fitting result is poor when we use 4 terms, but the 8-term approximation

does better. The 4-term approximation and 8-term approximation of the survival
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Figure 6.1: Empirical value for P (T (45) > t)

distribution is given below

F̄A
4 (t) = 107 × (−8.766e−0.1487t + 4.068e−0.1485t + 4.72e−0.1489t − 0.025e−0.1525t)

and

F̄A
8 (t) =1012 × (0.1981e−0.0721t − 0.092e−0.0736t + 2.4× 10−5e−0.067t − 0.1654e−0.072t

+2.157e−0.0733t − 2.098e−0.0734t + 4.1× 10−9e−0.1534t − 8.29× 10−12e−0.2865t)

The precision is given below,

‖F̄−F̄A
4 ‖= 0.153, ‖F̄−F̄A

6 ‖= 0.015, ‖F̄−F̄A
8 ‖= 0.0011, ‖F̄−F̄A

10‖= 5.79×10−4

Figure 6.3 shows the approximation of mixtures of 3, 4, 5 and 6 terms Erlang

distributions. Similar to the approximation using exponentials, the weights have

been set equally. Since the Erlang distribution is a two-parameter distribution,

fewer terms is needed to fit the same distribution. Also, since the linear coefficients

for the mixture distribution are restricted to be positive, the fitting distributions

are positive everywhere. The 3-term approximation and 6-term approximation of
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Figure 6.2: Exponential fitting for P (T45 > t)

(a) 4 terms (b) 6 terms

(c) 8 terms (d) 10 terms

the probability density functions are given below

fA3 (t) = 0.0128e−0.37t0.37 + 0.1273e−0.37t0.375t4

4! + 0.86e−0.37t0.3714t13

13!

and

fA6 (t) =0.0044e−0.716t0.716 + 0.0186e−0.716t0.7163t2

2! + 0.0448e−0.716t0.7168t7

7!

+0.0260e−0.716t0.7169t8

8! + 0.2085e−0.716t0.71617t16

16! + 0.6977e−0.716t0.71629t28

28!

The precision is given below,

‖F̄−F̄A
3 ‖= 0.0327, ‖F̄−F̄A

4 ‖= 0.0199, ‖F̄−F̄A
5 ‖= 0.0094, ‖F̄−F̄A

6 ‖= 0.0038

101



Figure 6.3: Erlang fitting for P (T (45) > t)

(a) 3 terms (b) 4 terms

(c) 5 terms (d) 6 terms

6.5 Appendix

6.5.1 Matlab functions

Syntax: y = empirical_distribution(t, data, x)
Description: y = empirical_distribution() returns an array of empirical sur-

vival distribution. Specifically, it calculates the quantity tpx, which is the proba-
bility that (x) survives to age x+t.

Input arguments:

• data: a column vector represents the number of surviving people at each
age. The data is from the life table.

• x: a number represents the age of a person.

• t: a vector represents how many more years (x) will survive.
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Syntax: [lambda,linear_coeff] = fit_nonlinear(lambda_0, t, data, x, lb)
Description: [lambda,linear_coeff] = fit_nonlinear() returns the linear coef-

ficients and the exponential coefficients for the approximate distribution.
Input arguments:

• lambda_0 : a vector represents the initial guess of λ.

• data: a column vector represents the number of surviving people at each
age. The data is from the life table.

• x: a number represents the age of a person.

• t: a vector represents how many more years (x) will survive.

• lb: a number represents the lower bound of lambdas. The default value for
lb is zero.

Syntax: [shape, rate, linear_coeff, fitted, norm] = fit_erlang(t,rate0, data,x,n_shape,
max_shape)

Description: [shape, rate, linear_coeff, fitted, norm] = fit_erlang() returns
the linear coefficients, the shape parameters and the rate parameters for the ap-
proximate distribution.

Output arguments:

• shape: a vector represents the shape parameters of the mixture of Erlang
distribution.

• rate: a vector represents the rate parameters of the mixture of Erlang dis-
tribution.

• linear_coeff: a vector represents the linear coefficients of the mixture of
Erlang distribution.

• fitted: a vector represents the fitted values.

• norm: a number represents the distance between the target distribution and
the fitted distribution.

Input arguments:
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• rate0 : a number represents the initial guess of the common λ.

• data: a column vector represents the number of surviving people at each
age. The data is from the life table.

• x: a number represents the age of a person.

• t: a vector represents how many more years (x) will survive.

• n_shape: a number represents the number of the mixture distribution.

• max_shape: a number represents the largest value of the shape parameters
considered.

6.5.2 Approximation by a mixtures of the Erlang distribution

The probability distribution of any positive random variable can be arbitrar-

ily closely approximated by a mixture of Erlang distributions with the same scale

parameter. The theoretical basis for the use of mixtures of Erlang distributions is

provided in Tijms (1994, p.163).

Theorem 6.5.1. Let F (t) be the probability distribution function of a positive

random variable. For fixed ∆ > 0 define the probability distribution function

F∆(x) by

F∆(x) =
∞∑
j=1

pj(∆)

1−
j−1∑
k=0

e−
x
∆

(
x
∆

)k
k!

 , x ≥ 0,

where pj(∆) = F (j∆)− F ((j − 1)∆), j = 1, 2, . . .. Then

lim
∆→0

F∆(x) = F (x)

for each continuity point x of F (t).

Proof. For fixed ∆, x > 0, let Y∆, x be a Poisson distributed random variable with

P(Y∆, x = k∆) = e−
x
∆

(
x
∆

)k
k! , k = 0, 1, . . . .
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The mean and variance of Y∆, x equal

E(Y∆, x) = x and Var(Y∆, x) = x∆, respectively.

Let g(t) be a bounded function. We now prove that

lim
∆→0

E(g(Y∆, x)) = g(x) (6.5.1)

for each continuity point x of g(t). To see this, fix ε > 0 and a continuity point

x of g(t). According to the definition of continuity, there exists a number δ > 0

such that |g(t)− g(x)| ≤ ε
2 for all t with |t− x| ≤ δ. Also, let M > 0 be such that

|g(t)| ≤ M
2 for all t. Then

|E(g(Y∆, x))− g(x)| ≤
∞∑
k=0
|g(k∆)− g(x)|P(Y∆, x = k∆)

≤ ε

2 +M
∑

k:|k∆−x|>δ
P(Y∆, x = k∆)

= ε

2 +MP {|Y∆, x − E(Y∆, x)| > δ}

By Tschebyshev’s inequality,

P {|Y∆, x − E(Y∆, x)| > δ} ≤ x∆
δ2

For enough small ∆, we have M x∆
δ2 < ε

2 . This prove (6.5.1). Now we apply (6.5.1)

with g(t) = F (t). For each continuity point x of F (t),

F (x) = lim
∆→0

E(F (Y∆, x)) = lim
∆→0

∞∑
k=0

F (k∆)e− x
∆

(
x
∆

)k
k!

= lim
∆→0

∞∑
k=0

e−
x
∆

(
x
∆

)k
k!

k∑
j=1

pj(∆).

where the last equality uses that F (0) = 0. Interchanging the order of summation,
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we obtain

F (x) = lim
∆→0

∞∑
j=1

pj(∆)


∞∑
k=j

e−
x
∆

(
x
∆

)k
k!



If F∆, F denote the probability distribution functions of the measures P∆,

P respectively, the above theorem essentially shows measure P∆ converges weakly

to P .
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