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ABSTRACT A basic question in analyzing cDNA microarray data is normalization. The purpose

of normalization is to remove systematic bias in the observed expression values by establishing a

normalization curve across the whole dynamic range. A proper normalization procedure ensures

that the normalized intensity ratios provide meaningful measures of relative expression levels.

We propose a two-way semi-linear model (TW-SLM) for normalization and significant analysis of

microarray data. This method does not make the usual assumptions underlying some of the existing

methods. For example, it does not assume that: (i) the percentage of differentially expressed

genes is small; or (ii) there is symmetry in the expression levels of up- and down-regulated

genes, as required in the lowess normalization method. The TW-SLM also naturally incorporates

uncertainty due to normalization into significant analysis of microarrays. We use a semiparametric

approach based on polynomial splines in the TW-SLM to estimate the normalization curves and

the normalized expression values. We also conduct simulation studies to evaluate the TW-SLM

method and illustrate the proposed method using a published microarray data set.

KEY WORDS: differentially expressed genes; microarray; high-dimensional data; semiparametric

regression; spline; analysis of variance; noise level; variance estimation.
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1 Introduction

Microarray technology has become a useful tool for quantitatively monitoring gene expression

patterns and has been widely used in functional genomics (Schena et al., 1995; Brown and Botstein,

1999). In a cDNA microarray experiment, cDNA segments representing the collection of genes and

expression sequence tags (ESTs) to be probed are amplified by PCR and spotted in high density

on glass microscope slides using a robotic system. Such slides are called microarrays. Each

microarray contains thousands of reporters of the collection of genes or ESTs. The microarrays are

queried in a co-hybridization assay using two fluorescently labeled biosamples prepared from the

cell populations of interest. One sample is labeled with fluorescent dye Cy5 (red), and another with

fluorescent dye Cy3 (green). Hybridization is assayed using a confocal laser scanner to measure

fluorescence intensities, allowing simultaneous determination of the relative expression levels of

all the genes represented on the slide (Hedge, Qi, Abernathy, Gay, Dharap, Gaspard, Earle-Hughes,

Snesrud, Lee and Quackenbush 2000).

A basic question in analyzing cDNA microarray data is normalization. The purpose of

normalization is to remove systematic bias in the observed expression values by establishing

a normalization curve across the whole dynamic range. A proper normalization procedure

ensures that the normalized intensity ratios provide meaningful measures of relative expression

levels. Normalization is needed because many factors, including differential efficiency of dye

incorporation, difference in the amount of RNA labeled between the two channels, uneven

hybridizations, differences in the printing pin heads, among others, may cause bias in the observed

expression values. Therefore, proper normalization is a critical component in the analysis of

microarray data and can have important impact on higher level analysis such as detection of

differentially expression genes, classification, and cluster analysis.

Yang, Dudoit, Luu, and Speed (2001) systematically considered several normalization methods

such as global, intensity-dependent, and dye-swap normalization. The global normalization

method assumes a constant normalization factor for all the genes and re-scales the red and green

channel intensities so that the mean or median of the intensity log-ratios is zero. For intensity-

dependent normalization, Yang et al. proposed using the locally weighted linear scatterplot
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smoother (lowess, Cleveland 1979) in the scatter plot of log-intensity ratio versus log-intensity

product (the M-A plot) and uses the resulting residuals as the normalized log-intensity ratios. The

analysis of variance (ANOVA) method (Kerr, Martin, and Churchill 2000) and the mixed linear

model method (Wolfinger, Gibson, Wolfinger, Bennett, Hamadeh, Bushel, Afshari, and Paules

2001) takes into account array and dye effects among others in a linear model framework, and

assumes constant normalization factors. Fan, Tam, Woude, and Ren (2003) considered a Semi-

Linear In-slide Model (SLIM) method using within-array replications. The SLIM method requires

replication of a subset of the genes in an array. If the number of replicated genes is small, the

expression values of the replicated genes may not cover the entire dynamic range or reflect spatial

variation in an array. Park, Yi, Kang, Lee, Lee, and Simon (2003) conducted comparisons of a

number of normalization methods, including global, linear and lowess normalization methods. All

the methods described above, except the ANOVA method, treat normalization as a step separated

from the subsequent significant analysis, and the variation due to normalization is not taken into

account.

The lowess normalization is one of the most widely used normalization methods. It assumes

that at least one of the two biological assumptions is satisfied: (i) the proportion of differentially

expressed genes should be small, or (ii) there is symmetry in the expression values between up

and down regulated genes. These two assumptions reduce the possibility that the differentially

expressed genes are incorrectly “normalized.” For experiments where these two assumptions are

violated, the lowess normalization method is not appropriate. Yang et al. (2001) suggested using

dye-swap normalization. This approach makes the assumption that the normalization curves in

the two dye-swaped slides are the same. Because of slide-to-slide variation, this assumption may

not always be satisfied. To alleviate the dependence of the lowess normalization method on the

assumption (i) or (ii) stated above, Tseng, Oh, Rohlin, Liao, and Wong (2001) proposed using

a rank based procedure to first select a set of invariant genes that are likely to be constantly

expressed, and then carrying out lowess normalization using this set of genes. However, they

pointed out that the set of selected genes may be relatively small and not cover the whole dynamic

range of the expression values, and extrapolation is needed to fill in the gaps that are not covered
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by the invariant genes.

We propose a two-way semi-linear model (TW-SLM) for normalization of cDNA microarray

data. This model is motivated in part by examining the lowess normalization from the

semiparametric regression point of view. The proposed TW-SLM normalization method does

not make the assumptions underlying the lowess normalization method, nor does it require pre-

selection of invariant genes or replicated genes in a array. The TW-SLM also provides a framework

for incorporating variability due to normalization into significant analysis of microarray data.

Below, we first describe the TW-SLM for microarray data. In Section 3, we describe a Gauss-

Seidel algorithm for computing the normalization curves and the estimated relative expression

levels based on the TW-SLM model. In Section 4, we present a method for detecting differentially

expressed genes based on the TW-SLM. In section 5, we illustrate the proposed method by an

example and use simulation to compare the proposed method with the lowess method. Some

concluding remarks are given in Section 6.

2 A two-way semi-linear model for microarray data

To motivate the proposed TW-SLM model for normalization, we first give a description of the

lowess normalization method from the semiparametric regression point of view. Because the

proposed TW-SLM can be considered as an extension of the standard semiparametric regression

model (SRM) of Engel, Granger, Rice, and Weiss (1986), we also give a brief description of this

model.

2.1 The lowess normalization

Suppose that there are
�

genes and � arrays in the study and that each gene is spotted once in a

array. Let ����� and ����� be the intensity levels of gene 	 in array 
 from the type 1 and type 2 samples,

respectively. Following Chen et al. (1997) and Yang et al. (2001), let ���
� be the log-intensity ratio

of the 	 th gene in the 
 th array, and let ����� be the corresponding average of the log-intensity. That
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is,

� ��� � �����
�
� ���
� ����� � ��� �

	

 ����� �
� � ��� ������� � 


� 	
��������� � � 	

� 	
���������

�
� (1)

For array 
 � 

� 	

��������� � , the lowess normalization fits the nonparametric regression

� ��� ��� � � � �������������� � 	
� 	

���������
�
� (2)

using Cleveland’s lowess method. Let �� � be the lowes estimator of � � , and let the residuals from

the nonparametric curve fitting be

������� � � �
��� �� � � � ����� � 

� 	

��������� � � 	
� 	

���������
�
�

These residuals are defined as the normalized data and used as the input in the subsequent analysis.

So usually the overall analysis consists of two steps: (i) normalization; and (ii) analysis based on

normalized data �� ���� . For example, in comparing two DNA samples using a direct comparison

design (i.e., the two cDNN samples are competitively hybridized on an array), a typical approach

is to first normalize the data using the lowess normalization, and then to make inference about

differentially expressed genes based on the normalized data. The underlying statistical framework

of such a two-step analysis in the direct comparison design can be described using two models. The

first is the nonparametric regression for normalization given in (2). The second model concerns

the residual:

� ���� ��� � �!� �
� � (3)

where � � is the underlying relative expression value of gene 	 . The goal of the significance analysis

is to detect genes with � �#"��$ . In the two-step approach, (2) and (3) are used as stand-alone models

for each of the two steps, and the effects of the approximation �� ����&% � ��
� are typically completely

ignored in the analysis.

The lowess normalization is usually applied using all the genes in a study. In general, if all

the genes are used, the differentially expressed genes may be incorrectly “normalized,” since

such genes tend to pull the normalization curve towards themselves. Thus the two-step analysis

approach may yield biased estimators of both � � and � � and inefficient test statistics for the

inference of � � (e.g. relatively large p-values for two-sided tests compared with more efficient

procedures).
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2.2 The semiparametric regression model

Suppose that the data consists of � triplets � � � � � � ��� � � � 

� 	

��������� � , where � � is the response

variable, and � ��� ��� � � is the covariate. The SRM is

� � ��� � � � ��� �
�
� � ����� � 


� 	
��������� � � (4)

where � is an unknown function, � is the regression parameter, and � � is the residual. This model

is useful in many situations, for example, when � � is a dichotomous variable representing two

conditions (treatment versus placebo etc.) and we are interested in the treatment effect � but

need to adjust for the effect of the continuous covariate � � . For a � -dimensional covariate ��� �
� � � � ��������� � ���
�

�
, it is useful to impose an additive structure on � (Hastie and Tibshirani 1990). A

semiparametric generalized additive model is

� � ��� � � � � � ��������� � � � �	� � ��� �
�
� � ����� � 


� 	
��������� � � (5)

Models (4) and (5) are two basic semiparametric models. There are two important

considerations about parameter estimation in (4) and (5). First, both � and � should be estimated

jointly. For example, it is incorrect to fix � at 0, obtain an estimate of � , then treat this estimate

of � as a known quantity, substitute it back into (4), and then estimate � . Second, the uncertainty

due to estimation of � generally needs to be taken into account in estimating � , according to the

semiparametric information theory, see for instance, Bickel, Klaassen, Ritov, and Wellner (1993),

Example 5, pages 107-109.

2.3 The two-way semi-linear model

We first describe the proposed model for the special case of a direct comparison design, in which

two cDNA samples from the respective cell populations are competitively hybridized on the same

array. Let � ��� and � ��� be the log-intensity ratio and product defined in (1). The proposed TW-SLM

is

� ��� ��� � � � ������� � � �!� �
� � 
 � 	
��������� � � 	

� 	
���������

�
� (6)
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where � � is the intensity-dependent normalization curve for the 
 th array, � ����� represents the

normalized relative expression values of gene 	 , and � ��� has mean 0 and variance �
�

�
� .
The TW-SLM can be considered as a combination of the two models that are implicitly used

in the lowess normalization (2) and (3). Specifically, we obtain (6) by simply substituting (3) into

(2). Combining these two models enables us to estimate normalization curves and gene effects

simultaneously. This is desirable, since we typically do not know which genes are constantly

expressed (i.e., with � � � $ ). Approximately unbiased normalization could be carried out using

only constantly expressed genes if a large set of such genes can be identified, but this is rarely the

reality.

We call (6) a two-way model because it also can be considered as a semiparametric

generalization of the two-way ANOVA model. That is, when � � ��� � � 

� 	

��������� � , where � �
is a constant parameter, (6) simplifies to the two-way ANOVA. The TW-SLM is an extension of

but different from the standard semiparametric regression model (4). Clearly it is also different

from the semiparametric generalized additive model (5). In particular, in models (4) and (5), the

number of finite- and infinite-dimensional parameters is fixed and is independent of the sample

size, and they do not include the standard two-way ANOVA as a submodel. In contrast, in the TW-

SLM, the number of finite-dimensional parameters is
�

, which is the sample size for estimating � � ,
and the number of infinite-dimensional parameters is � , which is the sample size for estimating � � .

In general, let � �����
	 be a covariate vector associated with the 
 th array. The general form of

the TW-SLM is:

� ��� ��� � � � ������� �
�
� � � �!����� � 


� 	
��������� � � 	

� 	
���������

�
� (7)

where � ����� 	 is the effect associated with the 	 th gene, and where � � and � �
� are the same as in

(6).

The covariate vector � � can be used to code various design schemes, such as the loop,

reference, and factorial designs (Kerr and Churchill 2001). For example, for the two-sample direct

comparison design, � �
� 	

� 

� 	

��������� � , which is model (6). For an indirect comparison design

using a common reference, we can introduce a two-dimensional covariate vector � �
� �

� �
� ��� � � � � .

Let � �
� � 	 �

$ � � if the 
 th array is of the type 1 sample versus the reference, and � �
� � $ �

	 � � if the 
 th
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array is of the type 2 sample versus the reference. Now � � � � � � � �
� � � � � is a two-dimensional vector

and � � � � � � � represents the difference in the expression levels of gene 	 after normalization. The

covariate vector � � can also include other factors that contribute to the variations of the observed

expression values.

In model (7), it is only made explicit that the normalization curve � � is array-dependent. It is

straightforward to extend the model so that � � also depends on the printing-pin blocks within an

array. Specifically, suppose that in each array, there are � printing-pin blocks, and in the � th block,

there are
���

genes printed. Let � � � � and � � � � be the log-intensity ratio and log-intensity product of

gene 	 in the � th block of array 
 , respectively. The model can be written as

� � � � � � � � � � � � ����� � �
� � �!� � � � � (8)

	 � 	
���������

���
� 

� 	

��������� � , and � � 	
��������� � .

The TW-SLM also can be easily extended to accommodate the design where a gene is printed

multiple times in an array. Such a design is helpful for improving the precision and for assessing

the quality of an array using the coefficient of variation (Tseng et al. 2001). Suppose that on the


 th array, in the � th printing-pin block, there are
���

genes and the 	 th gene in this block is printed

� ��� � times. The TW-SLM can be written as

� � � ��� ��� � � � � � � ��� ��� � �
� � ����� � ��� � (9)

	 � 	
��������� � ���

�
, 
 � 	

��������� � � 	
� 	

���������
���
� and � � 	

��������� � .

We note that we can also adapt the TW-SLM to other designs and incorporate spiked control

genes in the TW-SLM. Such genes are often used for the purpose of calibration and normalization

in a microarray experiment.

3 TW-SLM normalization

We now define the semiparametric least squares estimator (SLSE) in TW-SLM and describe an

algorithm for computing the estimated normalization curves and gene expression values using the

TW-SLM. Many nonparametric smoothing procedures can be used for this purpose. We use the
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method of polynomial splines (Schumaker 1981). This method is easy to implement, and has

similar performance as other nonparametric curve estimation methods such as local polynomial

regression and smoothing splines (Hastie, Tibshirani, and Friedman 2001).

3.1 Semiparametric LS estimator in TW-SLM

Let ����� 	� be the space of all
���	�

matrices 
�� � � � ���������
� � � � satisfying 
 ���� �

� � � $ . It is clear

from the definition of the TW-SLM model (7) that 
 is identifiable only up to a member in � ��� 	� ,

since we may simply replace � � by � ��� 
 �� � � � ��� � and � � � � � by � � � � ��� 
 �� � � � ��
� �
� �

in (7). In

what follows, we assume 
 �	� ��� 	� ����
�� ��
��� �

� � ��$��
� (10)

Let � � � ��������� � ��� ��� be � � B-spline base functions. Let

 �!� "#� � � � � �$� 	
� � � � � � � � � � 	

��������� � �&% (11)

be the spaces of all linear combinations of the basis functions. We approximate � � by

� � � � ����
� � �

� � � � � � � � � �(' � � � � � � � � �  �
where ' � � � � � � 	 � � � � � � � ��������� � ��� ��� � � � � � , and � � � � � � � � � � � ���������

� �)��� � � are coefficients to be

estimated from the data. Let * � � � � ���������
�,+ � and 
 � � � � ���������

� � � � . The LS objective function

is -
� � 
 � * � �

+�
�.� �

��
�/� �10 � ��� � � � � � ����� � �

�
� � �32 �

�
We define the semiparametric least squares estimator (SLSE) of "�
 � *4% to be the " �
 � �*5% ������ 	� �76 +

�.� �
 � that minimizes

-
� � 
 � * � . That is,

� �
 � �* � � 8:9 �$;=<?>@BA � C#DFEHGJIHKMLN �1OQP�BR�SUT �
-

� � 
 � * � � (12)

Let V ��� � � 	 � � � � � � ����� ��������� � �?� ��� � � ����� � � be the spline basis functions evaluated at ����� �
	XW 
 W
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� �
	 W 	 W �

. The spline basis matrix for the 
 th array is

V � �

����� V �� �

...V �� �

������ �

����� 	 � � � � � � � � ����� � �)��� � � � � �
...

...
...

...
	 � � � � � � � � ����� � �)��� � � � � �

������ �

Let � � � � � ���������
� + � � . We can write

-
� � 
 � � � � -

� � 
 � * � . Then the problem of minimizing-
� � 
 � � � with respect to � 
 � � � is equivalent to solving the linear equations:

�
 +�
�.� �

�
� � �

�
� ���

+�
�.� �

V � �� � �
�
� �

+�
�.� �
	 � � �� � V �FV �� �� � � V �� �
 � � � V �� 	 � �

Let � �
 � �� � be the solution. We define �� � � � � � ' � � � � � �� � � 
 � 	
��������� � .

3.2 Computation

Our approach for minimizing

-
� � 
 � � � is to use the Gauss-Seidel method, also called the back-

fitting algorithm (Hastie, Tibshirani, and Friedman 2001), that alternately updates � and 
 . Set
 @ � D �
� . For � � $
�
	
�


������� ,

Step 1: Compute � @ � D by minimizing

-
� � 
 @ � D � � � with respect to � . The explicit solution is

� @ � D� � � V �� V � ��� � V �� � 	 � ��
 @ � D � � � � 
 � 	
��������� � �

Step 2: Given the � @ � D computed in Step 1, let �
@ � D� � � � � ' � � � � � � @ � D� , compute 
 @ ��� � D

by

minimizing

-��
� 
 � � @ � D � with respect to 
 . The explicit solution is

��
@ ��� � D
� ��� +�

�.� � � � �
�
��� � � +�

�.� � � ��� � ��� � � @ � D� � � ������� � 	 � 	
���������

�
� (13)

Iterate between Steps 1 and 2 until the desired convergence criterion is satisfied. Because

the objective function is strictly convex, the algorithm converges to the sum of residual squares.

Suppose that the algorithm meets the convergence criterion at step � . Then the estimated values

of � � are �� � ��� @ �QD� � 	
� 	

���������
�

, and the estimated normalization curves are

�� � � � � � ' � � � � � � @ �QD� � ' � � � � � � V �� V � � � � V �� � 	 � � �
 � � � � 
 � 	
��������� � � (14)
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The algorithm described above can be conveniently implemented in the statistical computing

environment R (Ihaka and Gentleman, 1996). Specifically, Steps 1 and 2 can be solved by the

function lm in R. The function bs can be used to create a basis matrix for the polynomial splines.

Let � � � � � � � ��������� � � � � � and � � � � � � � � � � � � � � � ���������
� � � � � � � � � . Let

� � � V � � V �� V � � � � V �� . By

(14), the estimator of � � � � � � is

�� � � � � � � � � � 	 � � �
 � � � �
Thus the normalization curve is the result of the linear smoother

� � operating on 	 � � �
 � � . The

gene effect �
 � � is removed from 	 � . In comparison, the lowess normalization method does not

remove the gene effect. An analogue of the lowess normalization, but using polynomial splines, is

�� � � � � � � � � 	 � � V � � @ � D� �
Comparing �� � � � � � with

�� � � � � � , if there is a relatively large percentage of differentially expressed

genes, the difference between this two normalization curves can be large. The magnitude of the

difference also depends on the magnitude of the gene effects.

4 TW-SLM for significant analysis of microarray data

In addition to being a stand-alone model for normalization, the TW-SLM can also be naturally

used for detection of differentially expressed genes. Indeed, the Gauss-Seidel algorithm described

above already yields an estimate �
 of 
 , which represents gene effects. Therefore, for the purpose

of making inference about 
 , we need to estimate the variance of �
 . Below, we first consider the

structure of �
 , and then describe an intensity dependent variance estimator.

4.1 Structure of the semiparametric LS estimator

We give the expression of �
 and define the observed information matrix for 
 in the presence

of the normalization curves � � � 

� 	

��������� � . Let � � � � � � � ��������� � � � � � � 	 � � � � � � ��������� � � � � � and

� � � � � � � � � � � � � ���������
� � � � � � � � for a univariate function � . We write the TW-SLM (7) in vector
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notation as 	 � � 
 � � � � � � � � ����� � � 
 � 	
��������� � � (15)

Using (15), it can be shown that the SLSE (12) equals

�
 � 8 9 �$;=<?>A
+�
�.� �

���� 	 � � ��� � � � � � 
 � �
���� �

� (16)

In the special case of model (6),
� � 	

(scalar � � ) and 
 is a vector in �R � , (16) is explicitly

�
 � �� � �� � +
� 	
�

+�
�.� �

��� � � � � � 	 � � ��	� � (17)

since � � � � � are projections in �R � , where � �
� 	

(scalar) and, where

�� � � + � 	
�

+�
�.� �

�	� � � � � � � (18)

We note that �� � � + can be considered as the observed information matrix. Here and below, 
 � �

denotes the generalized inverse of matrix 
 , defined by 
 � �

� � 8 9 � ;=<?>���
 ' 
 ��
 ' � ��� .

If 
 is a symmetric matrix with eigenvalues � � and eigenvectors ��� , then 
 � 
 � ��������� �� and
 � � � 
������� � � � �

� ����� �� .
For general � � and

��� 	
, (16) is still given by (17) with

�� � � + � 	
�

+�
�.� �

��� � � � � ��� � � �
�
� � (19)

The information operator (19) is an average of tensor products, i.e. a linear mapping from � ��� 	� to� ��� 	� defined by �� � � + 
 � � � � 
 +
�.� � �	� � � � � � 
 � � � �� .

From the expression of �
 given in (17), we see that, because
� � is a linear smoother,

� � 	 � is

an estimated curve through the M-A plot in the 
 th array, and ��� � � � � � 	 � � 	 � � � � 	 � is the

residual from this estimated curve. In the lowess normalization method, such residuals are used as

the normalized data, except that there the local regression smoother is used instead of polynomial

splines. In the proposed TW-SLM method, the normalized data for the 
 th array is

�� � �� � + ��� � � � � � 	 � � �� � �� � + � 	 � � � � 	 � � �
The simple residual 	 � � � � 	 � is corrected multiplicatively by the inverse of the information

operator �� � � + .
13



4.2 Variance estimation and inference for �
Based on (17), we have, conditional on " �����,% ,��� 	 � �
 � � �� � �� � +

� 	
�

+�
�.� �

��� � � � � � ��� 	 ��� � � �	� � � � � ��� �
�
� � � � �� � �� � + � (20)

The variance matrix
��� 	 ��� � � can be estimated based on the residuals. Therefore, in principle,��� 	 � �
 � can be estimated based on (20). However, direct computation involves inverting a

� � � � �
matrix. When

� �	� � 	 $�
 � , as in many microarray experiments, inverting such a large matrix

is difficult. Therefore, we derive an approximation to
��� 	 � 
 � � that is easier to compute. Let� +&� 
 +

�.� �

� � �
�
� . Based on (13), we have� + �� � �

+�
�.� � � �

� � ��� � �� � � � ����� � (21)

�
+�
�.� � � �

� ����� � �
�
� � � � � � � � ����� � �� � � � ����� � �

Therefore, � + � �� ��� � ��� � +�
�.� � � � ����� �

+�
�.� � � � 0 � � � � ����� � �� � � � ����� 2 �

This leads to: ��� 	 � � + �� ��� %
+�
�.� � � � �

�
��
 � � �
��� � �

+�
�.� � � � �

�
��
 0 � � � � �
��� � �� � � � �
��� 2 �

�
So we have��� 	 � �� ��� % � � �+ � +�

�.� � � � �
�
�
��� 	 � ��������� � � �+ � � � �+ � +�

�.� � � � �
�
�
��� 	 � �� � � � ����� ��� � � �+

� ����� � �����3� � �
The variance of �� � consists of two components. The first component represents the variation due

to the residual errors in the TW-SLM, and the second component is due to the variation in the

estimated normalization curves.

For the first term ����� � , we have

����� � � � � �+ � +�
�.� � � � �

�
� �

�

��� � � � �+ �
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Suppose that �� �

��� is a consistent estimator of �
�

��� , which will be given below. We estimate � � � � by

������ � � � � �+ � +�
�.� � � � �

�
� �� �

��� � � � �+ �

For the second term � �3� � , we approximate �* � by the ideal normalization curve, that is,

�� � � � � � � � � � 	 � � �
 � � � 2 % � � � 	 � ��
 � � � � � � ��� � � � � � � � � � �
Therefore, conditional on � � , we have,��� 	 � �� � � � � � � % � � ��� 	 ��� � � � � �
and � � 	 � �� � � � �
��� � � � �� � � � � 	 ��� � � � � � � �
where � � is the unit vector whose 	 th element is 1. Let �� � be an estimator of

��� 	 ��� � � . We estimate���3� � by

���� � � � � � �+ � ��
� +�
�)� �

� � �� � � � � � � � � �+ �
Finally, we estimate

��� 	 � �� ��� by

����#� � � ���� � � � ����3� � � (22)

Then a test for the contrast � � � � , where � is a known contrast vector, is based on the statistic

� � � � � �� ��
� � ����#� ��� �

We use a
�

distribution with � � 	
degrees of freedom to approximate the null distribution of

� �
when � � � � ��$ . Resampling methods such as permutation or bootstrap can also be used to evaluate

the distribution of
� � .

We now consider two models for ����� .
(i) The residual variances are different for each gene but do not change across the arrays. That

is, for 	 � 	
���������

�
,

�
�

�
� � � �

� � 

� 	

��������� � �
15



We estimate �
�

� by �� �

� �
	

� � 	
+�
�.� �

�� �

��� � (23)

One problem with this variance estimation approach is that, because the number of genes in a

microarray study is usually large, there may be many small �� �

� values just by chance, which can

result in large
�

statistic values even if the differences in expression values are small. One solution

to this problem is to add a suitable constant to the value of �� �

� (Tusher, Tibshirani, and Chu 2001).

However, it is not clear what is the impact of such an adjustment on the false negative rate.

(ii) The residual variances depend smoothly on the total intensity values, and such dependence

may vary from array to array. So the model is

�
�

��� � � �

� � � ����� � 

� 	

��������� � � 	
� 	

���������
�
�

where �
�

� is a smooth positive function. This model takes into account the possible array to array

variations in the variances. Because of the smoothness assumption on �
�

� , this model says that, in

each array, the genes with similar expression intensity values also have similar residual variances.

This is a reasonable assumption, for in many microarray data, the variability of the log-intensity

ratio depends on the total intensity. In particular, it is often the case that the variability is higher in

the lower range of the total intensity than that in the higher range.

We use the method proposed by Ruppert, Wand, Holst, and Hössjet O (1997) and Fan and

Yao (1998) in estimating the variance function in a nonparametric regression model. For each 
 �
	
��������� � , we fit a smooth curve through the scatter plot � � ��� � �� �

��� � , where �� �

�
� � � � ����� �� � � � �����
� �
�
� �� ��� �

.

This is equivalent to fitting the nonparametric regression model�� �

�
� � � �

� � � ��������� ��� � 	
� 	

���������
�
�

for 
 � 	
��������� � , where � ��� is the residual term in this model. We use the same spline bases as in

the estimation of � � (14). The resulting spline estimator �� �

� can be expressed as�� �

� � � � � ' �� � � � � V �� V � � � � V � � � �

� � (24)

where � � �

� � � �� �

� � ��������� �� �

� � � � . The estimator of �
�

��� is then �� �

��� � �� �

� � � ����� .
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5 An example and simulation studies

5.1 Apo A1 data

We now illustrate the TW-SLM for microarray data by the Apo A1 data set of Callow, Dudoit,

Gong, Speed, and Rubin (2000). The purpose of this experiment is to identify differentially

expressed genes in the livers of mice with very low HDL cholesterol levels compared to inbred

mice. The treatment group consists of 8 mice with the apo A1 gene knocked-out and the control

group consists of 8 C57BL/6 mice. For each of these mice, target cDNA is obtained from mRNA

by reverse transcription and labeled using a red fluorescent dye (Cy5). The reference sample

(green-fluorescent dye Cy3) used in all hybridizations was obtained by pooling cDNA from the

8 control mice. The target cDNA is hybridized to microarrays containing 5,548 cDNA probes.

This data set was analyzed by Callow et al. (2000) and Dudoit, Yang, Callow, and Speed (2000).

Their analysis uses lowess normalization and the two-sample
�
-statistic. Eight genes with multiple

comparison adjusted permutation p-value
W $

�
$ 	 are identified.

We apply the proposed normalization and analysis method to this data set. As in Dudoit et al.

(2000), we use printing-tip dependent normalization. The TW-SLM model used here is

� � � � � � � � � � � � ����� �
�
� � � �!� � � � �

where 
 � 	
���������

	��
� �
� 	

���������
	��

, and 	 � 	
���������

�����
. Here 
 and 	 index arrays and genes as

before, � indexes the printing-tip blocks in an array. � � � � are residuals with mean 0 and variance

�
�

� � � . We use the model

�
�

� � � � � �

� � � � � � ��� �
where �

�

� � are unknown smooth functions. We apply the printing-pin dependent normalization and

estimation approach described in Section 4.2. The covariate � �
� � 	 �

$ � � for the treatment group

(apo A1 knock out mice) and � �
� � $ �

	 � � for the control group (C57BL/6 mice). The coefficient

� � � � � � � �
� � � � . The contrast � � � � � � � measures the expression difference for the 	 th gene between

the two groups.
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As examples of the normalization results, Figure 1 displays the M-A plots and printing-tip

dependent normalization curves in the 16 printing-pin blocks of the array from one knock-out

mouse. The solid green line is the normalization curve based on the TW-SLM model, and the

dashed red line is the lowess normalization curve. The degrees of freedom used in the spline basis

function in the TW-SLM normalization is 12, and following Dudoit et al. (2000), the span used

in the lowess normalization is 0.40. We see that, there are differences between the normalization

curves based on the two methods. The lowess normalization curve attempts to fit each individual

M-A scatter plot, without taking into account the gene effects. In comparison, the TW-SLM

normalization curves do not follow the plot as closely as the lowess normalization.

Figure 2 displays the volcano plots of � ����� 	 $ p-values versus the mean log-differences of

expression values between the knock-out and control groups. In the first (left) volcano plot, both

the normalization and estimation of 
 are based on the TW-SLM. The variances are estimated

based on (24) that assumes that the residual variances depend smoothly on the total log-intensities.

The second plot is based on the lowess normalization method and use the two-sample t-statistics as

in Dudoit et al. (2000), but the p-values are obtained based on Welch’s correction for the degrees of

freedom. The 8 solid circles are the significant genes that were identified by Dudoit et al. (2000).

These 8 genes are also significant based on the proposed method, as can be seen from the volcano

plot. Comparing the two volcano plots, we see that the � ����� 	 $ p-values based on the TW-SLM

method tend to be higher than those based on the lowess and the
�
-test method, as discussed at the

end of Section 2.1.

The differences between the two volcano plots are due to different normalization methods and

two difference approaches for estimating the variances. We first examine the differences between

the TW-SLM normalization values and the lowess normalization values. We plot the estimated

mean expression differences based on the TW-SLM versus those calculated based on the lowess

normalization, see Figure 3. The solid line is the fitted linear regression line, which is

� � $
�
$�$�$ 
 � � 	

�
$ � � �

The standard error of the intercept is 0.0018, so the intercept is negligible. The standard error of

the slope is 0.01. Therefore, on average, the mean expression differences based on the TW-SLM
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normalization method are about 10% higher than those based on the lowess normalization method.

Figure 4 shows the histograms of the standard errors obtained based on intensity-dependent

smoothing defined in (24) and the standard errors calculated for individual genes. The standard

errors based on the individual genes have a relatively large range of variation, but the range of

standard errors based on intensity-dependent smoothing shrinks towards the middle. The SE’s

based on the smoothing method are more tightly centered around the median value of about 0.13.

Thus, the analysis based on the smooth estimate of the error variances is less susceptible to the

problem of artificially small p-values resulting from random small � � � .

5.2 Simulation studies

We use simulation to compare the TW-SLM and lowess normalization methods with regard to

mean square errors (MSE) in estimating expression levels � � . Let � � and � � be the percentages of

up- and down-regulated genes, respectively, and let � ��� � � � � . We consider four models in our

simulation.

Model 1: There is no dye bias. So the true normalization curve is set at the horizontal line at 0.

That is � � � � ��� $
�
	 W 
 W � . In addition, the expression levels of up- and down-regulated genes

are symmetric and � � ��� � .

Model 2: As in Model 1, the true normalization curves � � � � � � $
�
	�W 
 W � . But the

percentages of up- and down-regulated genes are different. We set � � � � � �

Model 3: There are non-linear and intensity dependent dye biases. The expression levels of

up- and down-regulated genes are symmetric and � � ��� � .

Model 4: There is non-linear and intensity dependent dye bias. The percentages of up- and

down-regulated genes are different. We set � � � � � � .

Models 1 and 2 can be considered as baseline ideal case in which there is no channel bias. The

data generating process is as follows:

(i) Generate � � . For most of the genes, we simulate � � ��� � $ � �
�

� � . The percentage of such

genes is
	 � � . For up-regulated genes, we simulate � � ��� ��� � �

�

� � � where ��� $ . For down-

regulated genes, we simulate � � ��� �	� � �
�


 � � . We use � � ��$
�
�

� �
� 


� � � �
� � 
 � � 	

.
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(ii) Generate � ��� . We simulate � ��� � 	 ��� V�� � � � � � ��� , where
� � 	

� � � 

�
�
.

(iii) Generate � �
� . We simulate � �
� � � � $ � �
�

�
� � , where � ��� � � � � ����� . Here � � � � ��$
�
��� � � ��� �

.

So the error variance is higher at lower intensity range than at higher intensity range.

(iv) The log-intensity ratios are computed as � ��� ��� � � � ����� � � � � ����� � In Cases 3 and 4, for the


 th printing-pin block in an array, we use

� � � � � �
� � � �

�	� <?> � � ��
 �	 � � � � � � � � � 0 $ � 	 � 2 �
where

� � � and
� � � are generated independently from the uniform distribution � � $ �

�

�
	
�

 � . Thus the

normalization curves vary from block to block within an array and between arrays.

The number of printing-pin blocks is 16, and in each block, there are 400 spots. The number

of arrays in each data set is 10. The number of replications for each simulation is 10. Based on

these 10 replications, we calculate bias, variance, and mean square error of estimated expression

values relative to the generating values. In each of the four cases, we consider three levels of the

percentage of differentially expressed genes: � ��$
�
$ 	
�
$
�
$ �
�
$
�
	



.

Tables 1 to 4 give the summary statistics of the MSEs for estimating the relative expression

levels � � in the four models described above. In Table 1 for simulation Model 1, in which the true

normalization curve is the horizontal line at 0 and the expression levels of up- and down-regulated

genes are symmetric, the TW-SLM normalization tends to have slightly higher MSEs. In Table

2, when there is no longer symmetry in the expression levels of up- and down-regulated genes,

the TW-SLM method has smaller MSEs. In Table 3 for simulation Model 3, there is non-linear

intensity dependent dye bias, but the percentages of up- and down-regulated genes are the same,

the TW-SLM has slightly smaller MSEs. The Table 4 for simulation Model 4, there is non-linear

intensity dependent dye bias, and the percentages of up- and down-regulated genes are different,

the TW-SLM has considerably smaller MSEs. We have also examined biases and variances. There

are only small differences in variances between the TW-SLM and lowss methods. However, the

biases of the lowess method are generally higher.
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6 Discussion

We have proposed a TW-SLM for normalization and significant analysis of microarray data. The

basic idea of TW-SLM normalization is to estimate the normalization curves and the relative

gene effects simultaneously. The TW-SLM normalization does not assume that the normalization

is constant as in the global normalization method, nor does it make the assumptions that the

percentage of differentially expressed genes is small or that the up- and down-regulated genes are

distributed symmetrically, as are required in the lowess normalization method (Yang et al. 2001).

This model puts normalization and significant analysis of gene expression in the framework of

a high dimensional semiparametric regression model. We used the Gauss-Seidel algorithm to

compute the semiparametric least squares estimates of the normalization curves using polynomial

splines and the gene effects. For identification of differentially expressed genes, we used an

intensity-dependent variance model, and applied the nonparametric regression method based on

squared residuals (Ruppert et al. 1997, Fan and Yao 1998, and Fan et al. 2003) to estimate the

variance function. This variance model is a compromise between the constant residual variance

assumption used in the ANOVA method and the approach in which the variances of all the genes

are treated as being different. For the example we considered in Section 4, the proposed method

yields reasonable results when compared with the published results. Our simulation studies show

that the TW-SLM normalization has better performance in terms of the mean squared errors

than the lowess normalization method. Thus the proposed TW-SRM for microarray data is an

interesting alternative to the existing normalization and analysis methods.

The TW-SLM is a “two-way” generalization of the semiparametric regression model proposed

by Engle et al. (1986). If
� � 	

and � � � ����� � ��+ � � , then the SRM simplifies to the

model of Engle et al. (1986). However, the TW-SLM is qualitatively different from the standard

semiparametric regression model. For microarray data, the number of genes
�

is always much

greater than the number of arrays � . This fits the description of the well-known “small � , large

� ” problem. Furthermore, in the TW-SLM, both � (the number of arrays) and
�

(the number of

genes) play the dual role of sample size and number of parameters. That is, for estimating 
 ,
�

is

the number of parameters, � is the sample size. But for estimating * , � is the number of (infinite-
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dimensional) parameters,
�

is the sample size for * . We are not aware of any other semiparametric

models (Bickel, Klaassen, Ritov and Wellner 1993) in which both � and
�

play such dual roles of

sample size and number of parameters.

There are many interesting and challenging theoretical and computational questions arising

from the TW-SLM that have not been addressed in the present paper. For example, it is of interest

to consider the asymptotic properties of the SLSE of � � �
	�W 	 W �

and � � �
	�W 
 W � when

��� �
but for fixed � . This is a natural setting for microarray data because

�
is usually large

and � small. It is clear that the existing methods and results for semiparametric models (Bickel et

al. 1993) do not apply directly to the TW-SLM. Another question of interest is the behavior of the

variance-function estimator (24) given in Section 4 for the array and intensity-dependent residual

variance model �
�

��� � � �

� � � ����� . It appears that the consistency and efficiency results of Ruppert et

al. (1997) and Fan and Yao (1998) in the usual nonparametric regression setting do not cover the

present case, because the structure of the TW-SLM and that of the usual nonparametric regression

model are different. A third question involves computation and properties of robust estimation

procedures in the TW-SLM, such as least absolute deviation regression, Huber’s M-estimation,

and other robust methods.
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Table 1: Simulation Model 1:
	 $
�
$�$�$ � Summary of MSE of TW-SRM and Lowess Normalization

min 1th Quartile median mean 3rd Quartile max

� ��$
�
$ 	 TW-SRM 5.47 46.50 67.47 85.56 98.20 3428.00

Lowess 5.54 48.97 70.71 91.96 102.50 4885.00

� ��$
�
$ � TW-SRM 4.47 52.87 77.74 91.76 112.80 3563.00

Lowess 6.48 50.76 73.74 88.60 106.00 5674.00

� ��$
�
	



TW-SRM 7.25 60.88 91.32 106.60 136.30 1704.00

Lowsss 4.20 51.25 75.49 91.38 111.50 2390.00

Table 2: Simulation Model 2:
	 $
�
$�$�$ � Summary of MSE of TW-SRM and Lowess Normalization

min 1th Quartile median mean 3rd Quartile max

� ��$
�
$ 	 TW-SRM 7.16 51.14 77.69 94.96 120.90 1161.00

Lowess 8.94 70.39 105.90 124.20 156.80 1650.00

� ��$
�
$ � TW-SRM 7.75 47.73 68.68 81.07 98.10 4564.00

Lowess 7.20 60.46 89.74 105.60 127.70 8583.00

� ��$
�
	



TW-SRM 4.44 50.78 73.45 85.01 105.00 1584.00

Lowsss 10.85 86.99 132.10 153.20 192.20 3253.00
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Table 3: Simulation Model 3:
	 $
�
$�$�$ � Summary of MSE of TW-SRM and Lowess Normalization

min 1th Quartile median mean 3rd Quartile max

� ��$
�
$ 	 TW-SRM 8.31 52.45 75.24 86.51 106.50 1956.00

Lowess 6.30 54.05 79.42 92.92 113.20 2687.00

� ��$
�
$ � TW-SRM 4.32 51.81 75.87 88.84 108.00 3012.00

Lowess 6.26 53.86 76.72 92.81 108.90 4715.00

� ��$
�
	



TW-SRM 7.74 52.85 78.10 92.71 115.30 2502.00

Lowsss 7.74 57.30 83.63 100.80 123.00 3131.00

Table 4: Simulation Model 4:
	 $
�
$�$�$ � Summary of MSE of TW-SRM and Lowess Normalization

min 1th Quartile median mean 3rd Quartile max

� ��$
�
$ 	 TW-SRM 6.12 56.96 85.25 105.50 132.60 2767.00

Lowess 10.20 99.95 153.10 187.60 231.80 3730.00

� ��$
�
$ � TW-SRM 5.59 51.77 74.43 84.72 105.70 1067.00

Lowess 9.78 78.90 119.80 137.30 175.70 1441.00

� ��$
�
	



TW-SRM 6.29 53.49 77.78 91.57 112.10 10070.00

Lowsss 19.10 121.40 174.50 193.80 236.60 12550.00
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Figure 1: Apo AI data: Comparison of normalization curves in the 16 blocks of the array from

one knock-out mouse in the treatment group. Solid Green line: normalization curve based on

TW-SLM; Dashed Red line: normalization curve based on lowess
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Figure 2: Volcano plot: Scatter plot of � ����� � � � p-value � versus estimated mean expression value
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Figure 3: Comparison of TW-SLM and Lowess normalized expression values: Scatter plot of

normalized mean expression differences
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Histogram: SE based on individual genes
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Histogram: SE based on smoothing
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Figure 4: Comparison of variance estimation methods. Top panel: SE estimated based on

individual genes. Bottom panel: SE estimated based on smoothing
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