2024 Travelers University Modeling Competition

"The Traveling Salesmen" The University of Iowa

Behrooz Khalil Loo, Nathan Munshower,

David Roth, Mahdi Saedei Kousha and Nikita Jiaswal

Outline

- What is the "Traveler's Competition?"
- Understanding the Problem & Dataset
- Selected Models & Explanations
- Results & Conclusions

TRAVELERS

Traveler's Analytics Case Competition

- Hosted by Travelers—a massive P&C U.S. insurance company
- Given a business problem where predictive analytics are needed
- 22 teams entered—we represented UIowa 🕲

What's the Business Problem?

 We work at CloverShield—an insurance company with a thriving call center ^(C)

What's the Business Problem?

- We work at CloverShield—an insurance company with a thriving call center ^(C)
- Goal: Forecast number of times *a policyholder* will call (to reduce costs)

Data Description

- Variable Dictionary:
 - ~ 20 variables about each policyholder
 - Annual Premium Amount, Product Type, Geographic Description (e.g., rural), etc.
 - Target Variable: call_counts (number of calls per policy)

Understanding the Model Evaluation Metric

- Relative Gini Index?
 - Evaluates the ranking ability of predicted values.
 - Focuses on the **order** of values rather than their absolute accuracy.
- Key Insight:
 - Correct prediction order is critical: Mis-ranking one value affects the entire sequence.

relative GINI =
$$\frac{\sum_{k=1}^{N} \left((k \cdot a_k) - \left(\sum_{i=1}^{k} a_i \right) \right)}{\left(\sum_{i=1}^{N} a_i \right) \cdot \left(\sum_{i=1}^{N} i \right)}$$

Challenge with Data and Metric

Over 50% of data have Y=0:

• This imbalance amplifies the importance of correctly ordering the majority class.

• Handling Y=0:

- Correctly classifying data points where Y=0 helps maintain ranking integrity
- Encourages exploring mixture models

Preprocessing Steps

- Data Preprocessing:
 - Scaling Numerical Features
 - Missing Data Handling
 - Complete Cases
 - Different Imputation Methods

- Feature Selection:
 - Goal: Cut out the chaff (multicollinear, insignificant, etc.)
 - Utilize automatic feature selection (CatBoost, LASSO regularization)

Initial Models Tried

- Poisson Regression
- Random Forests
- XGBoost
- LightGBM
- Neural Network

Final Selected Models

- 1. Generalized Linear Model
- 2. Gradient Tree-Boosted Two-Part Hurdle Model
- 3. Gradient Tree-Boosted Tweedie Hurdle Model

1. Generalized Linear Model: Tweedie Target Distribution w/ LASSO Regularization

Why a Tweedie Distribution?

• Tweedie distribution has a very nice property: it can effortlessly fit data that has a lot of 0 values, while still having a support on the positive real number line!

 \circ Sum of N exponential RVs where N ~ Poisson

• As about half of the samples are 0, it makes sense to go out of our way to account for this in the final model

Why LASSO Regularization?

- Needed a way to reduce the number of parameters overfitting & perfect collinearity were both evident
- Model is large enough that other feature selection methods (even stepwise selection) felt unfeasible
- LASSO regularization works via iterative method (Newton's method), so we could adjust the number of steps taken to fit our computational limitations

Second Order (Interaction) Effects?

- Interested to see if any variables have interactions which are significant predictors for the number of calls made
- In this model, none appeared to give a notable increase in predictive power

• It's possible that this was a limitation of the Newton's Method approach (couldn't get close to the optimal model given very limited number of steps)

Summary of Generalized Linear Model (GLM)

• Fit a **LASSO-regularized** GLM with **Tweedie** target distribution

• Tweedie Target Distribution:

- Notable mass of zero values but also many large values
- LASSO-regularization
 - Large number of explanatory variables
 - Interaction terms did not prove to be useful. Could be computational limitation

2. Gradient Tree-Boosted Two-Part Hurdle

• Stage 1: Zero/Non-Zero Classification:

• A CatBoost Classifier predicts whether the target variable is zero or non-zero.

• Stage 2: Non-Zero Count Regression:

• For non-zero target values, a **Negative Binomial Regressor** predicts the exact count.

3. Gradient Tree-Boosted Tweedie Hurdle

• Stage 1: Zero/Non-Zero Classification:

• A CatBoost Classifier predicts whether the target variable is zero or non-zero.

• Stage 2: Non-Zero Count Regression:

• For non-zero target values, a **Tweedie Regressor** predicts the exact count.

Model Evaluation

- Train/Validation Split
- Cross Validation
- Two-Stage Fine Tuning

Top 3 by **Private Score**

phc.csv Complete · Behrooz · 16d ago	0.24890	0.25366
hct.csv Complete · Behrooz · 13d ago	0.24860	0.25438
ftr.csv Complete · Behrooz · 17d ago	0.24801	0.25541

Top 3 by **Public** score

predictionsGLM.csv Complete · Nathan Munshower · 5d ago · Regularized first order Tweedie GLM	0.24677	0.25642
ftr.csv Complete · Behrooz · 17d ago	0.24801	0.25541
GTBTCP.csv Complete · Behrooz · 13d ago	0.24471	0.25498

Results

