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Abstract

Magnetic resonance imaging (MRI) is used to identify the major tissues within a

subject’s brain. Classification is usually based on a single image providing one mea-

surement for each volume element, or voxel, in a discretization of the brain. A simple

model views each voxel as homogeneous, belonging entirely to one of the three major

tissue types (gray matter, white matter, and cerebro-spinal fluid); the measurements

are normally distributed with means and variances depending on the tissue types of

their voxels. Since nearby voxels tend to be of the same tissue type, a Markov random

field model can be used to capture the spatial similarity of voxels. A more realistic

model would take into account the fact that some voxels are not homogeneous and

contain tissues of more than one type. Our approach to this problem is to construct

a higher resolution image in which each voxel is divided into subvoxels, and subvox-

els are in turn assumed to be homogeneous and follow a Markov random field model.

This paper uses a Bayesian hierarchical model to conduct MRI tissue classification.

Conditional independence is exploited to improve the speed of sampling. The subvoxel

approach provides more accurate tissue classification and also allows more effective esti-

mation of the proportion of major tissue types present in each voxel for both simulated

and real data sets.

KEY WORDS: Markov random field; Conditional independence; Markov chain Monte

Carlo; Brain imaging; Partial volume effect;
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1 INTRODUCTION

Magnetic resonance imaging (MRI) is an important non-invasive method for visualizing the

human brain and for examining the brain’s anatomical structure. An MR image is based on

a discretization of the viewing area into a three-dimensional (3D) array of volume elements,

or voxels. An image provides one measurement, the intensity value, for each voxel. For a

single subject (the brain), there could be different types of images, based on multiple mea-

surements for each voxel. MRI tissue classification (segmentation) is a process during which

anatomically meaningful labels are assigned to each voxel of the image. Gray matter (GM),

white matter (WM), and cerebrospinal fluid (CSF) are the three main tissue types of the

brain. There are others, but tissue classification usually focuses on these three. MRI segmen-

tation allows the 3D visualization of individual anatomical structures, which facilitates the

study of abnormal tissue, diagnosis of disease, and surgery and treatment planning. After

classification the volumes of certain tissues can be calculated, thereby providing important

quantitative information for the study of diseases such as Alzheimer’s disease, schizophrenia,

and multiple sclerosis.

Since manual tissue classification is very labor intensive, researchers have been trying to

develop automated methods that match the quality of manual classification at lower cost.

Usually the classification is based on intensities in a particular type of MR image called a

T1 image. In a T1 MR image (see Figure 1 for example), WM has high intensities (light

gray), GM has medium intensities (medium gray), and CSF has low intensities (dark gray).

MR image data consist of image intensities y = (y1, ..., yN) for N voxels in a 3D grid. For

the examples used in this paper, the value of N is either 256×256×192 or 181×217×181. To

allow storage as a single byte, intensities are often scaled to the range [0, 255] and rounded

to an integer. A simple model views each voxel as homogeneous. The problem is then

to determine the tissue type zi ∈ {1, . . . , k} for voxel i, where i = 1, 2, . . . N , and k = 3
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corresponding to three major tissue types. A more realistic model takes into account the

fact that some voxels are not homogeneous and contain more than one type of tissue; this

is sometimes referred to in the literature as the partial volume effect. Since adjacent voxels

tend to contain the same tissue types a spatial model, such as a Markov random field, that

captures this similarity can improve the classification.

The next section reviews some existing approaches to MRI tissue classification and out-

lines a new approach for handling the partial volume effect. Section 3 presents the Markov

random field models used to capture spatial similarity of adjacent voxels, describes the prior

and full conditional posterior distributions of other parameters, and discusses related com-

putational issues. The results of classifications performed on simulated and real data are

shown in Section 4. Some discussion and directions for future work are presented in Section

5.

2 SOME EXISTING METHODS AND A NEW AP-

PROACH

A variety of statistical and other methods have been used in MRI tissue classification; see

Archibald et al. (2003), Cocosco et al. (2003), Cuadra et al. (2005), Harris et al. (1999),

Kamber et al. (1995), Leemput et al. (1999), Warfield et al. (2000), Shattuck et al. (2001) and

references therein. This section outlines some approaches based on a pure voxel assumption,

some existing approaches to the partial volume issue, and a new approach based on a higher

resolution model.
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2.1 Methods Based on the Pure Voxel Assumption

Density plots of the intensities in MR images often exhibit multi-modality. A density plot

of the intensities in a relatively low noise MR image from Collins et al. (1998) is shown in

Figure 2. See Section 4 for details of the data.

A mixture model is a natural choice when there are multiple modes in a density plot. A

simple model views each voxel as homogeneous, belonging entirely to one of the three major

tissue types, and, given the tissue structure z = {z1, . . . , zN}, the index vector of tissue types

of all voxels, intensities are independently and normally distributed with

yi|zi ∼ N(µ(zi), σ
2(zi))

where means and variances depend on the tissue type. If we assume tissue types are inde-

pendent, then this leads to a simple normal mixture model

f(y) =
N∏
i=1

k∑
j=1

φµ(zi),1/σ2(zi)(yi)p(zi = j) (1)

Throughout the paper φµ,τ denotes the probability density function of a normal distribution

with mean µ and precision τ . The parameters of model (1) are easily estimated by the EM

algorithm, and tissue types can be assigned using the Bayes classifier. The normal mixture

model is the basic setup in MRI tissue classification upon which various methods taking

other factors into consideration are built. See Cuadra et al. (2005) and references therein.

Since the data are collected on a 3D grid, a natural question is how to incorporate

spatial information to improve the classification. Since adjacent voxels are likely to contain

tissues of the same type a more realistic model would account for spatial homogeneity in z.

The Potts model family, introduced in more detail in Section 3, provides simple models for

assigning spatial homogeneity relationships among the components of z. After incorporating
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spatial information through Potts models, which belong to the family of Markov random

field models, we have the hidden Markov normal mixture model

p(y, z|µ, τ ) = p(y|z,µ, τ )p(z) (2)

The normal mixture model is used to model the intensities and, given the tissue types, all

intensities are independently normally distributed. The spatial homogeneity relationship

among voxels is modeled by using a hidden Markov model on the component index vector

of the normal mixture model.

The iterated conditional mode (ICM) algorithm of Besag (1986) can be used to estimate

parameters of the hidden Markov normal mixture model. For the ICM approach we fit the

model (2) by alternately maximizing over µ, τ for fixed z and maximizing over each zi

for fixed values of µ, τ and the other z values. Though the ICM has its drawbacks, such

as sensitivity to the initial configuration and visiting scheme, and can get stuck at a local

maximum, it is fast and easy to implement. For a detailed discussion of ICM see Winkler

(2003).

The hidden Markov random field EM (HMRF-EM) algorithm proposed in Zhang et al.

(2001) is another algorithm that can be used to fit the hidden Markov normal mixture model.

HMRF-EM is also an iterative algorithm that alternates estimating z for given µ and τ with

several iterations of the ICM algorithm and then, for a given z, estimates µ and τ at iteration

t+ 1 by

µ
(t+1)
j =

∑N
i=1 p(z

(t)
i = j|yi,µ(t), τ (t), z

(t)
∂(i))yi∑N

i=1 p(z
(t)
i = j|yi,µ(t), τ (t), z

(t)
∂(i))

1

τ
(t+1)
j

=

∑N
i=1 p(z

(t)
i = j|yi,µ(t), τ (t), z

(t)
∂(i))(yi − µ

(t+1)
j )2∑N

i=1 p(z
(t)
i = j|yi,µ(t), τ (t), z

(t)
∂(i))
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where p(z
(t)
i = j|yi,µ(t), τ (t), z

(t)
∂(i)) is the conditional probability that zi = j given the voxel

intensity yi, the current values of µ and τ , and the tissue types of the neighbors of voxel i,

z∂(i) at iteration t. This process is continued until a convergence criterion is met.

Instead of using ICM or HMRF-EM, a Bayesian approach could be used to study the

hidden Markov normal mixture model. The model is formulated in a hierarchical framework.

Given the tissue types, the intensities are independently and normally distributed. A model

from the Potts model family is used as a prior distribution of the tissue type indices. Con-

jugate prior distributions are assigned on the means and variances of the normal mixture

model. In image analysis, mixture models with spatial Markovian dependency studied in

a Bayesian framework have been used, for example, in animal tissue classification (Alston

et al., 2005) and fMRI data segmentation (Woolrich et al., 2005).

2.2 Methods Used to Address the Partial Volume Effect

The approaches described in Section 2.1s assume that each voxels contains only one tissue

type. A more realistic model recognizes that a voxel may contain one, two, or possibly three

different tissue types. This phenomenon is called the partial volume effect (or PV effect).

An approach to addressing the PV effect used by several studies is to introduce two addi-

tional classes into consideration besides CSF, GM, and WM. The two additional classes are

the combination of CSF and GM (CG) and the combination of GM and WM (GW). Voxels

containing WM and CSF are very rare and are ignored; this helps to reduce confounding in

estimation. Therefore, instead of three, there are five major tissue types: CSF, CG, GM,

GW, and WM, and the goal is to determine zi ∈ {1, 2, 3, 4, 5} corresponding to five tissue

types for each voxel i = 1, . . . , N .

First, a simple normal mixture model with five components, one component correspond-

ing to one tissue type, could be used. Second, a hidden Markov normal mixture model with

five components could be a better choice, since it takes spatial information into account.
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The estimation of the two models could be conducted by using the ICM or the modified EM

algorithms.

Instead of allowing the five mean and variance parameters of the mixture components to

vary independently Santago and Gage (1993) and Santago and Gage (1995) propose a third

approach in which the means and variances for the combined categories are related to the

means and variances for the pure categories by

µ2 = αµ1 + (1− α)µ3

µ4 = αµ3 + (1− α)µ5

and

σ2
2 = α2σ2

1 + (1− α)2σ2
3

σ2
4 = α2σ2

3 + (1− α)2σ2
5

with 0 < α < 1 and α is assumed to follow some mixing distribution p(α). When zi ∈ {2, 4}

p(yi|zi) =

∫ 1

0

φµzi ,1/σ
2
zi

(yi)p(α|zi)dα (3)

Choosing the distribution of α is a complex issue and it is often assumed to be uniform on

[0, 1]. Then equation (3) reduces to

p(yi|zi) =

∫ 1

0

φµzi ,σ
2
zi

(yi)dα (4)

There is no closed form solution to the integral and it has to be computed numerically. The

model can be fitted by minimizing of the sum squares of the differences between the observed

normalized intensity densities and the densities from the model using a genetic algorithm
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(Schroeter et al., 1998).

The fourth model is the third model plus a Potts prior on z and can be fitted by the

modified EM algorithm. This model is referred to as GPV-HMRF hereafter.

Besides the four parametric approaches, some non-parametric methods are discussed in

Cuadra et al. (2005) as well. Compared with GPV-HMRF, the other methods appear to be

less competitive in performance. Therefore we do not consider them further.

2.3 A High Resolution Model

Instead of addressing the PV effect at the voxel level, suppose each voxel is made up of nsub

subvoxels and what we observe is the intensity of the whole voxel denoted by y. For example,

if each voxel is divided in half in the x, y, and z directions then this produces nsub = 8

subvoxels. This is illustrated in Figure 3. Let vi, i = 1, 2, . . . , nsub, be the unobserved subvoxel

intensities for a given voxel with observed intensity y. We then assume that the observed

intensity is the sum of the corresponding unobserved subvoxel intensities, y =
∑nsub

i=1 vi. The

subvoxels are in turn assumed to be homogeneous and follow the hidden Markov normal

mixture model based on the pure voxel assumption described in Section 2.1. In the Markov

random field model it is important to take into account the observation that WM and CSF

are rarely adjacent. This is discussed further in Section 3.

3 PRIOR DISTRIBUTIONS AND POSTERIOR SAM-

PLING

The joint distribution of the observed voxel intensities y, the unobserved subvoxel intensi-

ties v, the normal distribution parameters µ and τ , and the subvoxel tissue membership
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indicators z is assumed to be of the form

p(y|v)p(v|µ, τ , z)p(µ)p(τ )p(z) (5)

Posterior sampling uses an MCMC algorithm that cycles through sampling from the full

conditional distributions for z, v, µ, and τ . This section describes the components of the

prior distributions, the resulting full conditional distributions, and the sampling approaches

used.

3.1 Prior and Full Conditional Posterior Distributions of Tissue

Types.

A Markov random field model is used to capture spatial similarity of adjacent voxels. We use

a six-neighbor structure in which voxels or subvoxels are viewed as neighbors if they share a

face. These are also sometimes referred to as first order neighbors. A commonly used model

is of the form

p(z) = C(β)−1 exp

{
N∑
i=1

αi(zi) + β
∑
i∼j

wijf(zi, zj)

}
(6)

where C(β) is a normalizing constant and i ∼ j indicates neighboring vertices. The non-

negative parameter β, called inverse temperature, determines the level of spatial homogeneity

between neighboring vertices in the image. A value of β = 0 would imply that neighboring

vertices are independent. The wij are positive weights. The term
∑N

i=1 αi(zi) is called

the external field. Prior distributions used to capture spatial similarity typically do not

incorporate an external field; the corresponding full conditional posterior distribution based

on independent observations on each voxel is then of the form of Equation (6) with an

external field derived from the data likelihood.

The simplest form commonly used for f(zi, zj) is f(zi, zj) = I(zi = zj). For k = 2
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components the resulting model is called the Ising model (Ising, 1925); for k > 2 it is the

Potts model (Potts, 1953). The Ising model was originally proposed to describe the physical

properties of magnets. Due to its flexibility and simplicity, the Ising model and its variations

have been widely used in other fields, such as brain models in cognitive science, information

and machine learning theory (see for example MacKay, 2003), economics (see for example

Bourgine and Nadal, 2004), sociology (Kohring, 1996) and game theory (Hauert and Szabó,

2005).

Another useful form of the function f(zi, zj) is f(zi, zj) as

f(zi, zj) =


a1 if zi = zj

a2 if |zi − zj| = 1

a3 otherwise

(7)

where a1 ≥ a2 ≥ a3. A special case of this model is used in Cuadra et al. (2005). We use

this model with βa1 = β1, a2 = 0, and βa3 = −β2, with β1, β2 > 0, which leads to

p(z) = C(β1, β2)
−1 exp

{∑
i∼j

β1wijI(zi = zj)− β2wijI(|zi − zj| > 1)

}
(8)

We call this model the repulsion Potts model and β2 the repulsion parameter. This model

assumes an ordering of the categories and that neighboring vertices are most likely from the

same category, and, if they are different then it is more likely that they are similar than

totally different. For brain tissue classification we associate the index values 1, 2, 3 with

categories CSF, GM, and WM, respectively, and use the repulsion Potts model to reflect

the observation that CSF and WM are rarely adjacent. A simple Potts model that does not

account for this cannot effectively distinguish pure GM voxels from voxels combining WM

and CSF, which are in fact very rare.
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We follow common practice in the imaging literature (e.g. Cuadra et al., 2005) and

determine the parameters of the Markov random field prior on z by a pilot experiment;

more details are given in Section 4. As a result, the normalizing constant in (6) or (8) is

not needed. An alternative would be to place a prior distribution on the β parameters and

to use some approaches to computing or approximating the normalizing constant. Gelman

and Meng (1998) gave a thorough discussion on using simulation to compute normalizing

constants. We could use the thermodynamic integration approach, whose name comes from

the differential equations for describing thermodynamic relationships in physics, to obtain

the normalizing constants. This method was used in Green and Richardson (2002) and

Smith and Smith (2006). They used the simple Potts model or Ising model defined on a two

dimensional graph. A method incorporating the techniques of kernel density estimation into

simulations was proposed in Liang (2006) to compute the normalizing constants. In Møller

et al. (2006), the ratio of the normalizing constants is canceled out by the introduction of

an auxiliary variable in a Metropolis-Hastings algorithm.

For the examples considered in this paper and for one modality (T1,T2 or PD) for

each subject, after masking out some points outside the brain there remain nearly two

million observations. It is not quite clear whether existing methods can find the normalising

constants of a Potts model without external field defined on a vast space in MRI tissue

classification accurately with reasonable costs. It is also not clear whether the classification

accuracy of the approach would be improved by these efforts.

To generate random samples from the full conditional distribution of z, which is of the

form of Equation (6) with an external field, we use a single site updating Gibbs sampler

but with an updating order that takes advantage of the conditional independence structure

to update index variables zi, i = 1, 2, . . . , N . This allows the simulation to be vectorized in

high level languages like R or Matlab and also can form the basis for a parallel computing

strategy.
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The approach is illustrated in Figure 4 (a), for a four neighbor structure in 2D, and

Figure 4 (b) for a six neighbor structure in 3D. Given the categories of the black cells, the

categories of the white cells are independent and vice versa. As a result, the vector z can be

updated in two steps: one for the black cells, one for the white cells. This idea was described

in Wilkinson (2005) and detailed discussion can be found in Winkler (2003). The idea of

taking advantage of this kind of independence can be traced back at least to the “Coding

Methods” in Besag (1974). The minimum number of blocks to make the vertices within each

block independent given the other blocks is called the chromatic number in Winkler (2003).

The chromatic numbers for a four neighbor configuration in 2D and six neighbors in 3D are

both 2. Under the eight neighbor structure in 2D, the eighteen neighbor structure in 3D, and

the twenty-six neighbor structure in 3D, the chromatic numbers are 4, 7, and 8, respectively

(Feng, 2008). Our current implementation in C uses Open MP (Chandra et al., 2000) to

parallelize loops in the generation within each block and achieves a speedup of roughly a

factor of two on a four processor machine; a more sophisticated approach should be able to

realize further gains.

The full conditional distribution of the indicator variable zi for subvoxel i is

p(zi|z∂(i),µ, τ ,v) ∝ p(vi|zi,µ, τ )p(zi|z∂(i))

∝ pdf of multinomial(1; pi1, pi2, pi3)

where z∂(zi) represents the indices for components of all neighbors of subvoxel i, and pij is

the conditional probability that zi is from component j. The pij are of the form

pij =
τ

1/2
j exp

{
− τj

2
(vi − µj)2 + rij

}∑3
t=1 τ

1/2
t exp

{
− τt

2
(vi − µt)2 + rit

} (9)

where rij determines the conditional prior probability that subvoxel i is from category j
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given the categories of all neighbors of i. For model (8)

(ri1, ri2, ri3) = (Ni1, Ni2, Ni3)


β1 0 −β2

0 β1 0

−β2 0 β1


where Nij is the total number of neighbors of i which are currently allocated to category j.

For the simple Potts model, a number of alternatives to single site updating are available.

The Swendsen and Wang (1987) algorithm (SW) is widely used to generate random samples

from Potts models. Wolff’s algorithm (Wolff, 1989) has been advocated as a better substi-

tute to SW. Multigrid (Hurn, 1997, and references therein) and partial decoupling methods

(Higdon, 1998) could be more powerful when dealing with models with external fields.

Various multiple site sampling methods might outperform single-site updating, but some-

times they might not. Multi-site sampling methods like the SW algorithm could tackle the

critical slowing down problem. But when there is an external field, as in a posterior dis-

tribution like the one considered here, SW slows down since it does not make good use of

the data. Hurn (1997) and Smith and Smith (2006) suggested that when β is large, Gibbs

samplers might be more effective. For multigrid methods, questions such as how to decide

which vertices should be considered simultaneously and make the Markov chains under the

adaptive versions converge to the same target equilibrium distributions could be hard to

solve. Furthermore there is no guarantee that this will be better than the Gibbs sampler

as pointed out in Hurn (1997). The partial decoupling method might be better than SW,

though it might take time to find the tuning parameters before running. For images as

complicated as MRI, it is hard to determine the number of modes and even if we could, it

might be the case that different tuning parameters facilitate transitions between different

modes, not to mention the computational cost of trial and error. Besides, as pointed out in

Hurn (1997), there are some vertices that cannot be updated simultaneously and sometimes
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partial decoupling wouldn’t be better than single-site updating.

For the simple Potts model , the best sampling method is likely to be problem-specific

and there is no clear-cut winner as pointed out in Hurn (1997) and Higdon (1998). For the

repulsion Potts model, possible multi-site updating methods are being investigated. Because

of the strength of the external field in our application we believe that the mixing of the single

site updating approach is likely to be competitive with other approaches, and the simplicity

and opportunities for parallelization tip the balance in favor of this approach.

3.2 Updating Subvoxel Intensities

The full conditional distribution of the subvoxel intensities v is a singular multivariate normal

distribution in which the subvoxel values for different whole voxels are independent and

the subvoxel intensities within a whole voxel sum to the observed voxel intensity. For an

individual voxel with observed intensity y the nsub = 8 subvoxel intensities v1, . . . , vnsub
can

be generated by the following algorithm:

Algorithm 3.1. To generate a random draw from v, with v ∼ MVN(µ,Σ), given
∑nsub

i=1 vi =

y, where µ = {µ1, . . . , µnsub
} and Σ = diag(σ2

1, . . . , σ
2
nsub

):

1. Generate ṽi
ind∼ N(0, σ2

i ).

2. Compute ṽ∗ = ṽ−(
∑nsub

i=1 ṽi)a, where a = (a1, a2, . . . , ansub
), ṽ = (ṽ1, ṽ2, . . . , ṽnsub

), and

ai =
Cov

(
vi,
∑nsub

j=1 vj

)
Var

(∑nsub

j=1 vj

) =
σ2
i∑nsub

j=1 σ
2
j

3. Return ṽ∗ + µ+ (y −
∑nsub

i=1 µi)a
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Proof. The conditional expectations are

E

[
vi

∣∣∣∣∣
nsub∑
j=1

vj = y

]
= µi + ai

(
y −

nsub∑
j=1

µj

)

with ai as defined above. In vector form this is

E

[
v

∣∣∣∣∣
nsub∑
j=1

vj = y

]
= µi +

(
y −

nsub∑
j=1

µj

)
a

Now the residuals are

v∗ = v − E

[
v

∣∣∣∣∣
nsub∑
j=1

vj = y

]
= v − µ−

(
nsub∑
j=1

vj −
nsub∑
j=1

µj

)
a

So the conditional distribution v|
∑nsub

j=1 vj = y is the same as the distribution of

v∗ + µ+

(
y −

nsub∑
j=1

µj

)
a

The distribution of v∗ does not depend on µ, so the distribution for general µ is the same

as the distribution for µ = 0, i.e. the same as the distribution of ṽ − a
∑nsub

i=1 ṽi with the

ṽi
ind∼ N(0, σ2

i ).

The algorithm avoids matrix computations and can be easily vectorized.

3.3 Prior and Full Conditional Posterior Distributions of Means

and Precisions

The prior distribution on (µ1, µ2, µ3) has independent normals with the common mean ξ

and common precision η conditioned to satisfy µ1 < µ2 < µ3. The ordering restriction

avoids identifiability issues associated with “label switching” (Celeux et al., 2000). The
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prior distributions of {τj, j = 1, . . . , k} are taken to be i.i.d. Γ(λ, φ) (the parametrization of

the gamma distribution is with mean equal to λφ and variance λφ2). In our implementation

the prior distribution parameters are chosen as follows. Let ymin and ymax be the minimum

and maximum observed intensity values of voxels. Let vmin = ymin

nsub
and vmax = ymax

nsub
. To

specify ξ and η, we adopt the similar method as in Richardson and Green (1997). We

let ξ = vmin+vmax

2
and let η be a small multiple m of 1/R2, with R = vmax − vmin. This

produces a prior density that is fairly flat over the range supported by the data. For the

prior distribution on the precisions let λ = m and let φ = 1/R2. As to the value of m, the

classification results are not very sensitive to it. We take m as 0.3, which works well across

various data sets we tried. The full conditional distribution of µ is

µj
ind∼ N

(
ηξ + τj

∑
i∈Cj

vi

η + τjNj

, η + τjNj

)

conditioned to satisfy µ1 < µ2 < µ3, where Cj is the set of all subvoxels currently allocated

to component j and Nj is the size of Cj, i.e. the total number of subvoxels allocated to

component j.

The full conditional distribution of τ is

τj
ind∼ Γ

(
Nj

2
+ λ,

2φ

2 + φ
∑

i∈Cj
(vi − µj)2

)

In our implementation initial values of {(µj, τj), j = 1, 2, 3}, are obtained by first running

an EM algorithm for a simple mixture model at the whole voxel level (without taking spatial

correlations into account) to obtain {(µvox
j , τvox

j ), j = 1, 2, 3}, the means and precisions of

each component of the normal mixture model on the distribution of the intensity values of

voxels, and then computing initial subvoxel values as µj =
µvox

j

nsub
, τj = n2

subτ
vox
j , j = 1, 2, 3. The

initial values of the components of z are based on the initial values of {µj, τj, j = 1, . . . , k},

zi = m, if max{φµj ,τj (yi), j = 1, . . . , k} = m.
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4 APPLICATIONS

In this section we compare the subvoxel strategy proposed in Section 2.3 with alternative

pure voxels approaches discussed in Section 2.1, and with methods addressing the PV effect

discussed in Section 2.2. We used a simple Potts model with a six neighbor structure in 3D

to capture the spatial homogeneity relationship among the components of the index vector of

tissue types. Initial values of the means and precisions of the normal mixture model and the

initial values of indices were chosen based on applying the EM algorithm to a simple normal

mixture model with no spatial component analogously to the approach for the subvoxel

method outlined in Section 3. All the β values for pure voxel methods are determined by

pilot experiments as discussed later in this section. For the GPV-HMRF method, the β

value is the the same as in Cuadra et al. (2005).

A challenge in assessing the performance of classification methods is to find data sets

with a reliably known “ground truth.” We use both simulated and real data sets to evaluate

the performance of the different methods.

4.1 Simulated Data Sets

The simulated data sets we used were from Collins et al. (1998) (referred to as the BrainWeb

hereafter), which provides a Simulated Brain Database, a set of “true” MRI data volumes

produced by an MRI simulator. This simulator uses an anatomical model and a model of

MR acquisition physics to generate images with different nonuniformity (RF) and noise lev-

els. The volume is 217× 181× 217 voxels with isotropic 1 mm3 voxel size. The anatomical

model used to generate simulated images consists of a set of 3D “fuzzy” tissue membership

volumes—the voxel values in these volumes reflect the proportion of each tissue present in

that voxel. Besides the fuzzy tissue membership volumes, there is a discrete anatomical

model which consists of a class label (integer) at each voxel, giving the tissue which con-
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tributes the most to that voxel. See Kwan et al. (1999) for details of the simulator. Following

Cuadra et al. (2005) and others, we consider RF values of 20% and 40% and noise levels

between 1% and 9%. We use rfn1pnn2 to represent data with RF n1 percent and noise level

n2 percent. For example rf20pn7 represents the data with RF 20% and noise level 7%.

For the T1 images from the BrainWeb, some voxels in the images are not classified into

CSF, GM, or WM: some are outside the brain and some are classified to other tissue types,

such as glial matter. For real data, a brain mask is usually determined as a preliminary step

and tissues other than CSF, GM, and WM are generally ignored. We therefore use a mask

that restricts our attention to voxels containing only one of the three major tissue types or

combinations of the three.

4.2 Determining β Values Using a Pilot Study

After obtaining data with the truth known, we first run pilot experiments to determine what

β values to use for the different pure voxel methods. We split each image from the BrainWeb

data into two halves, right and left, and use the right halves as training sets for determining

good choices of the β values. For the simple Potts prior (used in the pure voxel models fitted

by MCMC, ICM, and HMRF-EM), we consider the range β ∈ (0, 4]; for the repulsion Potts

model, we let β1 ∈ (0, 4] and β2 ∈ (0, 4] also. For the repulsion Potts model used in the

subvoxel method, we tried to find the best β values by grid searching on a courser grid first

and then on a more refined grid.

One way to measure the performance of different methods with different βs is to compute

the mis-classification rate, the percentage of voxels not correctly classified (referred to as

PN hereafter). For the BrainWeb data, we assign the tissue type of each voxel using the

discrete anatomical model giving the tissue which contributes the most to that voxel. For the

Bayesian pure voxel model, the classification of a voxel i is based on the marginal posterior

mode estimate of zi. To allow the subvoxel method to be compared to whole voxel methods
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we compute the posterior mean proportion of each tissue type within each whole voxel from

the subvoxel results and then assign the entire voxel to the tissue with the highest posterior

mean proportion. We will refer to this as the rounded subvoxel method.

We chose the β values as follows. For each method, first, let βi be the best β (or (β1, β2) in

the subvoxel method) for data set i, i = 1, 2, . . . , T , with T being equal to the number of data

sets. We use T = 10 different data sets with various noise levels and nonuniformity settings.

Figure 5 shows the settings used. Second, plug in each βi into all data sets and calculate

the largest mis-classification rate among all data sets P i
N . Third, take the β which has the

minimum P i
N , i = 1, 2, . . . , T , as the best. The β values we obtained for each method are

shown in Table 1. The PN values are not very sensitive to small changes in the β values and

we therefore expect that these values will work well for brain images with similar resolution,

noise level, and nonuniformity.

For the Bayesian hidden Markov normal mixture model at the whole voxel level and

for the subvoxel strategy, the number of sweeps used is 100, which takes about 1 and 16

minutes, respectively for the whole brain (run on a 2 dual core Opteron 2216, 2.4GHz, 8

GB RAM computer). This is of course a very short run for an MCMC approach, but it

seems to be sufficient to produce good classifications. For example, for the rf20pn7 data, the

results are comparable to results obtained from a run length of 20,000; the mis-classification

rates change by only about 0.0002 for the whole voxel method and 0.002 for the subvoxel

method. Trace plots for the means and variances of the normal mixture components based

on runs of length 20,000 show no anomalies. We also randomly changed 10% of the initial

values for the indices of tissue types and the chains converged to the same estimated images

very quickly. Nevertheless, more systematic diagnostics would be useful and alternative

sampling algorithms and implementations might improve the mixing and the performance

of the samplers.
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4.3 Empirical Results for Simulated and Real Data Sets

Having obtained β values using data from the right brain halves, we compare different

methods for the simulated and real data sets. First we compare the subvoxel method with

the other methods based on the assumption that all voxels are pure. Second, the comparison

was done between the subvoxel method and the others addressing the PV effects.

4.3.1 Subvoxel Strategy and Pure Voxel Methods

To assess the performance of different methods, first we used the data from the left brain

halves. Figure 5 shows the mis-classification rates for 10 data sets from the BrainWeb using

the rounded subvoxel method and the other four pure voxel methods under consideration.

From Figure 5 we can see that the simple normal mixture model fitted by the EM algorithm

does not perform as well as the other methods, and that its performance deteriorates more

rapidly as the noise level increases. The other methods perform similarly, and the larger the

noise level, the greater the advantage of the Bayesian methods. The subvoxel strategy is the

best when RF=20%, though by a small margin. Figure 6 shows the true classification and

results of classification using the subvoxel method for a 2D sagittal slice from the left half of

rf20pn7 data. From Figure 6, we can see that we have quite accurate classification results.

The mis-classification rates compare whole voxel classifications to the discrete anatomical

model. This requires a form of rounding of the results and doesn’t reflect all the partial

volume information each approach provides. To illustrate the ability of the subvoxel approach

to capture the partial volume effect, we computed average mean square errors between the

tissue distributions within voxels estimated by the different methods and the “fuzzy” tissue

membership information available for the BrainWeb data. The results are shown in Figure

7. Again the simple finite mixture model does not do as well as the other pure voxel

approaches. As one might expect, the subvoxel approach does markedly better than the

pure voxel methods.
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In addition to the data from the BrainWeb, we also tested the classification methods

on real data from the Iowa Mental Health Clinical Research Center (referred to as the

Iowa data hereafter). For the Iowa data, we have 4 subjects and for each subject we have

manually classified results for 2 slices. We use the Iowa data to evaluate the performance

of classification methods in a setting where the truth is partially known. We use β values

obtained from the BrainWeb data when analyzing the Iowa data. Figure 8 shows the mis-

classification rates of different methods. The subvoxel approach is uniformly best across all

four subjects.

Figure 9 shows a slice of the T1 image of one subject, the manual classification results

for the slice, and the results from the subvoxel classification. From Figure 9, we can see

that the higher resolution images constructed by the subvoxel strategy are smoother and

capture more detail. The black bits in the manually classified images are parts outside the

brain, which cannot be captured by automatic methods unless they are masked out before

the classification.

4.3.2 Subvoxel Strategy and PV Effect Methods

After comparing the subvoxel method with the four methods based on the three major tissue

types classification, next we compare the subvoxel method with other methods addressing

the PV effect discussed in Section 2.2. To simplify the comparisons we focus on the GPV-

HMRF method, which Cuadra et al. (2005) found to be the best or nearly the best at noise

levels of 5% and higher.

To compare mis-classification rates we use another form of rounding for the results of

subvoxel method to produce one of five classes for each voxel. First we compute pij, the

posterior mean proportion of each tissue type j within each whole voxel i from the subvoxel

results. Second let ci =
∑

j(2j − 1) ∗ pij and round ci to an integer as the final classification

result.
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From Figure 10 the five-class rounded subvoxel method is superior to GPV-HMRF at all

RF and noise levels considered.

We also compared the average mean square errors between the estimated tissue distri-

butions in each voxel produced by the subvoxel and GPV-HMRF methods to the “fuzzy”

tissue membership information for the BrainWeb data. For the GPV-HMRF approach voxels

assigned to GW were considered to estimate the voxel’s distribution as 50% GM and 50%

WM, with the CG category treated analogously. The results are shown in Figure 11.

Again the more detailed estimates provided by the higher resolution subvoxel approach

result in better estimates across all RF and noise levels considered.

5 DISCUSSIONS AND FUTURE WORK

In the previous section, for the prior distributions of z we used a six-neighbor structure and

the simple Potts model for the pure voxel method and the repulsion Potts model with weights

equal to 1 for the subvoxel method. We explored some other possible priors on the rf20pn7

data and obtained similar or worse results. A more thorough study of prior models under

different neighborhood structures and weightings might be useful to find the best choice of

priors for our method.

In classification, one question is how to incorporate more information into the building

of classification rules. Most methods proposed for MRI tissue classification just use the

T1 weighted image of a subject. But sometimes we can get not only T1 but T2 and PD

weighted images as well. To take T2 and PD images into account in addition to T1 might

be beneficial.

The inverse temperature parameters β and β1 and β2 in the repulsion Potts model are

fixed by the pilot study on the BrainWeb data. This works well for data of comparable

resolution, noise levels, and intensity non-uniformity to the BrainWeb data. Joint estimation
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of these parameters may be necessary to accommodate a wider range of different data sets.

Gibbs sampling is the method we adopt in updating the component indices. Combining

the Gibbs sampler with other sampling algorithms and implementations could be helpful to

improve mixing of the Markov chain.

Several extensions of the proposed method are worth exploring. It may be possible to

extend the approach to support identifying pathologies, such as tumors and lesions. Another

possible extension is to spatio-temporal modeling of fMRI data.
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Table 1: Optimal β values for different methods.

Method β value
ICM β = 0.4
HMRF-EM β = 0.5
MCMC-voxel β = 0.7
MCMC-subvoxels β1 = 0.6, β2 = 0.3
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Figure 1. A 2D coronal slice of a T1 image of a brain. The plot helps to visulize the data

used for tissue classification.

Figure 2. The density plot of a T1 image. The density plot of a T1 image often show

three modes corresponding to three components, which suggests that a mixture model might

appropriate to model the intensity values.

Figure 3. Illustration of a voxel split into eight subvoxels. To address the issue of partial

volume effect, instead of the voxel level, we split each voxel into eight subvoxels and model

the intensity values at the subvoxel level, based on the assumption that all subvoxels are

pure.

Figure 4. Taking advantage of conditional independence. For a four neighbor structure in 2D,

and a six neighbor structure in 3D, given the categories of the black cells, the categories of

the white cells are independent and vice versa. As a result, the index vector can be updated

in two steps: one for the black cells, one for the white cells. This allows the simulation to be

vectorized in high level languages like R or Matlab and also can form the basis for a parallel

computing strategy.

Figure 5. Mis-classification rates of the subvoxel method and the other four methods based

on the pure voxel assumption for the BrainWeb data. We can see that the simple normal

mixture model fitted by the EM algorithm does not perform as well as the other methods,

and that its performance deteriorates more rapidly as the noise level increases. The other

methods perform similarly, and the larger the noise level, the greater the advantage of the

Bayesian methods. The subvoxel strategy is the best when RF=20%, though by a small

margin.

Figure 6. Sagittal view of true classification and classification by the subvoxel method for a

BrainWeb data set. Using the subvoxel method, we have quite accurate classification results.

Figure 7. Average mean squared errors of the subvoxel method and the other four methods

based on the pure voxel assumption for the BrainWeb data. It illustrates the ability of the
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subvoxel approach to capture the partial volume effect based on the average mean square

errors between the tissue distributions within voxels estimated by the different methods and

the true “fuzzy” tissue membership information. Again the simple finite mixture model

does not do as well as the other pure voxel approaches. As one might expect, the subvoxel

approach does markedly better than the pure voxel methods.

Figure 8. Mis-classification rates of the subvoxel method and the other four methods based on

the pure voxel assumption for the Iowa data. Compared with other methods, the subvoxel

approach is uniformly best across all four subjects from the Iowa Mental Health Clinical

Research Center.

Figure 9. The original MR image, manual classification results, and results from the subvoxel

method for one slice of the T1 image from the Iowa data. The higher resolution images

constructed by the subvoxel strategy are smoother and capture more detail.

Figure 10. Five components mis-classification rates of the subvoxel method and the GPV-

HMRF method. The five-class rounded subvoxel method is superior to GPV-HMRF at all

RF and noise levels considered.

Figure 11. Averaged mean squared errors of the subvoxel method and the GPV-HMRF

method. The more detailed estimates provided by the higher resolution subvoxel approach

result in better estimates across all RF and noise levels considered.
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Figure 1: A 2D coronal slice of a T1 image of a brain.

Figure 2: The density plot of a T1 image.
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Figure 3: Illustration of a voxel split into eight subvoxels.

(a) Four neighbor configuration in 2D. (b) Six neighbor configuration in 3D.

Figure 4: Taking advantage of conditional independence.
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(a) RF=20% (b) RF=40%

Figure 5: Mis-classification rates of the subvoxel method and the other four methods based
on the pure voxel assumption for the BrainWeb data.

(a) True classification. (b) Classification by the subvoxel
method.

Figure 6: Sagittal view of true classification and classification by the subvoxel method for a
BrainWeb data set.
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(a) RF=20% (b) RF=40%

Figure 7: Average mean squared errors of the subvoxel method and the other four methods
based on the pure voxel assumption for the BrainWeb data.

Figure 8: Mis-classification rates of the subvoxel method and the other four methods based
on the pure voxel assumption for the Iowa data.
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(a) True MR image. (b) Zoomed true MR image.

(c) Manual classification. (d) Zoomed manual classification.

(e) Classification by subvoxel
method.

(f) Zoomed classification by subvoxel
method.

Figure 9: The original MR image, manual classification results, and results from the subvoxel
method for one slice of the T1 image from the Iowa data.37



(a) RF=20% (b) RF=40%

Figure 10: Five components mis-classification rates of the subvoxel method and the GPV-
HMRF method.

(a) RF=20% (b) RF=40%

Figure 11: Averaged mean squared errors of the subvoxel method and the GPV-HMRF
method.
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