
Approximate Conditional Least Squares Estimation of a

Nonlinear State-Space Model via Unscented Kalman

Filter

Kwang Woo Ahn

Division of Biostatistics

Medical College of Wisconsin, Milwaukee, WI 53226

email: kwooahn@mcw.edu

Kung–Sik Chan

Department of Statistics and Actuarial Science

The University of Iowa, Iowa City, Iowa 52242

email: kung-sik-chan@uiowa.edu

July 22, 2011

Abstract

Nonlinear state-space models driven by differential equations have been widely used

in science. Their statistical inference generally requires computing the mean and co-

variance matrix of some nonlinear function of the state variables, which can be done in

several ways. For example, such computations may be approximately done by Monte

Carlo, which is rather computationally expensive. Linear approximation by the first
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order Taylor expansion is a fast alternative. However, the approximation error be-

comes non-negligible with strongly nonlinear functions. Unscented transformation was

proposed by Julier and Uhlmann (1997) to overcome these difficulties, but it lacks of

theoretical justification. In this paper, we derive some theoretical properties of the

unscented transformation and contrast it with the method of linear approximation.

Particularly, we derive the convergence rate of the unscented transformation.

——————————————

Keywords: Unscented transformation; nonlinear transformation; Monte Carlo; Linear ap-

proximation.

1. INTRODUCTION

Many scientific studies employ nonlinear state-space models for describing the dynamics

of a continuous-time state process driven by a system of an ordinary differential equation

(Diekmann and Heesterbeek 2000; Simon 2006). Simulation based methods such as sequen-

tial Monte Carlo methods have been popular for estimating such models, but it is computa-

tionally expensive (Doucet, deFreitas and Gordon 2001). In the engineering literature, the

extended Kalman filter (EKF) has been proposed as a fast alternative, but it approximates

the nonlinear system by its first order Taylor expansion, which is subject to rapidly increasing

approximation errors with the degree of nonlinearity. To overcome these difficulties, Julier

and Uhlmann (1997) proposed the unscented Kalman filter (UKF). The UKF mimics the

updating scheme of the Kalman filter, with each updating step requiring the computation

of the mean and covariance matrix, of some nonlinear function of the state vector, which

is done via the unscented transformation (UT). In contrast with Monte Carlo methods, the

UT makes use of a small number of deterministic “sigma points” in estimating the mean

and covariance matrix of some nonlinearly transformed random variable. Empirical works

suggest that the UKF is a promising technique with satisfactory performance, see Julier and

Uhlmann (1997), Julier and Uhlmann (2004), and Wan and van der Merwe (2000). However,

theoretical justification of the UKF is lacking.
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Since the UT plays a pivotal role in the UKF, it is essential to study the theoretical prop-

erties of the UT. As the UT is used for approximately computing the mean and covariance

matrix of some nonlinear transformation of the state vector over a small time step, denoted

by h, the main issue we address here concerns the error rate of the UT approximation as

h → 0. In Section 2, we elaborate the definition of the UT. The error rates of the UT are

then derived in Section 3. We conclude briefly in Section 4.

2. UNSCENTED TRANSFORMATION

The UT is an approximate scheme for computing the mean and covariance matrix of y =

f(x), where x is a a c× 1 random vector with known mean E(x) and covariance matrix P,

and f : Ω → Rq is a q × 1 vector function, i.e. f = (f1, . . . , fq), where R is a set of real

numbers and Ω ⊆ Rc is the sample space of x, i.e. P (x ∈ Ω) = 1. Let Py and Pxy be

the covariance matrix of y and the covariance matrix between x and y, respectively. For a

constant λ > −c, the sigma points x̂(0), . . . , x̂(2c) are defined as follows:

x̂(0) = E(x), x̂(i) = E(x) + x̆(i), i = 1, . . . , 2c,

x̆(j) =
(√

(c+ λ)P
)T
j
, x̆(c+j) = −

(√
(c+ λ)P

)T
j
, j = 1, . . . , c,

where
√

(c+ λ)P is the matrix square root of (c+ λ)P such that(√
(c+ λ)P

)T(√
(c+ λ)P

)
= (c+ λ)P,

and
(√

(c+ λ)P
)
j

is the jth row of
√

(c+ λ)P. Here,
√

(c+ λ)P can be obtained by

the Cholesky decomposition or singular value decomposition. The constant λ controls the

distance between the sigma points and E(x). If λ→ −c, the sigma points tend to be closer

to E(x). If λ → ∞, the sigma points tend to be further away from E(x). Hence, λ is a

tuning parameter that controls the error between the true mean or covariance matrices and

their UT approximations to be defined below. Let ŷ(i) = f(x̂(i)), i = 0, . . . , 2c. The UT

formulas for the approximate mean ŷ, covariance matrix P̂y of y, and covariance matrix P̂xy
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between x and y are

ŷ =
2c∑
i=0

W (i)ŷ(i), P̂y =
2c∑
i=0

W (i)(ŷ(i) − ŷ)(ŷ(i) − ŷ)T ,

P̂xy =
2c∑
i=0

W (i)(x̂(i) − E(x))(ŷ(i) − ŷ)T ,

(1)

where W (0) = λ/(c + λ), W (i) = 1/(2c + 2λ), i = 1, . . . , 2c. Hence, the UT estimates are

weighted sample analogues based on the sigma points, see Simon (2006). On the other hand,

the linear approximation scheme used by the EKF approximates the mean and covariance

matrices via the first order Taylor expansion, resulting in the following formulas:

ŷL = f(E(x)), P̂y,L = HPHT , P̂xy,L = PHT (2)

for estimating E(y),Py, and Pxy, respectively, where H is the Jacobian matrix of f evaluated

at E(x). Clearly the preceding UT method is computationally more efficient than the Monte

Carlo simulation. In addition, the UT does not require calculating the Jacobian matrix.

Below, we show that the UT method provides more accurate approximation than linear

approximation, see Section 3.

3. PROPERTIES OF UT

Define x̃ = x−E(x) = (x1−E(x1), . . . , xc−E(xc))
T . The derivative ∂if(E(x))/(∂xk11 · · · ∂xkcc )

is the derivative of f evaluated at E(x) where i =
∑c

j=1 kj, and kj’s are non-negative integers.

Assume f is an analytic function over Ω. Then, the Taylor series of f around E(x) is given

as follows:

f(x) = f(E(x)) +
∞∑
i=1

(
x̃1

∂

∂x1
+ · · ·+ x̃c

∂

∂xc

)if(E(x))

i!
.

Define Dk
x̃f as

Dk
x̃f =

( c∑
i=1

x̃i
∂

∂xi

)k
f(E(x)).

We assume that Dk
x̃f is integrable on Ω for any non-negative integer k. We also assume that

there exists Y with finite absolute first moment such that |
∑m

i=0D
i
x̃f/i!| ≤ Y a.e. on Ω for all

m. Since
∑m

i=0D
i
x̃f/i!→ f , we have limm→∞E(

∑m
i=0D

i
x̃f/i!) = limm→∞

∑m
i=0E(Di

x̃f/i!) =
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E{f(x)} by the dominated convergence theorem. In practice, these conditions are satisfied

if i) there exists a constant Q > 0 such that E|x̃k11 · · · x̃kcc | ≤ Q
∑c

j=1 kj , for any non-negative

integers kj; ii) for all j, 1 ≤ j ≤ q, there exists some constant R > 0∣∣∣ ∂
∑c

i=1 kifj

∂xk11 · · · ∂xkcc

∣∣∣ ≤ R
∑c

i=1 ki ,

for any non-negative integers kj, 1 ≤ j ≤ c. Thus, we can derive the following results:

E(y) = f(E(x)) +
1

2!

c∑
i=1

c∑
j=1

Pij
∂2

∂xi∂xj
f(E(x)) +

∞∑
j=3

1

j!
E[Dj

x̃f ], (3)

ŷ = f(E(x)) +
1

2

c∑
i=1

c∑
j=1

Pij
∂2

∂xi∂xj
f(E(x)) (4)

+
1

2(c+ λ)

2c∑
i=1

∞∑
j=2

1

(2j)!
D2j

x̃(i)f,

where Pij is the (i, j)th entry of P. We consider the case that the random variable x = xh

is indexed by a positive number h such that x = E(x) + op(h) where E(x) is independent

of h, in which case equation (3) provides an heuristic expansion of E(y) = E{f(xh)} with

summands of orders hj, j = 0, 1, · · · . The order of the error rate of the UT estimator of E(y)

may then be studied by comparing Equations (3) and (4). If x has a symmetric distribution

about its mean E(x), we have

E(y) = f(E(x)) +
1

2!

c∑
i=1

c∑
j=1

Pij
∂2

∂xi∂xj
f(E(x)) +

∞∑
j=2

1

(2j)!
E[D2j

x̃ f ]. (5)
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Define A = {(a, b)|a, b ∈ N but (a, b) 6= (1, 1)} and B = {(a, b)|a, b ∈ N, but a 6= 1, b 6=

1, (a, b) 6= (2, 2)} where N is the set of natural numbers. Then, we have

Py = HPHT − 1

4
E(D2

x̃f)E(D2
x̃f)T + E

[ ∑
(i,j)∈A

1

i!j!
(Di

x̃f)(Dj
x̃f)T

]
−
[ ∑
(i,j)∈B

1

i!j!
E(Di

x̃f)E(Dj
x̃f)T

]
,

P̂y = HPHT − 1

4
E(D2

x̃f)E(D2
x̃f)T

+
1

2(c+ λ)

2c∑
i=1

[ ∑
k+`= even
(k,`)∈A

1

k!`!
(Dk

x̃(i)f)(D`
x̃(i)f)T

]

−
∑

(k,`)∈A

[ 1

(2k!)(2`!)

1

4(c+ λ)2

2c∑
i=1

2c∑
j=1

(D2k
x̃(i)f)(D2`

x̃(j)f)T
]
.

(6)

If the distribution of x is symmetric about its mean,

Py = HPHT − 1

4
E(D2

x̃f)E(D2
x̃f)T + E

[ ∑
i+j= even
(i,j)∈A

1

i!j!
(Di

x̃f)(Dj
x̃f)T

]

−
[ ∑
(i,j)∈A

1

(2i!)(2j!)
E(D2i

x̃ f)E(D2j
x̃ f)T

]
.

(7)

In addition,

Pxy = PHT +
∞∑
i=2

1

i!
E
[
x̃
(
Di

x̃f
)T]

,

P̂xy = PHT +
∞∑
k=1

1

(2k + 1)!

1

2(c+ λ)

2c∑
i=1

x̃(i)
(
D2k+1

x̃(i) f
)T
.

(8)

When the distribution of x is symmetric about the mean E(x),

Pxy = PHT +
∞∑
i=1

1

(2i+ 1)!
E
[
x̃
(
D2i+1

x̃ f
)T]

. (9)

Detailed derivations of (3)-(9) can be found in Appendix. From (3)-(9), we have the following

lemma:

Lemma 1. Assume that

1. f is an analytic function;
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2. Dk
x̃f is integrable on Ω for any non-negative integer k;

3. there exists Y with finite absolute first moment such that |
∑m

i=0D
i
x̃f/i!| ≤ Y a.e. on

Ω for all m.

Then,

1. E(y)− ŷ =
∑∞

j=3
1
j!

E[Dj
x̃f ]− 1

2(c+λ)

∑2c
i=1

∑∞
j=2

1
(2j)!

D2j

x̃(i)f ;

2. Py − P̂y = E
[∑

(i,j)∈A
1
i!j!

(Di
x̃f)(Dj

x̃f)T
]
−
[∑

(i,j)∈B
1
i!j!

E(Di
x̃f)E(Dj

x̃f)T
]

− 1
2(c+λ)

∑2c
i=1

[∑
k+`= even
(k,`)∈A

1
k!`!

(Dk
x̃(i)f)(D`

x̃(i)f)T
]

+
∑

(k,`)∈A

[
1

(2k!)(2`!)
1

4(c+λ)2

∑2c
i=1

∑2c
j=1(D

2k
x̃(i)f)(D2`

x̃(j)f)T
]
;

3. Pxy − P̂xy =
∑∞

i=2
1
i!

E
[
x̃
(
Di

x̃f
)T]
−
∑∞

k=1
1

(2k+1)!
1

2(c+λ)

∑2c
i=1 x̃(i)

(
D2k+1

x̃(i) f
)T

.

Furthermore, if the distribution of x is symmetric about the mean E(x), then

1. E(y)− ŷ =
∑∞

j=2
1

(2j)!
E[D2j

x̃ f ]− 1
2(c+λ)

∑2c
i=1

∑∞
j=2

1
(2j)!

D2j

x̃(i)f ;

2. Py − P̂y = E
[∑

i+j= even
(i,j)∈A

1
i!j!

(Di
x̃f)(Dj

x̃f)T
]

−
[∑

(i,j)∈A
1

(2i!)(2j!)
E(D2i

x̃ f)E(D2j
x̃ f)T

]
− 1

2(c+λ)

∑2c
i=1

[∑
k+`= even
(k,`)∈A

1
k!`!

(Dk
x̃(i)f)(D`

x̃(i)f)T
]

+
∑

(k,`)∈A

[
1

(2k!)(2`!)
1

4(c+λ)2

∑2c
i=1

∑2c
j=1(D

2k
x̃(i)f)(D2`

x̃(j)f)T
]
;

3. Pxy − P̂xy =
∑∞

i=1
1

(2i+1)!
E
[
x̃
(
D2i+1

x̃ f
)T]
−
∑∞

k=1
1

(2k+1)!
1

2(c+λ)

∑2c
i=1 x̃(i)

(
D2k+1

x̃(i) f
)T

.

For the linear approximation scheme defined by (2), we have the following parallel results:

Lemma 2. Under the same conditions of Lemma 1, the linear approximation based on the

first order Taylor expansion enjoys the following properties:

1. E(y)− ŷL = 1
2!

∑c
i=1

∑c
j=1 Pij

∂2

∂xi∂xj
f(E(x)) +

∑∞
j=3

1
j!

E[Dj
x̃f ];

2. Py − P̂y,L = −1
4
E(D2

x̃f)E(D2
x̃f)T + E

[∑
(i,j)∈A

1
i!j!

(Di
x̃f)(Dj

x̃f)T
]

−
[∑

(i,j)∈B
1
i!j!

E(Di
x̃f)E(Dj

x̃f)T
]
;
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3. Pxy − P̂xy,L =
∑∞

i=2
1
i!

E
[
x̃
(
Di

x̃f
)T]

.

If the distribution of x is, furthermore, symmetric about its mean, then

1. E(y)− ŷL = 1
2!

∑c
i=1

∑c
j=1 Pij

∂2

∂xi∂xj
f(E(x)) +

∑∞
j=2

1
(2j)!

E[D2j
x̃ f ];

2. Py − P̂y,L = −1
4
E(D2

x̃f)E(D2
x̃f)T + E

[∑
i+j= even
(i,j)∈A

1
i!j!

(Di
x̃f)(Dj

x̃f)T
]

−
[∑

(i,j)∈A
1

(2i!)(2j!)
E(D2i

x̃ f)E(D2j
x̃ f)T

]
;

3. Pxy − P̂xy,L =
∑∞

i=1
1

(2i+1)!
E
[
x̃
(
D2i+1

x̃ f
)T]

.

Remark 1. These results show that the UT estimator of the mean E(y) = E{f(x)} matches

the true value correctly up to the second order terms in the expansion (3) whereas the esti-

mator from linearization of f(E(x)) only matches the true mean up to the first order term.

If the distribution of x is symmetric about its mean, the UT estimator of E(y) matches the

true value correctly up to the third order terms in the expansion. The UT estimator of the

covariance matrix Py matches more terms than its linear approximation counterpart. For

approximating Pxy, the UT estimators and its linear approximation counterpart provide the

same order of approximation. Nevertheless, in all cases, the UT estimator has other terms

to compensate for the remaining higher-order terms. This compensation appears to be better

when x has a symmetric distribution about its mean.

Remark 2. Lemma 1 shows that if λ is close to −c or very large, bias may be severe unless

the nonlinearity of f is minimal. Choosing an optimal λ is a difficult problem because it

is generally infeasible to calculate the expectations stated in Lemma 1 for a nonlinear f .

However, they can be calculated for certain distributions, for example, normal distributions.

When x is normal, E(xk11 · · ·xkcc ) can be expressed as a function of the components of P, see

Isserlis (1918), Holmquist (1988), and Triantafyllopoulos (2003). So we can calculate the

mean squared error (MSE) in this case. From Lemma 1, the bias can be approximated as

E(y)− ŷ ≈
∑m

j=2 1/(2j)!E[D2j
x̃ f ]− 1/(2c+ 2λ)

∑2c
i=1

∑m
j=2 1/(2j)!D2j

x̃(i)f for some m, where

the first term can be expressed as a function of the components of P. The corresponding
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variance can be derived based on (1). Then, we can minimize the MSE to obtain an optimal

λ.

Next, define Dk as follows:

Definition 1.

Dk =
{
f : Ω ⊂ Rc → Rq|f is a polynomial of degree at most k

}
.

Theorem 3. 1. If f ∈ D2, then ŷ = E(y). In addition, if the distribution of x is

symmetric about its mean and f ∈ D3, then, ŷ=E(y).

2. If f ∈ D1, i.e., f is linear, then P̂y = Py and P̂xy = Pxy.

Proof. This follows from the Taylor series expansions in (3)–(9).

The UKF has been applied for estimating a nonlinear state-space model where the state

equation is an ordinary differential equation or a stochastic differential equation with ob-

servations at time t1, . . . , tn, where ti+1 − ti = h for i = 1, . . . , n − 1, where, with no loss

of generality, h ≤ 1. To solve these differential equations, one may discretize the system

equation using the Euler method or Runge-Kutta method (Boyce and DiPrima 2004), which

results in the case that conditionally x has a covariance matrix P = hP∗ for some h-free

positive definite matrix P∗. Thus, it is interesting to compare the error rates of the UT

estimators of E(y) = E{f(x)},Py,Pxy and their counterparts from linear approximation

when P = hP∗. We allow that f may depend on h. For simplicity, we assume that the

distribution of x is symmetric about its mean. Then, we can obtain the following theorem:

Theorem 4. Suppose P = hP∗ and x has a symmetric distribution about its mean. Assume

1. there exists a h-free constant M > 0 such that E|x̃k11 · · · x̃kcc | ≤ hi/2M i/2, for any non-

negative integers kj where
∑c

j=1 kj = i;

2. for all j, 1 ≤ j ≤ q, and for all 0 < h ≤ 1, there exists some h-free constant K > 0,∣∣∣ ∂ifj(E(x))

∂xk11 · · · ∂xkcc

∣∣∣ ≤ Ki,
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for any non-negative integers kj, 1 ≤ j ≤ c, where i =
∑c

j=1 kj.

Then,

E(y)− ŷ = O(h2), Py − P̂y = O(h2), Pxy − P̂xy = O(h2),

E(y)− ŷL = O(h), Py − P̂y,L = O(h2), Pxy − P̂xy,L = O(h2).

Proof. See Appendix.

Remark 5. Condition 1 of Theorem 4 is motivated by the fact that x̃k11 · · · x̃kcc = Op(h
i/2)

because x̃j = Op(
√
h). Condition 2 of Theorem 4 is satisfied if the function f is a polynomial.

Remark 6. Theorem 4 shows that the UT estimator E(y) has a smaller error rate than the

estimator from linear approximation although the estimators of the covariance matrices Py

and Pxy have the same error rate. This suggests that discretization methods based on the

UKF would be more accurate than the EKF, which is shown rigorously by Ahn and Chan

(2011).

4. CONCLUSION

We have derived some theoretical properties of the UT and linear approximation. The UT

makes use of some deterministic sigma points in contrast with the Monte Carlo method. In

addition, it does not require calculating the Jacobian matrix unlike the method of linear

approximation. Derivations based on Taylor expansions show that the estimated mean and

covariance matrix from the UT match their true values to more higher order terms than the

method of linear approximation. Thus, the UT is faster than the Monte Carlo and more

accurate than the method of linear approximation.
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APPENDIX A. DERIVATION OF RESULTS FOR THEOREM 1

For simplicity, assume the pdf of the random vector x is symmetric about its mean with

a known mean E(x) and covariance matrix Px, and y = f(x). Assume f is an analytic
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function. We also assume that Dk
x̃f is integrable on Ω for any non-negative integer k and

there exists Y with finite absolute moment suth that |
∑m

i=0D
i
x̃f/i!| ≤ Y a.e. on Ω for all

m. Replacing ŷ(i) by its Taylor expansion around E(x), we get

ŷ = W (0)ŷ(0) +
2c∑
i=1

W (i)ŷ(i)

=
λ

c+ λ
f(E(x)) +

1

2(c+ λ)

2c∑
i=1

(
f(E(x)) +Dx̃(i)f +

1

2!
D2

x̃(i)f + · · ·
)
.

= f(E(x)) +
1

2(c+ λ)

2c∑
i=1

(
Dx̃(i)f +

1

2!
D2

x̃(i)f + · · ·
)
.

Now notice that
2c∑
j=1

D2k+1
x̃(j) f = 0,

because x̃(j) = −x̃(c+j), j = 1, . . . , c. See (Simon 2006) for the details. Therefore,

ŷ = f(E(x)) +
1

2(c+ λ)

2c∑
i=1

1

2!
D2

x̃(i)f +
1

2(c+ λ)

2c∑
i=1

( 1

4!
D4

x̃(i)f +
1

6!
D6

x̃(i)f · · ·
)
.

In addition, similar to (Simon 2006), we can obtain

1

2(c+ λ)

2c∑
i=1

1

2!
D2

x̃(i)f =
1

2

c∑
k=1

c∑
`=1

Pk`
∂2

∂xk∂x`
f(E(x)), (A.1)

because x̃(i) = −x̃(c+i). Thus,

ŷ = f(E(x)) +
1

2

c∑
i=1

c∑
j=1

Pij
∂2

∂xi∂xj
f(E(x))

+
1

2(c+ λ)

2c∑
i=1

( 1

4!
D4

x̃(i)f +
1

6!
D6

x̃(i)f + · · ·
)
.

(A.2)

Similarly,

E(y) = f(E(x)) +
1

2!
E[D2

x̃f ] +
1

4!
E[D4

x̃f ] + · · · .

It can be easily shown

1

2!
E[D2

x̃f ] =
1

2!

c∑
k=1

c∑
`=1

Pk`
∂2

∂xk∂x`
f(E(x)).

12



As a result, we have

E(y) = f(E(x)) +
1

2!

[ c∑
i=1

c∑
j=1

Pij
∂2

∂xi∂xj
f(E(x))

]
+

1

4!
E[D4

x̃f ] + · · · .

(A.3)

Next, we turn our attention to the covariance structure:

Py = E[(y − E(y))(y − E(y))T ].

Based on the results obtained so far, we have

ŷ − E(y) =
[
f(E(x)) +Dx̃f +

1

2!
D2

x̃f + · · ·
]

−
[
f(E(x)) +

1

2!
E(D2

x̃f) +
1

4!
E(D4

x̃f) + · · ·
]

=
[
Dx̃f +

1

2!
D2

x̃f + · · ·
]
−
[ 1

2!
E(D2

x̃f) +
1

4!
E(D4

x̃f) + · · ·
]
.

Then, using the definition of A = {(a, b)|a, b ∈ N} − {(1, 1)} where N is the set of natural

numbers,

Py = E[(y − E(y))(y − E(y))T ]

= E
[{(

Dx̃f +
1

2!
D2

x̃f +
1

3!
D3

x̃f + · · ·
)

−
( 1

2!
E(D2

x̃f) +
1

4!
E(D4

x̃f) +
1

6!
E(D6

x̃f) + · · ·
)}

×
{(
Dx̃f +

1

2!
D2

x̃f +
1

3!
D3

x̃f + · · ·
)

−
( 1

2!
E(D2

x̃f) +
1

4!
E(D4

x̃f) +
1

6!
E(D6

x̃f) + · · ·
)}T]

= E[(Dx̃f)(Dx̃f)T ]− 1

4
E(D2

x̃f)E(D2
x̃f)T

+ E
[ ∑
i+j= even
(i,j)∈A

1

i!j!
(Di

x̃f)(Dj
x̃f)T

]

−
[ ∑
(i,j)∈A

1

(2i!)(2j!)
E(D2i

x̃ f)E(D2j
x̃ f)T

]
,

(A.4)
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where all odd-powered terms in the expected value are zero. Here,

E[(Dx̃f)(Dx̃f)T ] = E
[( c∑

i=1

x̃i
∂f(E(x))

∂xi

)( c∑
i=1

x̃i
∂f(E(x))

∂xi

)T]
= E

[ c∑
i=1

c∑
j=1

x̃i
∂f(E(x))

∂xi

∂f(E(x))T

∂xj
x̃j

]
=

c∑
i=1

c∑
j=1

HiE(x̃ix̃j)H
T
j =

c∑
i=1

c∑
j=1

HiPijH
T
j = HPHT ,

(A.5)

where H is the Jacobian matrix of f(x) and Hi is the ith column of H. Now we consider

the approximate covariance matrix, P̂y, defined as

P̂y =
2c∑
i=0

W (i)(ŷ(i) − ŷ)(ŷ(i) − ŷ)T

=
λ

c+ λ
(ŷ(0) − ŷ)(ŷ(0) − ŷ)T +

1

2(c+ λ)

2c∑
i=1

(ŷ(i) − ŷ)(ŷ(i) − ŷ)T .

Consider λ
c+λ

(y(0) − ŷ)(y(0) − ŷ)T first. By the Taylor expansion, we get

ŷ(0) − ŷ = f(E(x))−
{
f(E(x)) +

1

2(c+ λ)

2c∑
i=1

( 1

2!
D2

x̃(i)f +
1

4!
D4

x̃(i)f · · ·
)}

= − 1

2(c+ λ)

2c∑
i=1

( 1

2!
D2

x̃(i)f +
1

4!
D4

x̃(i)f · · ·
)

Thus, we have

λ

c+ λ
(ŷ(0) − ŷ)(ŷ(0) − ŷ)T

=
λ

c+ λ

1

4(c+ λ)2

2c∑
i=1

( 1

2!
D2

x̃(i)f
) 2c∑
i=1

( 1

2!
D2

x̃(i)f
)T

+
λ

c+ λ

∑
(k,`)∈A

[ 1

(2k!)(2`!)

1

4(c+ λ)2

2c∑
i=1

2c∑
j=1

(D2k
x̃(i)f)(D2`

x̃(j)f)T
]

=
λ

c+ λ

1

4
E[D2

x̃f ]E[D2
x̃f ]T

+
λ

c+ λ

∑
(k,`)∈A

[ 1

(2k!)(2`!)

1

4(c+ λ)2

2c∑
i=1

2c∑
j=1

(D2k
x̃(i)f)(D2`

x̃(j)f)T
]
.
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Next, consider 1
2(c+λ)

∑2c
i=1(y

(i) − ŷ)(y(i) − ŷ)T . Using (A.1) and the fact that

1

2(c+ λ)

2c∑
i=1

[(Dx̃(i)f)(Dx̃(i)f)T ] =
1

2(c+ λ)

2c∑
i=1

2c∑
k=1

2c∑
`=1

(
x̃
(i)
k

∂f(E(x))

∂xk

)(
x̃
(i)
`

∂f(E(x))

∂x`

)T
=

1

c+ λ

c∑
i=1

c∑
k=1

c∑
`=1

(
x̃
(i)
k

∂f(E(x))

∂xk

)(
x̃
(i)
`

∂f(E(x))

∂x`

)T
(using x̃

(i)
j = −x̃(c+i)j )

=
c∑

k=1

c∑
`=1

Pk`

(∂f(E(x))

∂xk

)(∂f(E(x))

∂x`

)T
= HPHT

= E[(Dx̃f)(Dx̃f)T ] (By (A.5)),

we can show

1

2(c+ λ)

2c∑
i=1

(ŷ(i) − ŷ)(ŷ(i) − ŷ)T

=
1

2(c+ λ)

2c∑
i=1

[{(
Dx̃(i)f +

1

2!
D2

x̃(i)f +
1

3!
D3

x̃(i)f + · · ·
)

− 1

2(c+ λ)

2c∑
j=1

( 1

2!
D2

x̃(j)f +
1

4!
D4

x̃(j)f + · · ·
)}

×
{(
Dx̃(i)f +

1

2!
D2

x̃(i)f +
1

3!
D3

x̃(i)f + · · ·
)

− 1

2(c+ λ)

2c∑
j=1

( 1

2!
D2

x̃(j)f +
1

4!
D4

x̃(j)f + · · ·
)}T]

= E[(Dx̃f)(Dx̃f)T ]−
(

1 +
λ

c+ λ

)1

4
E[D2

x̃f ]E[D2
x̃f ]T

+
1

2(c+ λ)

2c∑
i=1

[ ∑
k+`= even
(k,`)∈A

1

k!`!
(Dk

x̃(i)f)(D`
x̃(i)f)T

]

−
∑

(k,`)∈A

[ 1

(2k!)(2`!)

1

4(c+ λ)2

(
1 +

λ

c+ λ

)

×
2c∑
i=1

2c∑
j=1

(D2k
x̃(i)f)(D2`

x̃(j)f)T
]
.

(A.6)
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Thus, we have

P̂y =
λ

c+ λ
(ŷ(0) − ŷ)(ŷ(0) − ŷ)T +

1

2(c+ λ)

2c∑
i=1

(ŷ(i) − ŷ)(ŷ(i) − ŷ)T

= E[(Dx̃f)(Dx̃f)T ]− 1

4
E[D2

x̃f ]E[D2
x̃f ]T

+
1

2(c+ λ)

2c∑
i=1

[ ∑
k+`= even
(k,`)∈A

1

k!`!
(Dk

x̃(i)f)(D`
x̃(i)f)T

]

−
∑

(k,`)∈A

[ 1

(2k!)(2`!)

1

4(c+ λ)2

2c∑
i=1

2c∑
j=1

(D2k
x̃(i)f)(D2`

x̃(j)f)T
]
.

(A.7)

Now we consider the covariance matrix Pxy. Then,

Pxy = E[(x− E(x))(y − E(y))T ] = E[(x̃)(y − E(y))T ]

= E
[
x̃
(
Dx̃f

)T]
+
∞∑
i=1

1

(2i+ 1)!
E
[
x̃
(
D2i+1

x̃ f
)T]

= PHT +
∞∑
i=1

1

(2i+ 1)!
E
[
x̃
(
D2i+1

x̃ f
)T]

.

(A.8)

Using x(0) = E(x), the approximate covariance matrix, P̂xy, equals

P̂xy =
1

2(c+ λ)

2c∑
i=0

(x̂(i) − E(x))(ŷ(i) − ŷ)T

=
1

2(c+ λ)

2c∑
i=1

x̃(i)
(
Dx̃(i)f

)T
+
∞∑
k=1

1

(2k + 1)!

1

2(c+ λ)

2c∑
i=1

x̃(i)
(
D2k+1

x̃(i) f
)T

= PHT +
∞∑
k=1

1

(2k + 1)!

1

2(c+ λ)

2c∑
i=1

x̃(i)
(
D2k+1

x̃(i) f
)T
.

(A.9)

APPENDIX B. DERIVATION OF RESULTS FOR THEOREM 2

In this section, |A| indicates the absolute value of A, where A may be a scalar, a vector, or

a matrix. When A is a vector (matrix), |A| is a vector (matrix) consisting of the absolute

values of A’s components. In addition, when “≤” is used for a vector (matrix), it implies

that every component of the left vector (matrix) is less than or equal to the corresponding
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component of the right vector (matrix). From the Taylor series in Section A of Appendix

and Condtion 1 of Theorem 2, we have

E(y)− ŷ =
[
f(E(x)) +

1

2!

c∑
i=1

c∑
j=1

Pij
∂2

∂xi∂xj
f(E(x)) +

1

4!
E[D4

x̃f ] + · · ·
]

−
[
f(E(x)) +

1

2

c∑
i=1

c∑
j=1

Pij
∂2

∂xi∂xj
f(E(x))

+
1

2(c+ λ)

2c∑
j=1

( 1

4!
D4

x̃(j)f +
1

6!
D6

x̃(j)f · · ·
)]

=
∞∑
i=2

1

(2i)!
E[D2i

x̃ f ]−
∞∑
i=2

1

2(c+ λ)

2c∑
j=1

1

(2i)!
D2i

x̃(j)f

For 1 ≤ ` ≤ q, we have∣∣∣ 1

(2i)!
E[D2i

x̃ f`]
∣∣∣ =

1

(2i)!

∣∣∣E( c∑
j=1

x̃j
∂

∂xj

)2i
f`

∣∣∣
≤ 1

(2i)!

∑
1≤k1,...,kc≤2i

[( 2i

k1, . . . , kc

)(
hiM i

∣∣∣ ∂2if`(E(x))

∂xk11 · · · ∂xkcc

∣∣∣)]
≡ hiai,`.

(A.10)

Let ai = (ai,1, . . . , ai,q). Similarly,

1

2(c+ λ)

2c∑
j=1

1

(2i)!
D2i

x̃(j)f

=
1

(c+ λ)

c∑
j=1

1

(2i)!

( c∑
`=1

√
(c+ λ)P `j

∂

∂x`

)2i
f

=
hi

(2i)!

c∑
j=1

(c+ λ)i−1
( ∑

1≤k1,...,kc≤2i

(
2i

k1, . . . , kc

)
× (
√
P ∗1j)

k1 · · · (
√
P ∗cj)

kc
∂2if(E(x))

∂xk11 · · · ∂xknc

)
≡ hibi,

(A.11)

where P ∗ij is the (i, j) component of P∗. Since
∑∞

i=1K
i/i! is finite, Condition 2 of Theorem

2 implies that all components of
∑∞

i=1 h
iai and

∑∞
i=1 h

ibi defined in (A.10) and (A.11)

respectively are finite. Thus, we have

|E(y)− ŷ| ≤
∞∑
i=2

hi(|ai|+ |bi|) = h2
∞∑
i=2

hi−2(|ai|+ |bi|) = O(h2). (A.12)
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On the other hand, linearization uses ŷL = f(E(x)). It can be similarly shown that

E(y)− ŷL = O(h). (A.13)

Now, we turn our attention to Py − P̂y. From the results so far, we get

Py − P̂y = E
[ ∑
i+j= even
(i,j)∈A

1

i!j!
(Di

x̃f)(Dj
x̃f)T

]
−
[ ∑
(i,j)∈A

1

(2i!)(2j!)
E(D2i

x̃ f)E(D2j
x̃ f)T

]

− 1

2(c+ λ)

2c∑
i=1

[ ∑
j+`= even
(j,`)∈A

1

j!`!
(Dj

x̃(i)f)(D`
x̃(i)f)T

]

+
∑

(j,`)∈A

[ 1

(2j!)(2`!)

1

4(c+ λ)2

2c∑
i=1

2c∑
m=1

(D2j

x̃(i)f)(D2`
x̃(m)f)T

]
.

First of all, we consider the first term E
[

1
i!j!

(Di
x̃f)(Dj

x̃f)T
]

where i + j is even. Then, we

have

E
[ 1

i!j!
(Di

x̃f)(Dj
x̃f)T

]
= E

[( 1

i!

∑
1≤k1,...,kc≤i

(
i

k1, . . . , kc

)
x̃k11 · · · x̃kcc

∂if(E(x))

∂xk11 · · · ∂xkcc

)
×
( 1

j!

∑
1≤`1,...,`c≤j

(
j

k1, . . . , kc

)
x̃`11 · · · x̃`cc

∂jf(E(x))

∂x`11 · · · ∂x`cc

)T
.

18



Let the ith component of a function f be fi. Then, the (a, b) component of

E
[

1
i!j!

(Di
x̃f)(Dj

x̃f)T
]
, E
[

1
i!j!

(Di
x̃f)(Dj

x̃f)T
]
ab

, satisfies:

∣∣∣E[ 1

i!j!
(Di

x̃f)(Dj
x̃f)T

]
ab

∣∣∣
=
∣∣∣E[( 1

i!

∑
1≤k1,...,kc≤i

(
i

k1, . . . , kc

)
x̃k11 · · · x̃kcc

∂ifa(E(x))

∂xk11 · · · ∂xkcc

)
×
( 1

j!

∑
1≤`1,...,`c≤j

(
j

`1, . . . , `c

)
x̃`11 · · · x̃`cc

∂jfb(E(x))

∂x`11 · · · ∂x`cc

)]∣∣∣
=
∣∣∣E[ 1

i!j!

∑
1≤k1,...,kc≤i
1≤`1,...,`c≤j

(
i

k1, . . . , kc

)(
j

`1, . . . , `c

)
x̃k1+`11 · · · x̃kc+`cc

× ∂ifa(E(x))

∂xk11 · · · ∂xkcc

∂jfb(E(x))

∂x`11 · · · ∂x`cn

]∣∣∣
≤ h(i+j)/2M (i+j)/2

i!j!

∑
1≤k1,...,kc≤i
1≤`1,...,`c≤j

(
i

k1, . . . , kc

)(
j

`1, . . . , `c

)

×
∣∣∣ ∂ifa(E(x))

∂xk11 · · · ∂xkcc

∂jfb(E(x))

∂x`11 · · · ∂x`cc

∣∣∣
≡ h(i+j)/2Rij

ab.

(A.14)

Thus,
∣∣∣E[ 1

i!j!
(Di

x̃f)(Dj
x̃f)T

]∣∣∣ ≤ h(i+j)/2Rij. Then, we obtain

∣∣∣E[ ∑
i+j= even
(i,j)∈A

1

i!j!
(Di

x̃f)(Dj
x̃f)T

]∣∣∣
≤

∑
i+j= even
(i,j)∈A

h(i+j)/2Rij = h2
∑

i+j= even
(i,j)∈A

h(i+j)/2−2Rij.

(A.15)

By (A.10), the second term satisfies∑
(i,j)∈A

1

(2i!)(2j!)

∣∣∣E(D2i
x̃ f)E(D2j

x̃ f)T
∣∣∣

≤
∑

(i,j)∈A

hiai(h
iaj)

T = h2
∑

(i,j)∈A

hi+j−2ai(aj)
T .

(A.16)
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Next, let’s consider the third therm 1
2(c+λ)

∑2c
i=1

1
j!`!

(Dj

x̃(i)f)(D`
x̃(i)f)T where j + ` is even.

1

2(c+ λ)

2c∑
i=1

1

j!`!
(Dj

x̃(i)f)(D`
x̃(i)f)T =

1

c+ λ

c∑
i=1

1

j!`!
(Dj

x̃(i)f)(D`
x̃(i)f)T

=
1

c+ λ

c∑
i=1

[ 1

j!

( c∑
r=1

√
(c+ λ)P ri

∂

∂x`

)j
f
][ 1

`!

( c∑
s=1

√
(c+ λ)P si

∂

∂x`

)`
f
]T

=
(c+ λ)(j+`)/2

c+ λ

c∑
i=1

[ 1

j!

∑
1≤u1,...,uc≤j

(
j

u1, . . . , uc

)
(
√
P 1i)

u1 · · · (
√
P ci)

uc

× ∂jf(E(x))

∂xu11 · · · ∂xucc

]
×
[ 1

`!

∑
1≤v1,...,vc≤`

(
`

v1, . . . , vc

)
(
√
P 1i)

v1 · · · (
√
P ci)

vc
∂`f(E(x))

∂xv11 · · · ∂xvcc

]T
.

Similarly with E
[

1
i!j!

(Di
x̃f)(Dj

x̃f)T
]
ab

, we have

[ 1

2(c+ λ)

2c∑
i=1

1

j!`!
(Dj

x̃(i)f)(D`
x̃(i)f)T

]
ab

= h(j+`)/2
c∑
i=1

[(c+ λ)(j+`)/2−1

j!`!

∑
1≤u1,...,uc≤j
1≤v1,...,vc≤`

(
j

u1, . . . , uc

)(
`

v1, . . . , vc

)

× (
√
P ∗1i)

u1+v1 · · · (
√
P ∗ni)

uc+vc
∂jfa(E(x))

∂xu11 · · · ∂xucc
∂`fb(E(x))

∂xv11 · · · ∂xvcc

]
≡ h(j+`)/2T j`ab .

Thus, we obtain

1

2(c+ λ)

2c∑
i=1

[ ∑
j+`= even
(j,`)∈A

1

j!`!
(Dj

x̃(i)f)(D`
x̃(i)f)T

]

=
∑

j+`= even
(j,`)∈A

h(i+j)/2Tj` = h2
∑

j+`= even
(j,`)∈A

h(i+j)/2−2Tj`.

(A.17)
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For the last term of Py − P̂y,
∑

(j,`)∈A

[
1

(2j!)(2`!)
1

4(c+λ)2

∑2c
i=1

∑2c
m=1(D

2j

x̃(i)f)(D2`
x̃(m)f)T

]
, by

(A.11), we have

∑
(j,`)∈A

[ 1

(2j!)(2`!)

1

4(c+ λ)2

2c∑
i=1

2c∑
m=1

(D2j

x̃(i)f)(D2`
x̃(m)f)T

]

=
∑

(j,`)∈A

[( 2c∑
i=1

1

(2j)!

1

2(c+ λ)
D2j

x̃(i)f
)( 2c∑

m=1

1

(2`)!

1

2(c+ λ)
D2`

x̃(m)f
)T]

=
∑

(j,`)∈A

hjbj(h
`b`)

T = h2
∑

(j,`)∈A

hj+`−2bj(b`)
T .

(A.18)

Combining (A.15)-(A.18), we obtain

Py − P̂y = O(h2), (A.19)

where Condition 2 of Theorem 2 implies that all components of
∑

i+j= even
(i,j)∈A

h(i+j)/2Rij,
∑

(i,j)∈A h
i+jai(aj)

T ,∑
j+`= even
(j,`)∈A

h(j+`)/2Tj`, and
∑

(j,`)∈A h
j+`−2bj(b`)

T are finite. By (A.10), we have

1

4
E[D2

x̃f ]E[D2
x̃f ]T = h2a1(a1)

T .

In linearization, P̂y,L = HPxH
T . Thus, it can be similarly shown that

Py − P̂y,L = O(h2). (A.20)

Now, we know

Pxy − P̂xy =
∞∑
i=1

1

(2i+ 1)!
E
[
x̃
(
D2i+1

x̃ f
)T]
−
∞∑
i=1

1

(2i+ 1)!

1

2(c+ λ)

2c∑
j=1

x̃(j)
(
D2i+1

x̃(j) f
)T
.

We consider 1
(2i+1)!

E
[
x̃
(
D2i+1

x̃ f
)T]

first.

1

(2i+ 1)!
E
[
x̃
(
D2i+1

x̃ f
)T]

=
1

(2i+ 1)!
E
[
x̃
( ∑

1≤k1,...,kc≤2i+1

(
2i+ 1

k1, . . . , kc

)
x̃k11 · · · x̃kcc

∂2i+1f(E(x))

∂xk11 · · · ∂xkcc

)T]
.
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As before, we can obtain

1

(2i+ 1)!

∣∣∣E[x̃(D2i+1
x̃ f

)T]
ab

∣∣∣
=

1

(2i+ 1)!

∣∣∣E[x̃a ∑
1≤k1,...,kc≤2i+1

(
2i+ 1

k1, . . . , kc

)
x̃k11 · · · x̃kcc

∂2i+1fb(E(x))

∂xk11 · · · ∂xkcc

]∣∣∣
=

1

(2i+ 1)!

∣∣∣E[ ∑
1≤k1,...,kc≤2i+1

(
2i+ 1

k1, . . . , kc

)
x̃k11 · · · x̃ka+1

a · · · x̃kcc
∂2i+1fb(E(x))

∂xk11 · · · ∂xkcc

]∣∣∣
≤ hi+1M i+1

(2i+ 1)!

∑
1≤k1,...,kc≤2i+1

[( 2i+ 1

k1, . . . , kc

)∣∣∣∂2i+1fb(E(x))

∂xk11 · · · ∂xkcc

∣∣∣]
≡ hi+1Ui,ab.

Thus, we get

∞∑
i=1

1

(2i+ 1)!

∣∣∣E[x̃(D2i+1
x̃ f

)T]∣∣∣ ≤ ∞∑
i=1

hi+1Ui = h2
∞∑
i=1

hi−1Ui.

Furthermore,[ 1

(2i+ 1)!

1

2(c+ λ)

2c∑
j=1

x̃(j)
(
D2i+1

x̃(j) f
)T]

ab

=
hi+1

(2i+ 1)!

(c+ λ)i+1

c+ λ

c∑
j=1

(
√
P ∗aj)

×
( ∑

1≤k1,...,kc≤2i+1

(
2i+ 1

k1, . . . , kc

)
(
√
P ∗1j)

k1 · · · (
√
P ∗cj)

kc
∂2i+1fb(E(x))

∂xk11 · · · ∂xkcc

)
≡ hi+1Vi,ab.

Thus, we have

∞∑
i=1

1

(2i+ 1)!

1

2(c+ λ)

2c∑
j=1

x̃(j)
(
D2i+1

x̃(j) f
)T

=
∞∑
i=1

hi+1Vi = h2
∞∑
i=1

hi−1Vi.

Therefore, we obtain

|Pxy − P̂xy| =
∣∣∣ ∞∑
i=1

1

(2i+ 1)!
E
[
x̃
(
D2i+1

x̃ f
)T]

−
∞∑
i=1

1

(2i+ 1)!

1

2(c+ λ)

2c∑
j=1

x̃(j)
(
D2i+1

x̃(j) f
)T ∣∣∣

≤ h2
∞∑
i=1

hi−1(|Ui|+ |Vi|) = O(h2),

(A.21)
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where Condition 2 of Theorem 2 implies that all components of
∑∞

i=1 h
i+1Ui and

∑∞
i=1 h

i+1Vi

defined in (A.21) are finite. In linearization, P̂xy,L = PxH
T . Thus, it can be similarly shown

that

|Pxy − P̂xy,L| ≤ h2
∞∑
i=1

hi−1|Ui| = O(h2). (A.22)
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