Jian Huang
Professor Emeritus
American Statistical Association Fellow
Biography
Research interests
- High-dimensional statistics
- Semiparametric inference
- Statistical genetics
- Survival analysis
Selected publications
- Yang, Y., Shi, X., Jiao, Y., Huang, J., Chen, M., Zhou, X., Sun, L., Lin, X., Yang, C. & Liu, J. (2020). CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. Bioinformatics, 36(7), 2009-2016. DOI: 10.1093/bioinformatics/btz880.
- Yang, X., Yan, X. & Huang, J. (2019). High-dimensional integrative analysis with homogeneity and sparsity recovery. Journal of Multivariate Analysis, 174, 104529. DOI: 10.1016/j.jmva.2019.06.007.
- Shi, Y., Huang, J., Jiao, Y. & Yang, Q. (2019). A Semismooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning. IEEE Transactions on Neural Networks and Learning Systems, 1-14. DOI: 10.1109/tnnls.2019.2935001.
- Chai, H., Zhang, Q., Huang, J. & Ma, S. (2019). Inference for Low-Dimensional Covariates in a High-Dimensional Accelerated Failure Time Model. Statistica Sinica. DOI: 10.5705/ss.202016.0449.
- Lv, S., Jiang, J., Zhou, F., Huang, J. & Lin, H. (2018). Estimating high-dimensional additive Cox model with time-dependent covariate processes. Scandinavian Journal of Statistics, 45(4), 900-922. DOI: 10.1111/sjos.12327.
- Lv, S., You, M., Lin, H., Lian, H. & Huang, J. (2018). On the sign consistency of the Lasso for the high-dimensional Cox model. Journal of Multivariate Analysis, 167, 79-96. DOI: 10.1016/j.jmva.2018.04.005.
- Shi, X., Huang, Y., Huang, J. & Ma, S. (2018). A Forward and Backward Stagewise algorithm for nonconvex loss functions with adaptive Lasso. Computational Statistics & Data Analysis, 124, 235-251. DOI: 10.1016/j.csda.2018.03.006.
- Lv, S., Lin, H., Lian, H. & Huang, J. (2018). Oracle inequalities for sparse additive quantile regression in reproducing kernel Hilbert space. The Annals of Statistics, 46(2), 781-813. DOI: 10.1214/17-aos1567.
- Huang, J., Jiao, Y., Lu, X. & Zhu, L. (2018). Robust Decoding from 1-Bit Compressive Sampling with Ordinary and Regularized Least Squares. SIAM Journal on Scientific Computing, 40(4), A2062-A2086. DOI: 10.1137/17m1154102.
- Wu, M., Zang, Y., Zhang, S., Huang, J. & Ma, S. (2017). Accommodating missingness in environmental measurements in gene-environment interaction analysis. Genetic Epidemiology, 41(6), 523-554. DOI: 10.1002/gepi.22055.